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Abstract. This overview article concerns the notion of fractional smoothness of
random variables of the form g(XT ), where X = (Xt)t∈[0,T ] is a certain diffusion
process. We review the connection to the real interpolation theory, give examples and
applications of this concept. The applications in stochastic finance mainly concern
the analysis of discrete time hedging errors. We close the review by indicating some
further developments.

1.1 Introduction

From the practitioners one learns that hedging an option which payoff is
discontinuous is more difficult compared to the case of smooth payoffs: this
feature appears for instance for digital options or barrier options (we refer
the reader to [Tal97] among others). On the one hand, for such options the
number of assets (i.e. the delta) to incorporate in the hedging portfolio is
unbounded, and it may become larger and larger when one gets close to the
singularity (i.e. the maturity and the strike for digital options, or the trigger
level for barrier options). On the other hand, the numerical estimation of this
delta becomes less and less accurate, leading to global stability issues. These
heuristic observations are the starting point for deeper mathematical investi-
gations about the concept of irregular payoffs, in order to formalize it and to
quantify the payoff irregularity (with the notion of fractional smoothness). In
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the current contribution, we aim to give an overview of this concept and some
applications in stochastic finance. Actually, the applications go beyond the
financial framework and more generally, they concern the theory of stochastic
differential equations and their approximations.

The discrete time hedging error as an important application.

Since most of the results presented here are applied to the aforementioned
example of hedging possibly irregular options, we start with a brief presenta-
tion of this problem, in order to emphasize the issues to handle and to raise
some natural questions. Take for instance an European-style option exercised
at maturity T > 0, with a payoff of the form h(ST ) where St := [S1

t , · · · , Sd
t ]

denotes the price of a d-dimensional underlying asset at time 0 ≤ t ≤ T .
Sometimes, we will use the notation X i

t = log(Si
t) for the log-asset, and

g(x) = h(ex1 , · · · , exd) for the payoff in the logarithmic variables. In what
follows, we assume a Markovian dynamics without jumps for the asset (solu-
tion to a SDE defined below), we suppose that the interest rate is equal to
0 (to simplify the presentation) and that the market is complete (for details
about this standard framework, see [KS98]). Thus, under some regularity as-
sumptions, the payoff h(ST ) can be replicated perfectly by a continuous time
strategy, where δSt = ∇xH(t, St) defines the vector of number of assets to hold
at time t. Here, H is the fair price of the option, that is

H(t, x) = EQ(h(ST )|St = x)

where Q is the (unique) risk-neutral measure. In practice, only discrete-time
hedging is possible at some times τ = (ti)

n
i=0 with 0 = t0 < t1 < · · · < tn−1 <

tn = T . Thus, at time t ∈ [0, T ] the option seller is left with the tracking error

Ct(h(ST ), τ) = H(t, St)−H(0, S0)−
∑

i

∇xH(ti, Sti) · (Sti+1∧t − Sti∧t)

=

∫ t

0

(∇xH(s, Ss)−∇xH(φ(s), Sφ(s))) · dSs (1.1)

with φ(s) = ti when ti < s ≤ ti+1. We expect the tracking error (1.1) to
converge to 0 as the number n of re-balancing dates goes to infinity. With
the above formulation (1.1), the tracking error is naturally associated to the
problem of approximation of a stochastic integral using piece-wise constant
integrated processes. But the delta process (∇xH(s, Ss))s∈[0,T ) may exhibit
very different behaviors from payoff to payoff: if the payoff is smooth enough,
then the delta might be bounded as time goes to maturity, while an irregular
payoff usually yields an exploding delta as s → T . This gives rise to the first
question.

(Q1) Is there an intrinsic way to relate the growth rate (as s → T ) of the
derivatives of H to the irregularity of the payoff h?

The answer will be yes via the notion of fractional smoothness introduced
below, see Theorems 1 and 2.
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The estimation of stochastic integrals is usually performed with L2-norms,
but in our financial setting, both measures P and Q can be considered. For
practitioners, errors under the historical probability P are presumably more
relevant, while the mathematical treatment under the risk-neutral measure Q
is simpler in our context (because the tracking error process (1.1) is a Q-local
martingale).

(Q2) Is the definition of fractional smoothness affected by the choice of a
specific measure? Do the L2-convergence rates depend on the choice of the
probability measures P or Q?

In the context we consider the answer concerning the fractional smoothness
is usually no in the sense of the comments after Theorem 2. Concerning
the approximation rates the same is checked for examples so far (see the
remarks after Theorem 9).

Beyond the approach to measure tracking errors in L2, we could alternatively
identify the weak limit of the re-normalized tracking error.

(Q3)Do the weak convergence rates coincide with those in the L2 sense?

The answer is not necessarily, as there are counter-examples in which the
convergence in L2 and in distribution hold at different rates, see Section
1.5.

Finally, through an efficient choice of re-balancing dates τ , one can expect to
reduce tracking errors and improve the risk management of options.

(Q4)Which time-nets τ = (ti)
n
i=0 lead to optimal convergence rates? And

how to relate them to the fractional smoothness of the payoff?

As answer we get that according to the index of fractional smoothness
of the payoff, one can define explicitly re-balancing times achieving the
optimal convergence rates, see Section 1.5.

These preliminary questions serve as references for the reader when reading
the next sections.

Organization of the paper.

First, we define the probabilistic framework and the assumptions used through-
out this work. Then in Section 1.2, we define the fractional smoothness and
provide basic properties: we choose a presentation that is quite illuminat-
ing regarding the previous preliminary questions. In Section 1.3, we take an-
other view on fractional smoothness using the interpolation theory. In Section
1.4, we consider examples of terminal conditions and identify their fractional
smoothness. Then, in Section 1.5, we go back to the analysis of discrete time
hedging errors and state the main results. We close by further developments
and applications of the fractional smoothness in Section 1.6.



4 Stefan Geiss and Emmanuel Gobet

Assumptions.

Let us define the probabilistic setting used in the following. We fix a d-
dimensional Brownian motion W = (Wt)t∈[0,T ] defined on a complete prob-
ability space (Ω,FT ,P) and we let (Ft)t∈[0,T ] be the augmentation of the
natural filtration of W . The log-asset X is the solution of the d-dimensional
forward diffusion

Xt = x0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs.

To state the results, we mainly consider two types of assumptions:

(SDE) d ≥ 1 and b, σ ∈ C∞
b ([0, T ]×Rd) and σσ∗ ≥ δIRd for some δ > 0.

(GBM) d = 1 and Xt = ln(St) =Wt − (t/2).

The smoothness conditions in (SDE) are too strong, they are chosen to sim-
plify the presentation. Whenever useful to simplify even more, we may con-
sider the very simple case of the geometric Brownian motion (GBM) (here,
the asset is a martingale, meaning that P = Q). The reader is referred to the
corresponding original papers for the possible weaker conditions.

In the following | · | stands for the Euclidean norm and A ∼c B for A/c ≤
B ≤ cA if c ≥ 1 and A,B ≥ 0. Expectations and conditional expectations
under P are simply denoted by E(.) and E(.|Ft), while under Q, we indicate
explicitly the dependency w.r.t. the probability measure by writing EQ(.) andEQ(.|Ft).

1.2 Definition of fractional smoothness and basic

properties

Fractional smoothness on the Wiener space can be defined in various ways,
see [Wat93, Hir99]. Our approach is motivated by the questions discussed in
Section 1.1. Since we consider only random variables of the form Z = g(XT ) =
h(ST ) (a function of the process at maturity T ), the time T plays a specific
role in our definition. It would be necessary to modify our definition for more
general dependencies like Z = g(Xt1 , · · · , Xtn), see [GGG10].

Definition 1. Assume that Z ∈ L2(P).
(i) For 0 < θ ≤ 1 we let Z ∈ B̃θ

2,∞ provided that, for all 0 ≤ t < T ,

‖Z −E(Z|Ft)‖L2(P) ≤ c(T − t)
θ
2 .

(ii) For 0 < θ < 1 we let Z ∈ B̃θ
2,2 provided that

∫ T

0

(T − t)−1−θ‖Z −E(Z|Ft)‖2L2(P)dt <∞.
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The spaces B̃θ
2,q above will always be obtained by the conditional expectation

and the L2-norm under the measure P. Therefore we omit the dependency onP in the notation.
The following properties follow straight from the definition:

Proposition 1. For 0 < θ < η < 1 and p, q ∈ {2,∞} we have thatB̃1
2,∞ ⊆ B̃η

2,p ⊆ B̃θ
2,q and B̃θ

2,2 ⊆ B̃θ
2,∞.

Given a bounded 3 measurable g : Rd → R and (t, x) ∈ [0, T )×Rd, we let

u(t, x) := E(g(XT )|Xt = x),

D2u(t, x) :=

(
∂2u

∂xi∂xj
(t, x)

)d

i,j=1

.

The following equivalences are useful to exploit properties of B̃θ
2,2 and B̃θ

2,∞.

Theorem 1 ([GM10a, Proposition 4]). Under the condition (SDE), for
0 < θ < 1 and a bounded g, the following assertions are equivalent:

(i) g(XT ) ∈ B̃θ
2,2.

(ii)
∫ T

0
(T − t)−θE |∇xu(t,Xt)|2 dt <∞.

(iii)
∫ T

0 (T − t)1−θE ∣∣D2u(t,Xt)
∣∣2 dt <∞.

Theorem 2 ([GM10a, Lemma 6]). Under the condition (SDE), for 0 <
θ ≤ 1 and a bounded g, the following assertions are equivalent:

(i) g(XT ) ∈ B̃θ
2,∞.

(ii) supt∈[0,T )(T − t)1−θE |∇xu(t,Xt)|2 <∞.

(iii) For 0 < θ < 1 we have that supt∈[0,T )(T − t)2−θE ∣∣D2u(t,Xt)
∣∣2 <∞.

Theorems 1 and 2 generalize results obtained in [GG04] and [GH07]. We see
that the fractional smoothness index θ measures exactly the growth rate of
the derivatives of the associated PDE solved by u (see question (Q1) in the
introduction).

The two above theorems are also valid if u is computed using the risk-
neutral measure Q (i.e. uQ(t, x) = EQ(g(XT )|Xt = x)), while the other
L2-norms are computed under P. For instance, for 0 < θ < 1 the equivalence

of (i) and (ii) of Theorem 1 becomes g(XT ) ∈ B̃θ,P
2,2 if and only if

∫ T

0 (T −
3 Here again, the boundedness assumptions on g can be weakened and we refer to
the original papers.
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t)−θEP |∇xuQ(t,Xt)|2 dt < ∞ where we have indicated explicitly if the L2-
norms or conditional expectations are computed under P or Q. This property
can be established following [GM10a] and the proof of [GM10b, Lemma 7].
This accommodates well the fact that the price functions are usually computed
under the risk-neutral measure, while hedging is made under the historical
probability (see question (Q2) in the introduction).

Proof (Simplified proof of Theorem 2).
We sketch the proof in the simple case where X = W is a linear Brow-

nian motion, d = 1 and θ ∈ (0, 1). First, (u(t,Wt) = E(g(WT )|Ft))t≤T is
a martingale in L2(P). In addition, for any fixed 0 < δ < T the processes
(∇xu(t,Wt))t≤T−δ and (D2u(t,Wt))t≤T−δ are L2(P)-martingales. This prop-
erty is obtained by checking that ∇xu and D2u both solve the parabolic heat
equation and that certain integrability assumptions are satisfied. Then by
Itô’s formula, one obtains for 0 ≤ s ≤ t < T that

g(WT )− u(t,Wt) =

∫ T

t

∇xu(s,Ws)dWs, (1.2)

∇xu(t,Wt)−∇xu(s,Ws) =

∫ t

s

D2u(r,Wr)dWr . (1.3)

From the Itô isometry, one deduces from (1.2) that E|g(WT ) − u(t,Wt)|2 =∫ T

t E|∇xu(s,Ws)|2ds and it follows that (ii) ⇒ (i). Similarly from (1.3) one
obtains E|∇xu(t,Wt)|2 ≤ 2E|∇xu(0,W0)|2 + 2

∫ t

0

E|D2u(r,Wr)|2dr

which proves (iii) ⇒ (ii). Finally, we show (i) ⇒ (iii). Standard computations
give that

(D2u)(t,Wt) = D2
z

∫R g(x) e−
(x−z)2

2(T−t)

√
2π(T − t)

dx

∣∣∣∣
z=Wt

=

∫R g(x) (x− z)2 − (T − t)

(T − t)2
e−

(x−z)2

2(T−t)

√
2π(T − t)

dx

∣∣∣∣
z=Wt

= E(g(WT )
(WT −Wt)

2 − (T − t)

(T − t)2
|Ft

)

= E([g(WT )−E(g(WT )|Ft)]
(WT −Wt)

2 − (T − t)

(T − t)2
|Ft

)

which implies that

‖D2u(t,Wt)‖L2(P) ≤
‖W 2

1 − 1‖L2(P)

T − t
‖g(WT )−E(g(WT )|Ft)‖L2(P)

so that we are done.
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1.3 Connection to real interpolation

Let us connect Definition 1 to the classical notion of fractional smoothness
which also explains the notation we have used. In particular, this connection
will make clear the difference between B̃θ

2,∞ and B̃θ
2,2.

Definition 2 ([BL76, BS88]). Assume a couple of Banach spaces (E0, E1)
so that E1 is continuously embedded into E0. Given x ∈ E0 and 0 < λ < ∞,
the K-functional is given by

K(x, λ;E0, E1) := inf{‖x0‖E0 + λ‖x1‖E1 : x = x0 + x1}.
Moreover, given 0 < θ < 1 and 1 ≤ q ≤ ∞ we define the real interpolation
norm

‖x‖θ,q :=
∥∥λ−θK(x, λ;E0, E1)

∥∥
Lq((0,∞), dλ

λ )

and the space (E0, E1)θ,q := {x ∈ E0 : ‖x‖θ,q <∞}.
With our setting (E1 is continuously embedded into E0) we obtain the fol-
lowing lexicographical ordering of the interpolation spaces:

E1 ⊆ (E0, E1)θ,p ⊆ (E0, E1)θ,q ⊆ (E0, E1)η,r ⊆ E0

for all 0 < η < θ < 1, 1 ≤ p ≤ q ≤ ∞ and all 1 ≤ r ≤ ∞.

We apply this concept to the analysis on the Wiener space, which needs to
introduce some standard notation (see [Nu06, Sections 1.1 and 1.2]). Let H be
a separable real Hilbert space with the scalar product denoted by 〈., .〉H and
(M, Σ, µ) be a complete probability space. We assume an isonormal family
g = {gh : h ∈ H} of centered Gaussian random variables, i.e.Eµ(gh gk) = 〈h, k〉H for all h, k ∈ H ,

and that Σ is the completed σ-field generated by the random variables {gh :
h ∈ H}.

For each n ≥ 1, we denote by Hn the closed linear subspace of L2(µ)
generated by the random variables {Hn(gh) : h ∈ H, ‖h‖H = 1} where

Hn(x) =
(−1)n√
n!

e
x2

2
dn

dxn
(e−

x2

2 ), (1.4)

i.e. the n-th Hermite polynomial.H0 is the set of constants.Hn is the so-called
Wiener chaos of order n and we define by Jn : L2(µ) → L2(µ) the orthogonal
projection onto Hn. The following orthogonal decomposition is known as the
Wiener chaos decomposition:

L2(µ) =

∞⊕

n=0

Hn.

Now, we are in a position to define the Malliavin Sobolev space and Malliavin
Besov space.



8 Stefan Geiss and Emmanuel Gobet

Definition 3. The Malliavin Sobolev space D1,2(µ) ⊆ L2(µ) is given byD1,2(µ) :=



Z ∈ L2(µ) : ‖Z‖D1,2(µ) :=

(
∞∑

n=0

(n+ 1)‖JnZ‖2L2(µ)

) 1
2

<∞



 .

Moreover, given 0 < θ < 1 and 1 ≤ q ≤ ∞, we define the Malliavin Besov
space Bθ

2,q(µ) := (L2(µ),D1,2(µ))θ,q

of fractional smoothness θ with fine parameter q.

We use this construction in the case that H = ℓd2 and M = Rd, Σ is the
completion of the Borel σ-algebra on Rd and µ = γd is the d-dimensional
standard Gaussian measure. The family of Gaussian random variables is given
by

gh(x) := 〈x, h〉 for x ∈ M = Rd and h ∈ H = ℓd2.

To make the connection between the definitions of B̃θ
2,q and Bθ

2,q(γd) for q ∈
{2,∞} we let, as before, (Wt)t∈[0,1] be the standard d-dimensional Brownian
motion on (Ω,F ,P, (Ft)t∈[0,1]). Then we have

Theorem 3 ([GH07, Corollary 2.3]). For 0 < θ < 1, 1 ≤ q ≤ ∞, and
g ∈ L2(γd) one has

‖g‖Bθ
2,q(γd) ∼c ‖g‖L2(γd) +

∥∥∥(1− t)−
θ
2 ‖M1 −Mt‖L2(P)

∥∥∥
Lq([0,1),

dt
1−t

)

where Mt := E (g(W1)|Ft) and c ≥ 1 depends on (θ, q) only.

Applying this theorem to q = ∞ gives that

‖g‖Bθ
2,∞(γd) ∼c ‖g‖L2(γd) + sup

0≤t≤1
(1− t)−

θ
2 ‖M1 −Mt‖L2(P) ,

whereas q = 2 gives that

‖g‖Bθ
2,2(γd) ∼c ‖g‖L2(γd) +

(∫ 1

0

(1 − t)−1−θ ‖M1 −Mt‖2L2(P) dt

) 1
2

which brings us back to Definition 1.
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Multi-dimensional Black-Scholes-Samuelson model.

This is a log-normal model which dynamics on the price and the log-price can
be written as

dSi
t = Si

t




d∑

j=1

σijdW
j
t + µidt


 , 1 ≤ i ≤ d,

X i
t = log(si0) +

d∑

j=1

σijW
j
t + (µi −

1

2
σ2
i )t,

where σi :=
√∑

j σ
2
ij . Assume that (σij)

d
i,j=1 is invertible. To the payoff func-

tion S 7→ h(S), we associate g(x1, ..., xd) := h



(
si0e

∑
d

j=1
σijxj+µi−

σ2
i
2

)d

i=1


.

From this we see that

g ∈ Bθ
2,q(γd) if and only if h(S1) ∈ B̃θ

2,q

for q ∈ {2,∞} and g ∈ L2(γd).

Remark 1. In the case θ = 1 we get that

g ∈ D1,2(γd) if and only if h(S1) ∈ B̃1
2,∞

for all g ∈ L2(γd). This can be checked by using arguments from the proof of
[GH07, Corollary 2.3].

1.4 Examples

In this section, we provide examples of random variables Z = g(XT ) for which
we determine the fractional smoothness.

Example 1 (Lipschitz function). The case, where the fractional smoothness is
obvious, is the Lipschitz case. Assume a Lipschitz function g : Rd → R with
constant L ≥ 0, i.e. |g(x) − g(y)| ≤ L|x − y| and assume (SDE). Then one
has that E |g(XT )−E(g(XT )|Ft)|2 ≤ E |g(XT )− g(Xt)|2

≤ L2E |XT −Xt|2

≤ L2c2(T − t),

using standard estimates on the increments of X . Hence, g(XT ) ∈ B̃1
2,∞. This

example includes call and put payoffs, i.e. g(x) = (x−K)+ or g(x) = (K−x)+.
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Exactly the same argument as above yields for θ-Hölder functions g with
θ ∈ (0, 1) that g(XT ) ∈ B̃θ

2,∞. But the situation is here not as clear as one
expects as shown by

Example 2. Assume the setting (GBM) and that

hθ(x) := (x−K)θ+

for some K > 0 and 0 < θ < 1/2. Then it is shown in [GT01, Lemma 2]
(under more general assumptions) that E|D2u(t,Xt)|2 ≤ c(T − t)−3/2+θ so
that Theorem 2 gives that

hθ(ST ) ∈ B̃θ+ 1
2

2,∞ .

For 1/2 < θ < 1 one gets hθ(ST ) ∈ B̃1
2,∞.

Example 3 (Binary option). Generally, indicator functions yield to a fractional
smoothness of order 1

2 . In the case X =W , d = 1 and g(x) = 1[L,∞)(x) with
L ∈ R one has

u(t, x) = P(x+WT −Wt ≥ L) = N
(
x− L√
T − t

)
,

∇xu(t, x) =
1√

2π(T − t)
exp

(
− (x− L)2

2(T − t)

)
,

so that E|∇xu(t,Wt)|2 ∼c
1√
T − t

and g(WT ) ∈ B̃ 1
2
2,∞ because of Theorem 2. This can be extended to the (SDE)

case as follows: Our assumption guarantees that X has a transition density Γ
such that

Γ (s, x; t, y) ≤
√

κ

2π(t− s)
e−

1
2

(x−y)2

κ(t−s) = κγκ(t−s)(x− y)

for some κ > 0 and all 0 ≤ s < t ≤ T , where γt is the Gaussian density with
zero expectation and variance t (see [Fr64]). Then we can compute thatE ∣∣1[L,∞)(XT )−E (1[L,∞)(XT )|Ft

)∣∣2

≤ E ∣∣1[L,∞)(XT )− 1[L,∞)(Xt)
∣∣

= P(XT < L ≤ Xt) +P(Xt < L ≤ XT )

≤ κ2[P(WκT < L− x0 ≤Wκt) +P(Wκt < L− x0 ≤WκT )]

≤ c
√
T − t

where X0 = x0 so that 1[L,∞)(XT ) ∈ B̃ 1
2
2,∞. The application in financial

mathematics is done via St = eXt which gives, for a positive strike K > 0,
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1{ST≥K} = 1{XT≥logK} ∈ B̃ 1
2
2,∞.

In our context the fractional smoothness of jump functions (under differ-
ent assumptions) was considered in [GT01, Gei02, GG04]. In certain multi-
dimensional settings one can deduce for g(x) = 1{x1≥K1,···,xd≥Kd} (or variants
of it) the same fractional smoothness from the 1-dimensional case. Finally, the

indicator function g(x) = 1D(x) of a C2-domainD also leads to g(XT ) ∈ B̃ 1
2
2,∞

(see [GM05, Proposition 1.2]).

Example 4 (an extreme case). By the choice of the previous examples, we
emphasize that random variables g(XT ) = h(ST ), usually used in financial

applications, belong to a space B̃θ
2,∞ for some θ ∈ (0, 1]. However, it is not

true that ∪θ∈(0,1]B̃θ
2,∞ = L2(P). The following result gives a way to con-

struct g(W1) belonging to L2(P) (here W is the linear Brownian motion) but

g(W1) /∈ B̃θ
2,∞ for all θ ∈ (0, 1]:

Proposition 2 ([GH07]). Let 0 < θ < 1, g =
∑∞

k=0 αkHk ∈ L2(γ1), where
(Hk)k≥0 is the orthogonal basis of Hermite polynomials defined in (1.4). Then

g(W1) ∈ B̃θ
2,∞ if and only if sup

0≤t<1
(1 − t)1−θ

∞∑

k=1

ktk−1α2
k <∞.

Approximation properties as described in Section 1.5.2 for g with g(W1) ∈
L2(P) \⋃0<θ≤1 B̃θ

2,∞ were studied in [Huj06] and [Sep08].

1.5 Applications

In this section we discuss some applications in stochastic finance which lead
us to the fractional smoothness as introduced above. As mentioned at the
beginning, a central role is played by the tracking error that arises when
discrete time hedging is used, instead of a continuous time strategy. For the
sake of convenience, we briefly recall the notation:

• the option payoff at maturity T is Z = h(ST );
• the fair price function is H(t, x) = EQ(h(ST )|St = x);
• the n re-balancing dates are defined by a deterministic time-net τ = (ti)

n
i=0

with 0 = t0 < t1 < · · · < tn−1 < tn = T ;
• the resulting tracking error process C(Z, τ) = (Ct(Z, τ))t∈[0,T ] is given by

Ct(Z, τ) := EQ(Z|Ft)−EQZ −
n−1∑

i=0

∇xH(ti, Sti) · (Sti+1∧t − Sti∧t).
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1.5.1 Weak limits of error processes

Weak limits of stochastic processes have been intensively studied in the
literature; see, for instance, [KP91, Jac97, JS03]. For the particular prob-
lem of the weak convergence of the tracking error the reader is referred to
[Roo80, GT01, HM05, GT09]. To formulate our results, we let W̃ = (W̃t)t≥0

be a standard Brownian motion starting at zero defined on some auxiliary
probability space, where we may and do assume that all paths are continu-
ous. In the following =⇒C[0,s] stands for the weak convergence in C[0, s] for
some s > 0.

In this paragraph we assume that T = 1 4 and that S is the standard
geometric Brownian motion, i.e. the setting of (GBM) and P = Q. The
following result is the starting point of this section:

Theorem 4 ([GT01]). Let τn = (i/n)ni=0 be the equidistant time-nets and
let Z := 1[K,∞)(S1) be the payoff of a digital option with strike price K > 0.
Then one has that

√
nC1(Z, τn) =⇒ W̃ 1

2

∫ 1

0

∣∣S2
t

∂2H

∂x2 (t,St)
∣∣2dt

where =⇒ denotes the weak convergence as n goes to infinity.

The remarkable fact is that the weak limit is not square-integrable. In the
following we describe a way to increase the integrability of the weak limit. This
is of particular interest for risk management purposes, as a higher integrability
gives better tail-estimates. The idea is to use adapted time-nets that are more
concentrated close to maturity. They are defined as follows: Given a parameter
θ ∈ (0, 1], we define the nets τn,θ by

tn,θk := 1−
(
1− k

n

) 1
θ

.

For θ = 1 we have the equidistant time-nets, i.e. tn,1k = k
n . Now we have

Theorem 5 ([GT09]). Let 0 < θ ≤ 1, Z = h(S1) ∈ L2(P) and 0 ≤ s < 1.
Then

(
√
nCt(Z, τ

n,θ))t∈[0,s] =⇒C[0,s]

(
W̃∫ t

0

(1−r)1−θ

2θ

∣∣S2
r

∂2H

∂x2 (r,Sr)
∣∣2dr

)

t∈[0,s]

.

Moreover, the following assertions are equivalent:

4 With T = 1 we are in accordance with the quoted literature that used Hermite
polynomials. Of course, we could do a re-scaling to T > 0 afterwards.
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(i) One has h(S1) ∈ B̃θ
2,2 for 0 < θ < 1 or h(S1) ∈ B̃1

2,∞ for θ = 1.
(ii) On some stochastic basis there exists a continuous square-integrable mar-

tingale M = (Mt)t∈[0,1] such that
√
nC(Z, τn,θ) =⇒C[0,1] M .

(iii) For

A :=

∫ 1

0

(1− t)1−θ

2θ

∣∣∣∣S
2
t

∂2H

∂x2
(t, St)

∣∣∣∣
2

dt

one has that EA <∞ and

√
nC(Z, τn,θ) =⇒C[0,1]

(
W̃

1{A<∞}

∫
t

0

(1−r)1−θ

2θ

∣∣S2
r

∂2H

∂x2 (r,Sr)
∣∣2dr

)

t∈[0,1]

.

The theorem above gives us one way to consider the Lp-setting for 2 ≤
p <∞. Given a differentiable function ψ : (0,∞) → R we let

(Aψ)(x) := xψ′(x)− ψ(x).

In the following AH(t, x) means that A acts on the x-variable of the function
H(t, x).

Definition 4. For h(S1) ∈ L2(P), 0 < θ < 1, and 0 ≤ t < 1 we let

DS,θ
t h(S1) :=

1− θ

2

∫ 1

0

(1− u)−
1+θ
2 [AH(u ∧ t, Su∧t)−AH(0, S0)]du.

For θ = 1 and t ∈ [0, 1) we let DS,1
t h(S1) := AH(t, St)−AH(0, S0).

The process DS,θh(S1) = (Dθ
t h(S1))t∈[0,1) is a quadratic integrable mar-

tingale on the half open time interval [0, 1). Using the Riemann-Liouville op-
erator of partial integration the process DS,θh(S1) can be interpreted as a
fractional differentiation of order θ in x (see [GT09]). The point of the con-
struction of DS,θh(S1) is that we may have Lp-singularities of St

∂H
∂x (t, St) as

t ↑ 1 whereas DS,θh(S1) remains Lp-bounded.

Theorem 6 ([GT09]). For 2 ≤ p < ∞, 0 < θ ≤ 1, and Z = h(S1) ∈ L2(P)
the following assertions are equivalent:

(i) On some stochastic basis there exists a continuous Lp(P)-integrable mar-
tingale M such that

√
nC(Z, τn,θ) =⇒C[0,1] M .

(ii) The martingale DS,θh(S1) is bounded in Lp(P).
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1.5.2 L2-estimates of the tracking error

In this section we work in the 1-dimensional martingale case assuming (SDE)
with σ(t, x) = σ(x) and b(t, x) = − 1

2σ
2(x) (meaning P = Q). The payoff

function h is polynomially bounded and the option maturity is T > 0. We
remind the reader about the time-nets τn,θ given by

tn,θk := T

(
1−

(
1− k

n

) 1
θ

)

and that for θ = 1 we obtain the equidistant nets. Let us first check what
quadratic hedging error one can expect at all if the portfolio is re-balanced
n-times. The answer is the rate 1/

√
n as shown by

Theorem 7 ([GG04, Theorem 2.5]). Assume that there are no constants
c0, c1 ∈ R such that h(ST ) = c0 + c1ST a.s. Then

inf
n=1,2,...

0=t0<···<tn=T

n
1
2 ‖C(h(ST ), (tk)

n
k=0)‖L2(P) > 0

where the infimum is taken over deterministic time-nets.

This was extended to the case of random time-nets in [GG06] in the case
of the geometric Brownian motion.

Now we continue with the case of equidistant time-nets which are often
used in discretizations.

Equidistant time-nets.

Here a starting point is the following result of Zhang:

Theorem 8 ([Zha99, Theorem 2.4.1]). Assume that h : R → R is a
Lipschitz function. Then we have that

lim
n
n

1
2 ‖C(h(ST ), τ

n,1)‖L2(P) ∈ [0,∞).

This is the result one would expect: Given a Lipschitz payoff, the L2-rate of
the error is 1/2 for equidistant nets. But this is not the case in general as
shown in

Theorem 9 ([GT01, Theorem 1]). For h(x) = 1[K,∞)(x) for some K > 0
we have that

lim
n
n

1
4 ‖C(h(ST ), τ

n,1)‖L2(P) ∈ (0,∞).
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This means that the L2-approximation rate for the binary option is n1/4 if
one uses equidistant nets. The two above results also hold true for appropriateQ 6= P (i.e. S is not martingale) where the outer L2-norm is computed w.r.t.
the historical probability P (cf. the remarks after Theorem 2).

Theorems 8 and 9 lead naturally to two questions: What is the reason for
the rate 1/4 and, secondly, can one improve the rate 1/4? Both questions can
be answered by the usage of the concept of fractional smoothness.

Theorem 10 ([GG04, Theorems 2.3 and 2.8]). For 0 < θ ≤ 1 and a
polynomially bounded h : (0,∞) → R the following assertions are equivalent:

(i) h(ST ) ∈ B̃θ
2,∞.

(ii) supn n
θ
2 ‖C(h(ST ), τ

n,1)‖L2(P) <∞.

In particular, it turns out that h(ST ) ∈ D1,2 if and only if

sup
n
n

1
2 ‖C(h(ST ), τ

n,1)‖L2(P) <∞,

see [GG04, Theorem 2.6], where D1,2 is the Malliavin Sobolev space obtained

from the construction in Section 1.3 with H = L2[0, T ] and gh :=
∫ T

0 h(t)dWt.

For the binary option one has in Theorem 10 that θ = 1/2 (cf. Example 3
in Section 1.4). This recovers the rate 1/4 obtained in Theorem 9.

Non equidistant time-nets.

Next we show how to obtain the optimal rate n1/2 by a suitable choice of
the trading dates (see question (Q4) in Section 1.1). We can combine [GG04,
Lemmas 3.2 and 5.3] and [GH07, Lemma 3.8] to get

Theorem 11. For 0 < θ ≤ 1 and a polynomially bounded h : (0,∞) → R the
following assertions are equivalent:

(i)
∫ T

0 (T − t)1−θE ∣∣∣S2
t
∂2H
∂x2 (t, St)

∣∣∣
2

dt <∞.

(ii) supn n
1
2 ‖C(h(ST ), τ

n,θ)‖L2(P) <∞.

For 0 < θ < 1 (and at least a bounded h) the condition Theorem 11(i) is
equivalent to

(i’) h(ST ) ∈ B̃θ
2,2

which can be checked by using Theorem 1. For the binary option this gives
that

sup
n
n

1
2 ‖C(1[K,∞)(ST ), τ

n,η)‖L2(P) <∞
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for any strike K > 0 and 0 < η < 1/2.

For the next two theorems we assume that T = 1, that St = eWt−
t
2 and

that h might be general, i.e. not polynomially bounded. The formulation of
Theorem 11 in the language of the interpolation spaces introduced in Section
1.3 gives

Theorem 12 ([GH07, Theorem 3.2]). For 0 < θ ≤ 1 and h(S1) ∈ L2(P)
the following assertions are equivalent:

(i) h(e·−(1/2)) ∈ Bθ
2,2(γ1) if 0 < θ < 1 and h(e·−(1/2)) ∈ D1,2(γ1) if θ = 1.

(ii) supn n
1
2 ‖C(h(S1), τ

n,θ)‖L2(P) <∞.

And Theorem 10 can be extended in this context to the full scale of real
interpolation spaces as

Theorem 13 ([GH07, Theorem 3.5]). For 1 ≤ q ≤ ∞, 0 < θ < 1 and
h(S1) ∈ L2(P) the following assertions are equivalent:

(i) h(e·−(1/2)) ∈ Bθ
2,q(γ1).

(ii)
∥∥∥
(
n

θ
2−

1
q an

)∞
n=1

∥∥∥
ℓq
<∞ for an := ‖C(h(S1), τ

n,1)‖L2(P).

Concluding remarks

(i) The higher dimensional case for X was considered in the literature as
well. Roughly speaking, one can analogously obtain upper bounds, how-
ever precise lower bounds as in the one-dimensional case are still missing.
This is due to the fact that a characterization of the L2-error proved in
[Gei02, Theorem 4.4] and [GG04, Lemma 3.2] is missing for higher di-
mensions. However, after Zhang [Zha99] started with the regular case,
Temam [Tem03] extended results from [GT01] to higher dimensions and
Hujo [Huj05] used non-uniform time-nets to improve the approximation
rates for certain irregular payoffs to the optimal rate 1/

√
n in this set-

ting.
(ii) Seppälä [Sep08] found a criterion to characterize under certain conditions

that there is a constant c > 0 such that

inf
τ=(ti)

n
i=0

0=t0<···<tn=1

‖C(h(S1), τ)‖L2(P) ≤
c√
n

where deterministic time-nets are taken. It should be noted that one has
a non-linear approximation problem as the time-nets may change for
fixed n from payoff to payoff h.

(iii) In the above discussion, the time-nets τ are deterministic. Alternatively,
one can allow the time-nets to be stochastic and adapted. This issue has
been handled by [MP99] using optimal stopping tools. The estimation of
convergence rates is an open question. However, it was shown in [GG06]
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that the random time-nets do not improve the best possible approxima-
tion rate 1/

√
n in the case (GBM) when in the n-th approximation a

sequence of n stopping times is used.
(iv) Similar studies can be performed when studying the Delta-Gamma hedg-

ing strategies. Instead of hedging the payoff using only the asset, we use
other traded options written on the same asset. For a one-dimensional
asset, if the price of the additional option is (P (t, St))0≤t≤T , the num-
bers of options P and assets to hold at time ti are respectively equal
to

δPti :=
∂2SH(ti, Sti)

∂2SP (ti, Sti)
and δSti := ∂SHti, Sti)−

∂2SH(ti, Sti)

∂2SP (ti, Sti)
∂SP (ti, Sti).

In [GM10b, Theorem 6], considering a multi-dimensional Black-Scholes
model, it is established that for an exponentially bounded payoff such
that g(XT ) ∈ B̃θ

2,∞ for some 0 < θ < 1, the use of equidistant time-

nets leads to the same convergence rate 1/nθ/2 as for the delta hedging
strategy. On the contrary, the use of non equidistant time-nets τn,η with
0 < η < θ/2 enables us to obtain the improved convergence rate 1/n.

1.6 Further developments

1.6.1 Backward stochastic differential equations

Makhlouf and the second author applied in [GM10a] the concept of fractional
smoothness to backward stochastic differential equations of the type

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs

where X = (Xt)t∈[0,T ] is our forward diffusion and the generator f is continu-
ous in its four arguments, continuously differentiable in (x, y, z) with uniformly
bounded derivatives. These equations are particularly useful in stochastic fi-
nance, since they allow to take into account market frictions and constraints
(we refer to [EPQ97] for a more complete account on this subject).

Solving numerically this type of equation is a challenging issue since it
concerns a non-linear problem (due to the generator f), generally defined in
a multi-dimensional setting. One possible approach consists in approximating
the BSDE using a discrete-time dynamic programming equation (see [Zha04,
BT04, LGW06] among others). One of the main error contribution is related
to the L2-regularity on Z, defined by

E(Z, τ) =
n∑

i=1

∫ ti

ti−1

‖Zt − Zti−1‖2L2(P)dt.
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If f were equal to 0, then the Z-component is given by zt = ∇xu(t,Xt)σ(t,Xt)
where u(t, x) = E(g(XT )|Xt = x). Studying the L2-regularity of z is thus
very similar to the analysis of the tracking error presented in Section 1.5.
Additionally, using BSDE techniques, one can prove explicit upper bounds
for the difference Z − z

Theorem 14 ([GM10a, Corollary 14]). Assume (SDE) and g(XT ) ∈B̃θ
2,∞ for 0 < θ ≤ 1. Then, for some c > 0, one has that

|Zt − zt| ≤ c

∫ T

t

√E [|g(XT )−E(g(XT )|Fs)|2 |Ft

]

T − s
ds+ c(T − t),E |Zt − zt|2 ≤ c(T − t)θ.

Taking advantage of this approximation result close to the time singularity,
we can prove that the estimate of E(z, τ) (linear case) transfers to E(Z, τ)
(non-linear case) and get

Theorem 15 ([GM10a, Theorem 21]). Assume (SDE), g(XT ) ∈ B̃θ
2,∞

and that 0 < η < θ < 1 or η = θ = 1. Then one has that

E(Z, τn,η) ≤ c

n
.

In [GGG10], extensions of the above in different directions are discussed.

1.6.2 Lévy processes

An extension of the results of [GH07] to Lévy Processes is done by C. Geiss
and Laukkarinen in [GL10]. Moreover, Tankov and Brodén proved in [TB09]
results along the line of [GT01].

1.6.3 Multigrid Monte-Carlo Methods

In the context of Multigrid Monte-Carlo Methods it turned out that the con-
cept of fractional smoothness is useful as well. The reader is referred to the
papers of Avikainen [Av09a, Av09b].
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