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Independent component analysis (ICA) has been widely used for
blind source separation in many fields such as brain imaging analysis,
signal processing and telecommunication. Many statistical techniques
based on M-estimates have been proposed for estimating the mixing
matrix. Recently, several nonparametric methods have been devel-
oped, but in-depth analysis of asymptotic efficiency has not been
available. We analyze ICA using semiparametric theories and pro-
pose a straightforward estimate based on the efficient score function
by using B-spline approximations. The estimate is asymptotically ef-
ficient under moderate conditions and exhibits better performance
than standard ICA methods in a variety of simulations.

1. Introduction. Independent component analysis (ICA) aims to sepa-
rate independent blind sources from their observed linear mixtures with-
out any prior knowledge. This technique has been widely used in the past
decade to extract useful features from observed data in many fields such as
brain imaging analysis, signal processing and telecommunication. Hyvari-
nen, Karhunen and Oja [16] described a variety of applications of ICA. For
example, Vigario, Jousmaki, Hamalainen, Hari and Oja [25] used ICA to
separate artifacts from magnetoencephalography (MEG) data, without the
burden of modeling the process that generated the artifacts.

Standard ICA represents an m× 1 random vector X (e.g., an instanta-
neous MEG image) as linear mixtures of m mutually independent random
variables (S1, . . . , Sm) (e.g., artifacts and other brain activities), where the
distribution of each Si is totally unknown. That is, for S = (S1, . . . , Sm)T

and some m×m nonsingular matrix W ,

X =W−1S.(1.1)
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2 A. CHEN AND P. J. BICKEL

Here,W−1 is called the mixing matrix. Given n i.i.d. observations,X1, . . . ,Xn,
from the distribution of X , the aim is to estimate W and, thus, to separate
each component of S =WX such that the components are maximally mu-
tually independent. W is called the unmixing matrix. This can be seen as a
projection pursuit problem [14] in which m directions are sought such that
the corresponding projections are most mutually independent.

It was shown by Comon [9] that W is identifiable up to scaling and per-
mutation of its rows if at most one Si is Gaussian [18]. Model (1.1) can be
viewed as a semiparametric model with parameters (W,r1, . . . , rm), where ri
is the probability density function (PDF) of Si. Our interest centers on W ;
(r1, . . . , rm) are nuisance parameters.

ICA was motivated by neurophysiological problems in the early 1980’s
(see [16]) and two classes of methods have been proposed to estimate W .
One class involves specifying a particular parametric model for each ri and
then optimizing contrast functions that involve (W,r1, . . . , rm). Primary ex-
amples of this approach are maximum likelihood (ML) (e.g., [19, 21]) or,
equivalently, minimum mutual information (e.g., [9]), minimizing high-order
correlation between components of WX (e.g., [7]) and maximizing the non-
Gaussianity of WX (e.g., [15]). A second class of methods view ICA as a
semiparametric model and assume nothing about the distributions of the
components Si. Thus, two distinct goals can be formulated: (i) to find esti-

mates Ŵ of W that are consistent or, even better,
√
n-consistent—that is,

Ŵ =W +Op(n
−1/2) and (ii) to find procedures that achieve the information

bound—that is, estimates of W which are asymptotically normal and have
smallest variance-covariance matrix among all estimates that are uniformly
asymptotically normal in a suitable sense; see [5]. Amari [1] formally demon-
strated that to achieve the information bound in this situation, a method
must estimate the densities of the sources. In fact, it can even be shown
[6] that for any fixed estimating equation corresponding to maximizing an
objective function, there is a possible distribution of sources for which the
global maximizer is inconsistent, despite the consistency of a local solution
near the truth.

Recently, some nonparametric methods to estimate W have appeared.
For example, Bach and Jordan [3] proposed: (i) To reduce the dimension
of the data by using a kernel representation and (ii) to choose W so as to
minimize the empirical generalized variance among the components of WX .
Hastie and Tibshirani [13] proposed maximizing the penalized likelihood as
a function of (W,r1, . . . , rm) and Vlassis and Motomura [26] proposed max-
imizing the likelihood by using Gaussian kernel density estimation. Various
performance analyses have been carried out using simulations. The Vlassis–
Motomura and Hastie–Tibshirani methods are of the same type as ours,
but these papers do not provide a method for tuning the procedures and
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nothing has been proven about their asymptotic properties. Samarov and
Tsybakov [22] proposed and analyzed a

√
n-consistent estimate of W un-

der mild conditions. Chen and Bickel [8] analyzed the method of Eriksson
and Koivunen [12] based on characteristic functions and showed it to be
consistent under the minimal identifiability conditions and

√
n-consistent

under additional mild conditions. This paper concerns the construction of
efficient estimates. We develop an efficient estimator by using efficient score
functions after starting the algorithm at a consistent point based on the
PCFICA algorithm of Chen and Bickel [8].

The outline of the paper is as follows. In Section 2 we analyze ICA as a
semiparametric model and propose a new method to estimate W using the
efficient score function. The main theorem is given in Section 3. Numerical
studies are given in Section 4. Technical details are provided in Sections 5
and 6.

Notation. In this paper, W denotes an m×m matrix and Wi and Wij

denote the ith row and the (i, j)th element of W , respectively. AT denotes
the transpose of a matrix A and A−T denotes the transpose of A−1. For

any matrix A with column vectors {ai : 1 ≤ i≤ k}, ‖A‖F =
√

tr(ATA) and

vec(A) = (aT
1 ,a

T
2 , . . . ,a

T
k )T , a column vector created from A. Define the sup-

norm as |f |∞ = supt∈R|f(t)|. Xi denotes the ith random sample from the
distribution of X . The population (empirical) law of X is denoted by P
(Pn). Xi and Si denote the ith element of X and S, respectively. Denote
the vector of density functions (r1, . . . , rm) by r1 : m. A vector or matrix of
functions is denoted in boldface. For a vector of functions B, BB

T (x) shall
be used as an abbreviation of B(x)[B(x)]T .

2. Semiparametric inference. In this section, we first briefly review the
salient features of estimation in semiparametric models and then show how
to solve an approximate efficient score equation for estimating W in the ICA
model.

2.1. Efficient estimates for semiparametric models. Given a semipara-
metric model, X1, . . . ,Xn i.i.d. {P(θ,η) :θ ∈Ω ⊂ R

d, η ∈ E}, where E is a sub-

set of a function space, estimates θ̂n of θ are called regular if
√
n(θ̂n − θ)

converges in law uniformly in P(θn,ηn), where (θn, ηn) converges to (θ0, η0)
in a smooth way. Then if there is a regular estimate that is uniformly best
(call it θ∗n), it must have the form

θ∗n = θ+
1

n

n
∑

i=1

l̃(Xi, θ, η) + op(n
−1/2)(2.1)

under P(θ,η). The function l̃ is called the efficient influence function in [5].

When η = (η1, . . . , ηd′) is a Euclidean parameter, l̃ is, under regularity con-
ditions, the influence function of the ML estimator (MLE) of θ. That is, if
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l̇ = ( ∂l
∂θT ,

∂l
∂η1

, . . . , ∂l
∂ηd′

)T , where l is the log-likelihood function of a single ob-

servation and I(θ, η)≡E l̇l̇
T (X,θ, η) is the Fisher information matrix, then l̃

is the first d coordinates of the vector I
−1(θ, η)l̇. An alternative formulation

is to begin by defining the efficient score function l
∗ = (l∗1, . . . , l

∗
d)

T with

l
∗
k =

∂l

∂θk
−

d′
∑

j=1

ajk(θ, η)
∂l

∂ηj
,

where ajk(θ, η) minimizes E( ∂l
∂θk

(X,θ, η) − ∑d′

j=1 ajk(θ, η)
∂l

∂ηj
(X,θ, η))2.

That is, l
∗ is the projection of ∂l

∂θ (X,θ, η) onto the orthocomplement of

span{ ∂l
∂ηj

(X,θ, η) : 1≤ j ≤ d′}. Then

l̃ = (E[l∗l∗T (X,θ, η)])−1
l
∗.

When η is infinite-dimensional, the generalization of span{ ∂l
∂ηj

(X,θ, η) : 1≤
j ≤ d′} is the tangent space. That is defined to be the closed linear span of
{ ∂l

∂λ (X,θ, η(λ))|λ=0 :η(0) = η and λ→ η(λ) defines a smooth one-dimensional
submodel {P(θ,η(λ)) : |λ|< 1}} in L2(P(θ,η)). Now, l∗ is again obtained by pro-
jection onto the orthocomplement of this span. An extensive discussion of
tangent spaces and the geometric interpretation of formulas such as the one
above is given in [5], Chapters 2 and 3. For many canonical semiparametric
models including ICA, l

∗ can be computed; we sketch the argument in the
Appendix. Suppose that for each θ, an estimate η̂(θ) is available and is at
least consistent. Then the usual Taylor expansions suggest that the solution
of the generalized estimating equation

n
∑

i=1

l
∗(Xi, θ, η̂(θ)) = 0(2.2)

will have an influence function l̃ and, hence, be efficient. These heuristics
and others are discussed in Chapter 7 of [5]. Of course, more than consis-
tency is needed and after calculating l

∗ in our case, validating that (2.2)
leads to (2.1) for a suitable η̂(θ) is the subject of Sections 3, 5, 6 and the
Appendix. Note that if η̂(θ) maximizes

∑n
i=1 l(X

i, θ, η), then (2.2) simply
gives the profile maximum likelihood estimate discussed in [20]. In that case,
(2.2) simplifies, becoming equivalent to

n
∑

i=1

∂l

∂θ
(Xi, θ, η̂(θ)) = 0.

Unfortunately, such η̂(θ) do not exist in the ICA model. Using l
∗ instead of

∂l
∂θ in the estimating equation (2.2) permits a less demanding choice of η̂(θ).
These issues are discussed in detail in [5], Chapter 7. In this paper, we sim-

ply show that a θ̂ solving (2.2) for a particular η̂(θ) does indeed satisfy (2.1)
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in a sufficiently uniform sense. Optimality of θ̂ then follows from the general
theory given in Chapter 3 of [5].

This technique is different from the quasi-ML method which belongs to
the first class of methods in the ICA literature reviewed in Section 1. This
approach is to guess some shape η0 for η and then use ordinary ML. Of
course, if η0 is true, then the resulting estimate is asymptotically Gaussian
and has smaller variance than the θ̂ we discuss. But, if η0 is false, then the
estimate can be inconsistent. The ICA algorithms used for comparison in
Section 4 such as FastICA [Hyvarinen and Oja (1997)] and extended infomax
[19] are of this type. Closest to ours in spirit among these is the method of
Pham and Garrat [21]. They use parametric models such as logsplines (see
Section 2.3) for the nuisance parameters. However, they propose solving the
score equations rather than (2.2). More importantly, they do not suggest
increasing the model dimension with n, do not give a method for selecting the
number of knots of the splines and, hence, are subject to the inconsistency
we have discussed.

The remainder of Section 2 shows how to implement the idea given in (2.2)
for the ICA model. Technical analysis is carried out in Section 3.

2.2. Further notation and assumptions. Let WP be a nonsingular unmix-
ing matrix such that S =WPX has m mutually independent components.
Without loss of generality, assume that det(WP ) > 0. For any row vector
w ∈ R

m, let fw denote the PDF of wX and φw denote the density score
function defined by φw(t) = − ∂

∂t log fw(t)I(fw(t)> 0), where I(.) is an indi-
cator function.

In model (1.1), the order and scaling of rows of W or components of S
must be constrained for W to be identifiable. For scaling, we take each Si

to have absolute median 1, that is, P (|Si| ≤ 1) = 1
2 or, equivalently,

2

∫ 1

−1
ri(s)ds= 1.(2.3)

Even after this choice, the correct unmixing matrix requires 2mm! choices
due to sign changes and row permutations. This ambiguity can be resolved
in various ways, but we avoid being specific by assuming that a consistent
starting value is available for WP , say PCFICA of Chen and Bickel [8]. Let
κ(s) = 2I(|s| ≤ 1)− 1. Then (2.3) is equivalent to

∫

κ(Si)dP = 0.

Equation (2.2), for our case, can be written

n
∑

i=1

l
∗(Xi,W, Φ̂W ) = 0,
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Table 1
Algorithm EFFICA

1. Input data {X1, . . . ,Xn}, an initial estimate Ŵ (0) and B-spline basis

functions B
(k) ≡ (B

(k)
1 , . . . ,B

(k)
nk

)T for k = 1, . . . ,m;

2. For j = 0,1, . . . until convergence:

1) Set S(j)
k ≡ {Ŵ (j)

k Xi : i= 1, . . . , n} for k = 1, . . . ,m;
2) Set for k = 1, . . . ,m,

φ̂
(j)
k = γ

(j)T
k B

(k),

where γ
(j)
k = (Ê

(j)
k [B(k)

B
(k)T ])−1Ê

(j)
k [D(k)], D

(k) is the derivative function

of B
(k) and Ê

(j)
k

is empirical expectation w.r.t. S(j)
k

;

3) Set Φ̂W at W = Ŵ (j):

Φ̂W (s) = (φ̂
(j)
1 (s1), . . . , φ̂

(j)
m (sm))T

4) Set for k = 1, . . . ,m,

û
(j)
k = Ê

(j)
k [φ̂

(j)
k ψ], v̂

(j)
k = Ê

(j)
k [ψ], where ψ(s) = 2sI(|s| ≤ 1),

(σ̂
(j)
k )2 = Ê

(j)
k [ϕ], where ϕ(s) = s2,

α̂
(j)
k = − (1−û

(j)

k
)v̂

(j)

k

(σ̂
(j)

k
)2−(v̂

(j)

k
)2

,

β̂
(j)
k =

(1−û
(j)

k
)(σ̂

(j)

k
)2

(σ̂
(j)

k
)2−(v̂

(j)

k
)2

;

5) Set M
(j)(s), an m×m function matrix with elements:

M
(j)

kk′(s) =−φ̂(j)
k (sk)sk′ , k 6= k′

= α̂
(j)
k sk + β̂

(j)
k (2I(|sk| ≤ 1)− 1), k = k′;

6) Set

l̂
∗(j)(x) = vec(M(j)(Ŵ (j)

x)[Ŵ (j)]−T ),∗

where vec(M) vectorizes M ;
7) Set

e
(j)
n = 1

n

∑n

i=1
l̂
∗(j)(Xi),

Σ
(j)
n = 1

n

∑n

i=1
l̂
∗(j)

l̂
∗(j)T (Xi);

8) Update Ŵ (j+1) = Ŵ (j) + [Σ
(j)
n ]−1

e
(j)
n .

∗Here, l̂
∗(j)(x) = l

∗(x,W, Φ̂W ) at W = Ŵ (j), where Φ̂W can be identified as an
estimate of the “nuisance parameter” ΦW .

where ΦW is the parameter defined by (2.9) and Φ̂W is an estimate of it.

We give pseudo code in Table 1 for iteratively solving this equation. The

expressions appearing in the pseudo code are developed in the rest of this
section.

2.3. Efficient score function of W . The likelihood function of X under

(1.1) can be expressed as

pX(x,W, r1 : m) = |det(W )|
m
∏

i=1

ri(Wix).
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The parameter of interest is W , while r1 : m are nuisance parameters. For
simplicity, assume E[Si] = 0.

Let φi(si) = − ∂
∂si

log ri(si)I(ri(si) > 0) be the density score function as-

sociated with ri and define Φ by Φ(s) = (φ1(s1), . . . , φm(sm))T , where s =
(s1, . . . , sm)T . Then the score function ofW , l̇W (x) ≡ ∂

∂vec(W ) log(pX(x,W, r1 : m)),

is equal to

l̇W (x) = vec{(Im×m −Φ(s)sT )W−T },
where s =Wx and Im×m is an m×m identity matrix. Thus, minimal regu-
larity conditions for efficient estimation are that each ri should be absolutely
continuous, W nonsingular and

E[φi(Si)
2]<∞ and E[S2

i ]<∞.

Using the devices of tangent space and projection mentioned in Section 2.1
(see calculation details in the Appendix), the efficient score can be expressed
as

l
∗(x,W,Φ) = vec(M(Wx)W−T ),(2.4)

where M(s) is an m×m function matrix with elements

Mij(s) = −φi(si)sj , for 1≤ i 6= j ≤m,(2.5)

Mii(s) = αisi + βiκ(si), for i= 1, . . . ,m(2.6)

and

αi = −(1− ui)vi

σ2
i − v2

i

, βi =
(1− ui)σ

2
i

σ2
i − v2

i

, σ2
i =E[S2

i ],(2.7)

vi =E[2SiI(|Si| ≤ 1)], ui =E[2SiφiI(|Si| ≤ 1)].(2.8)

Most of these formulas were derived in [2], but in a different context.
We repeat these in our own notation for completeness. By the convolution
theorem on semiparametric models (see [5]), the information bound for reg-
ular estimators of W is (E[l∗l∗T (X,W,Φ)])−1. It is obvious that the efficient
score function depends on r1 : m only through the density score functions
(φ1, . . . , φm). Next, we describe how to perform the estimation by using the
efficient score function.

2.4. The ICA estimate. Let

ΦW = (φW1 , . . . , φWm)T(2.9)

and assume that a starting estimate Ŵ (0) is available which is consistent for
WP . We shall show how to construct an estimate Φ̂W of ΦW for W close to
WP and then solve

∫

l
∗(X,W, Φ̂W )dPn = 0
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to obtain an efficient estimator of WP . Here, Φ̂W is a data-dependent func-
tion of W and, thus, l

∗(X,W, Φ̂W ) is an approximation to the efficient score
function given by (2.4).

For each k ∈ {1, . . . ,m}, choose a sieve for φ̂Wk
as follows. Let [bnk, bnk]⊂

R be a subset of supp(rk) containing most of the mass of rk. For an integer
nk, set nk + 4 equally spaced points {bnk + (i − 1)δnk : 1 ≤ i ≤ nk + 4} as
knots, where δnk depends on nk through

δnk = (bnk − bnk)/(nk + 3),

and then construct nk cubic B-spline basis functions, as in the Appendix.
Here, nk is chosen by cross-validation as described in Section 2.5 below. De-

note the basis functions as B
(k)
n ≡ (B

(k)
n1 , . . . ,B

(k)
nnk

)T , where the superscript
(k) denotes the association with Sk and the subscript n denotes the depen-
dence on the sample size. Given the random sample {WkX

i : 1≤ i≤ n} from
the density function fWk

, the density score function φWk
can be estimated

by

φ̂Wk
= [γn(Wk)]

T
B

(k)
n ,(2.10)

where γn(Wk) is given in Table 5 (see Section 2.5 for details). Then define

Φ̂W (s) ≡ (φ̂W1(s1), . . . , φ̂Wm(sm))T . To avoid further complications, it is as-

sumed that both [bnk, bnk] and nk are fixed using Ŵ (0). That is, the nk + 4
knot locations are fixed.

Now, replace the efficient score function l
∗(X,W,Φ) defined in (2.4)–

(2.8) by its profile form l
∗(X,W, Φ̂W ), where αi, βi and σ2

i defined in (2.7)
and (2.8) are replaced with plug-in estimates

α̂i = −(1− ûi)v̂i

σ̂2
i − v̂2

i

, β̂i =
(1− ûi)σ̂

2
i

σ̂2
i − v̂2

i

, σ̂2
i =

∫

(WiX)2 dPn,(2.11)

where ûi =
∫

Y =WiX
2Y φ̂Wi

(Y )I(|Y | ≤ 1)dPn and v̂i =
∫

Y =WiX
2Y I(|Y | ≤

1)dPn.
Define

en(W ) =

∫

l
∗(X,W, Φ̂W )dPn and e(W ) =

∫

l
∗(X,W,ΦW )dP(2.12)

and let Ŵ be a solution of

en(W ) = 0,(2.13)

if it exists. Let l̂
∗(x,W ) ≡ l

∗(x,W, Φ̂W ) and ėn(W ) ≡ ∂
∂vec(W )en(W ). Note

that if Ŵ →WP , then −ėn(Ŵ ) and
∫

l̂
∗
l̂
∗T (X,Ŵ )dPn have the same limit,

− ∂e(W )

∂vec(W )

∣

∣

∣

∣

WP

=E[l∗l∗T (X,WP ,ΦP )],
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with probability converging to 1, as demonstrated later in Section 5. The fi-
nal estimator Ŵ is defined as the limiting value of the following approximate
Newton–Raphson iteration:

Ŵ (j+1) = Ŵ (j) +

[
∫

l̂
∗
l̂
∗T (X,Ŵ (j))dPn

]−1

en(Ŵ (j)), j = 0,1, . . . .(2.14)

We shall show that this limit exists with probability tending to 1. Note
that this method does not require the calculation of the Hessian matrix
ėn(W ). The convergence and asymptotic properties of (2.14) are developed

in Section 3. Call Ŵ ≡ Ŵ (∞) defined by (2.14) the EFFICA estimate. This
is summarized in Table 1 and will be used for the simulation in Section 4.
The density score estimation, as well as how to choose the number of knots
by cross-validation (mentioned above), is provided in the next subsection.

2.5. Estimating a density score function by B-spline approximations. Let
φ = −r′/r be the density score associated with a univariate PDF r. Let G
be a linear space with differentiable basis functions B = (B1, . . . ,BN )T such
that each Bir vanishes at infinity. An estimator of φ in G can then be
obtained by minimizing with respect to γ ∈RN the mean square error

c(γ) =

∫

R
(φ(s)− γT

B(s))2r(s)ds.

Using integration by parts, we obtain

c(γ) = γTEr[BB
T ]γ − 2γTEr[B

′] +Er[φ
2],

where B
′ is the derivative of B and Er indicates expectation under r. Thus,

the optimal γ is γφ = (Er[BB
T ])−1Er[B

′] and the best approximation of
φ in G, in the sense of mean square error, is φG = γT

φ B. This method was
proposed by Jin [17] as a variant of Cox’s [10] penalized estimators. Given
a random sample of size n from the density function r, γφ can be estimated
by combinations of empirical moments. So, a natural estimator of φ is given
by

φ̂G = γ̂T
φ B, where γ̂T

φ = (Êr[BB
T ])−1Êr[B

′],(2.15)

where Êr is empirical expectation corresponding to Er.
B-spline basis functions are popular choices for G. In general, the support

of r is unknown and we need to choose a working interval [bn, bn], in which
knots are distributed, for the construction of the basis functions. The basic
rule for adaptation is that [bn, bn] → supp(r) very slowly as n→∞. Here,
bn and bn are selected as αn and 1− αn empirical quantiles where αn → 0.
The number of basis functions, say N , is an additional empirical smoothing
parameter. One can use cross-validation to choose N as follows:
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1. Split the sample randomly into two halves, say I1 and I2;
2. For N = 1,2, . . . , use I1 to estimate γφ ∈ R

N by (2.15), say γ̂φ(I1), and
use I2 to evaluate c(γ̂φ(I1)) empirically, but omitting the last term Er[φ

2],
say ĉI2|I1

(N). Similarly calculate ĉI1|I2
(N);

3. Select N as the largest value such that 1
2{ĉI2|I1

(N)+ ĉI1|I2
(N)} strictly

decreases until N .
Jin [17] used a similar method in the i.i.d. case we have discussed, proved

its validity and showed thatN =O(nδ) under weak smoothness assumptions,
where δ ∈ (0,1/6) depends on tail properties of r.

3. Asymptotic properties. We are given Ŵ (0) (e.g., the PCFICA esti-
mate) such that for some εn > 0,

P (‖Ŵ (0) −WP ‖F ≤ εn)→ 1(3.1)

as n→∞, where εn satisfies εn → 0 and
√
nεn →∞. Let

Ωn = {W ∈ R
m×m :‖W −WP ‖F < εn}.(3.2)

Define φWk,n(x)≡ φWk
(x)I(x ∈ [bnk, bnk]) and consider the following condi-

tions for 1≤ k, i, j ≤m:

C1: WP is nonsingular.
C2: E[Sk] = 0, E[S2

k ]<∞, med(|Sk|) = 1 and E(φk(Sk))
2 <∞.

C3: |rk|∞ <∞, |r′k|∞ <∞, supt∈R|tr′k(t)|<∞.
C4: The uniform law of large numbers (ULLN) holds for {φWk

(WkX)Xi :W ∈
Ωn}, {φ2

Wk
(WkX)X2

i :W ∈ Ωn} and for {φ′Wk
(WkX)WiXXj :W ∈ Ωn}.

C5: For some positive c1, c2, rk(t) ≥ c1δnk if t ∈ [bnk, bnk], otherwise rk(t)≤
c2δnk.

C6: supW∈Ωn
|φWk,n|∞δnk =O(1) and supW∈Ωn

|φ′′′Wk,n|∞δnk = o(1).

C7: εnδ
− 11

2
nk (bnk − bnk) = o(1).

[Note: ULLN holds for Gn iff supg∈Gn
| ∫ g(X)d(Pn−P )|= op(1); see, e.g., [24].]

Conditions C1–C3 are simplified regularity conditions. C1 and the finite
moments in C2 are among the minimal regularity conditions for considering
efficiency, as mentioned in Section 2.3. Setting the absolute median to unity
in C2 is a simple and minimal condition to make the scales of the unmixing
matrix identifiable [9]. It should be clear that the zero mean assumption in
C2 is in no way crucial to the general argument as the mean can be estimated
adaptively, but it serves to keep algebraic complication to a minimum. C3
assumes some smoothness on the density score function φk for each hidden
component, which is needed if it is to be well approximated by B-splines.

Conditions C4–C7 are technical conditions that we believe are far from
necessary, but they are reasonably easy to check and enable construction of
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a more compact proof. As an easy example, if |φk|∞ <∞ and |r′′k/rk|∞ <∞
for k = 1, . . . ,m, then by (A.1) in the Appendix, supW∈Ωn

|φWk
|∞ <∞ and

by (A.2), supΩn
|φ′Wk

|∞ <∞. Thus C4 holds. C5 and C6 require that the
tail of rk be not too wiggly. C6 also implies that δnk → 0. C7 requires that
the initial value be reasonably close to the truth and that the domain and
the number of knots of the B-splines [i.e., nk = (bnk − bnk)δ

−1
nk − 3] do not

grow so quickly that we lose control of the approximation to ΦW .
Here is the main theorem:

Theorem 3.1. In the ICA model (1.1), if (3.1) and C1–C7 hold for

i, j, k = 1, . . . ,m, i 6= k and j 6= k, then with probability converging to 1, the

algorithm (2.14) has a limit Ŵ (∞) and

√
nvec(Ŵ (∞) −WP ) = I

−1
eff

√
n

∫

l
∗(X,WP ,ΦP )dPn + oP (1),(3.3)

where Ieff =
∫

l
∗
l
∗T (X,WP ,ΦP )dP . That is, Ŵ (∞) is Fisher efficient. Fur-

ther,
√
nvec(Ŵ (∞)W−1

P − Im×m)→d N (0, Ī−1
eff ),

where Īeff =
∫

vec(M)vec(M)T dP does not depend on WP and M is given

by (2.5)–(2.8), with s replaced by S.

The proof of Theorem 3.1 is given in later sections and the Appendix.

4. Numerical studies and some computational issues. Two groups of ex-
periments are implemented to test the empirical performance of EFFICA.
Data are generated from known source distributions listed in Table 2 with
a known mixing matrix W−1

P . The boundaries for B-spline approximation
of the density score functions are taken as bnk = max(qn(0), qn(0.01) −∆n)
and bnk = min(qn(1), qn(0.99)+∆n), where qn(·) denotes the empirical quan-
tile and ∆n = c · √log logn. We used c = 5 in the simulation. The number
of knots is key for EFFICA and is chosen by the cross-validation method
described in Section 2.5.

In the first group of experiments, two hidden components are used and
WP = [2,1; 2,3]. The two components in the first twelve experiments are
i.i.d from one of the distributions [1]–[12], and the two components in ex-
periments 13–15 are from different distributions as specified in cases [13]–[15]
of Table 2. Each experiment has been replicated 400 times with n= 1000.

In the second group of experiments, the number of hidden components is
increased to m= 4, 8 and 12, m hidden components are chosen with distri-
butions of [0], [1], . . . , [m− 1] in Table 2 and WP = Im×m. The experiments
are replicated 100, 100 and 50 times for m= 4, 8 and 12, respectively, with
n= 4000.
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Comparisons are made with five existing ICA algorithms: the FastICA
algorithm with the options of “symmetric” and “tanh” [15] which is equiva-
lent to quasi-ML by using a tanh distribution for each hidden source (note:
the FastICA code uses logistic for tanh), the JadeICA algorithm [7], the
extended infomax algorithm [19], the KernelICA-Kgv algorithm [3] and the
PCFICA algorithm. The PCFICA’s estimate is used as the initial value for
both EFFICA and KernelICA-Kgv. Due to the existence of multiple local
solutions, PCFICA uses three starting values, one from FastICA and the
others random. The performance of each algorithm is measured by both
the Frobenius error, that is, dF (Ŵ ,WP ) = ‖ŴW−1

P − Im×m‖F after suitable

rescaling and permutation on rows of both Ŵ and WP , and the so-called
Amari error dA(Ŵ ,WP ) (e.g., [3]),

dA(V,W ) =
1

2m

m
∑

i=1

(

∑m
j=1 |aij |

maxj |aij |
− 1

)

+
1

2m

m
∑

j=1

(
∑m

i=1 |aij |
maxi |aij |

− 1

)

,

where V,W are rescaled into V̄ , W̄ such that each row of V̄ and W̄ has
norm 1 and aij = (V̄ W̄−1)ij . The Amari error lies in [0,m− 1], is invariant
under permutation and scaling of the rows of V and W and is equal to zero
if and only if V and W represent the same row components.

For each experiment in the first group of simulations with T = 400 repli-
cations, Table 3 reports the average Amari error and square root of the mean
square error

√
MSE with

MSE =
1

T

T
∑

i=1

(d
(i)
F )2,

where d
(i)
F denotes the Frobenius error for the ith replication. For the second

group of simulations, Figure 1 shows the boxplots of the Amari errors and
Table 4 reports

√
MSE .

From the simulation results, in some cases, some parametric ICA algo-
rithms work very well and even outperform EFFICA. For example, FastICA

Table 2
Source distributions used in the simulations

[0]. N(0,1) [8]. exp(1) +U(0,1)
[1]. exp(1) [9]. mixture exp.
[2]. t(3) [10]. mixture of exp. and normal
[3]. lognormal(1,1) [11]. mixture Gaussians: multimodal
[4]. t(5) [12]. mixture Gaussians: unimodal
[5]. logistic(0,1) [13]. exp(1) vs normal(0,1)
[6]. Weibull(3,1) [14]. lognormal(1,1) vs normal(0,1)
[7]. exp(10) + normal(0,1) [15]. Weibull(3,1) vs exp(1)
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Table 3
1000 ×mean Amari errors (and 1000×

√
MSE in brackets) for six ICA methods using

m= 2 sources and sample size n= 1000. Source distributions for row k are given by [k] in
Table 1. The bold numbers represent the best performance according to each experiment

pdf Fast Jade ExtImax Pcf Kgv EFFICA

1 37 39 34 18 14 7

(89) (66) (57) (31) (24) (11)
2 36 36 24 35 33 29

(231) (68) (61) (61) (55) (52)
3 33 31 19 16 14 5

(243) (69) (33) (27) (24) (8)
4 39 50 41 60 61 60

(99) (86) (112) (100) (102) (110)
5 71 85 87 109 99 128

(194) (153) (232) (192) (170) (253)
6 42 43 32 18 15 7

(188) (83) (57) (30) (24) (11)
7 43 41 35 18 15 9

(205) (72) (96) (31) (25) (16)
8 36 44 35 21 19 17

(99) (96) (64) (35) (31) (28)
9 35 37 24 16 14 4

(212) (83) (41) (28) (24) (7)
10 46 59 39 44 30 47

(209) (103) (66) (74) (49) (105)
11 28 33 27 29 25 25

(47) (54) (45) (48) (41) (42)
12 50 49 44 44 39 78

(184) (82) (78) (74) (66) (264)
13 65 52 185 24 19 16

(164) (89) (355) (42) (35) (31)
14 35 45 91 20 14 11

(109) (89) (188) (35) (24) (20)
15 69 72 57 32 27 11

(192) (184) (136) (69) (58) (25)

works best in case 5 where hidden sources have logistic distributions. This
is not surprising as we have pointed out in Section 2.1 that a simple quasi-
MLE can outperform an efficient estimator when the value of the nuisance
parameter used by the quasi-MLE is close to the truth. But, in most exper-
iments, the parametric methods (FastICA, JADE, ExtImax) behave worse
than the nonparametric methods (PCFICA, Kgv, EFFICA) and EFFICA
has both the smallest Amari errors and smallest Frobenius errors, while Kgv,
which we conjecture can be efficient after appropriate regularization, is the
best in the cases of mixture Gaussians. The three nonparametric ICA al-
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Table 4
10×

√
MSE for ICA algorithms with the same simulations as in Figure 1

Case Fast Jade ExtImax PCF Kgv EFFICA

m= 4 0.82 1.31 2.71 0.60 0.51 0.45
m= 8 7.0 8.3 11.2 5.4 4.3 3.6
m= 12 9.1 11.2 13.1 7.5 8.0 8.7

gorithms require heavier computation, but their performance is better than
the parametric methods.

All of the ICA algorithms used in the simulation except EFFICA are based
on contrast functions which empirically measure the dependence or nongaus-
sianity among {W1X, . . . ,WmX} and, thus, they are invariant with respect

to the choice of WP for both error metrics dF (Ŵ ,WP ) and dA(Ŵ ,WP ).
We note that prewhitening, which is used for data preprocessing by these
algorithms, can reduce such invariance, although it does not cause incon-
sistency [8]. Theorem 3.1 implies that EFFICA is asymptotically invariant
with respect to WP . Figure 2 compares m= 8 with two different unmixing
matrices WP = Im×m and WP = Im×m + V , where Vjk = j/m2 + (k − 1)/m
for 1 ≤ j, k ≤m. We performed many other simulations with different WP

and obtained similar results. We observe that the Frobenius error boxplots
do change somewhat with different WP , but EFFICA is more robust than
other ICA algorithms. We believe that the main reasons are (i) none of the ICA
algorithms are convex and, thus, may suffer from local solutions and (ii) EF-
FICA does not use prewhitening for preprocessing, while others do.

5. Proof of Theorem 3.1. In this section, we prove Theorem 3.1. Note
that solving (2.13) can be viewed as a generalized M-estimator (GM-estimator).
The existence/uniqueness, convergence and asymptotic linearity of GM-
estimators have been studied in [5] (the Iteration Theorem in Appendix A.10.2,
page 517). The idea of our proof is to use the Iteration Theorem.

Suppose that Mn(θ,Pn) is a functional of θ ∈ Ω (a subset of a finite Eu-
clidean space) and Pn, but is not necessarily linear in Pn. The subscript n in
Mn allows the existence of a possible smoothing or sieve parameter depen-
dent on n. The zero of Mn(θ,Pn) w.r.t θ is called a generalized M -estimator.
Let M(θ,P ) ≡M∞(θ,P ). We review the conditions for the Iteration Theo-
rem.

[GM1] θP ∈Ω is the unique solution of M(θ,P ) = 0 in Ω.
[GM2] Mn(θP , Pn) =

∫

ψθP
(X)dPn + op(n

−1/2) for some ψθP
∈ L2(P ).

[GM3] M(θ,P ) is differentiable w.r.t θ in a neighborhood of θP and ∂M(θP ,P )
∂θ

is nonsingular.
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Fig. 1. Boxplots of Amari errors for ICA algorithms: in each case (left, middle, right),
m hidden components are generated from pdfs [0], . . . , [m−1] in Table 1. The X-labels rep-
resent ICA algorithms: F-FastICA, J-JadeICA, X-extended infomax, P-PCFICA, K-Kgv,
E-EFFICA. The sample sizes are 4000 for all the experiments and the replication times
are 100, 100, 50 for m= 4, m= 8 and m= 12, respectively.

Fig. 2. Frobenius errors (×10) with m = 8 and n = 4000, where the left panel is for
W = Im×m and the right panel is for W = Im×m +V , with Vjk = j/m2 +(k− 1)/m. Each
experiment is replicated 100 times.
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For our efficient score equation Mn(θ,Pn) = en(W ) defined in (2.12), [5]
condition [U] becomes

[U] supW∈Ωn
|ėn(W )− ė(WP )| = oP (1).

Theorem 5.1 [5]. Suppose [GM1], [GM2] and [GM3] hold with

Mn(θ,Pn) = en(W ) and that [U] holds. If the starting point satisfies P (|Ŵ (0)−
WP |< εn)→ 1, then with probability converging to 1, en(W ) in (2.13) has a

unique root Ŵ (∞) which is also the limit of the sequence defined by (2.14),

except with
∫

l̂
∗
l̂
∗T (X,Ŵ (j))dPn replaced by −ėn(Ŵ (j)), and Ŵ (∞) is asymp-

totically linear with the influence function −[ė(WP )]−1
l
∗(.,WP ,ΦP ).

Theorem 5.1 is called the Iteration Theorem in [5]. Note that the sequence
limit defined by the Iteration Theorem uses the exact Newton–Raphson,
whereas we use an approximate Newton–Raphson, as in (2.14). To make
up the difference, we need the following condition [V] which is verified by
Proposition 6.4 in Section 6:

[V] supW∈Ωn
| ∫ l̂

∗
l̂
∗T (X,W )dPn − ∫ l

∗
l
∗T (X,WP ,ΦWP

)dP | = oP (1).

Theorem 3.1 can now be proved as follows:

Proof of Theorem 3.1. It is obvious that [GM1] holds under the con-
ditions of Theorem 3.1 as it is the efficient score function. [GM2], [GM3] and
[U] are verified by Propositions 6.1, 6.2 and 6.3 below, respectively. Thus, the
conclusion of the above Iteration Theorem applies here. By Proposition 6.4,
the condition [V] holds. Further, by Proposition 6.2,

ė(WP ) = −E[l∗l∗T (X,WP ,ΦP )].

Thus, we have

sup
W∈Ωn

∣

∣

∣

∣

ėn(W ) +

∫

l̂
∗
l̂
∗T (x,W )dPn

∣

∣

∣

∣

= oP (1).

Then following the contraction arguments of [5] (pages 317–319), the itera-

tion given in (2.14) has the same limit as that replacing
∫

l̂
∗
l̂
∗T (X,Ŵ (j))dPn

by −ėn(Ŵ (j)), with probability converging to 1. Thus, (3.3) holds. The sec-
ond result follows from (3.3) directly by using (2.4) and the devices of Kro-
necker product and vec operator. �

6. Propositions 6.1–6.4. This section verifies conditions [GM2], [GM3],
[U] and [V]. For convenience, we list all the notation used in the following
proofs in Table 5, for k ∈ {1, . . . ,m} and W ∈Ωn. Note that all of the lemmas
used in this section are given in the Appendix. For simplicity of notation,
we will often write δnk as δn.
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Table 5
List of all notation used in the proof

P,Pn population, empirical law of X
W,Wk,Wij m×m matrix, kth row, (i, j)th element
WP ,WPk,WPij unmixing matrix, kth row, (i, j)th entry
rk PDF of Sk

φk = −r′k/rk density score function for Sk

ΦP = (φ1, . . . , φm)T function vector
fWk

PDF of WkX (fWP k
≡ rk)

φWk
=−f ′

Wk
/fWk

score function of WkX (φWP k
≡ φk)

φk,n, φWk,n truncation of φk, φWk
on [bnk, bnk]

ΦW = (φW1 , . . . , φWm )T function vector

Φ̂W = (φ̂W1 , . . . , φ̂Wm )T function vector
l
∗(X,W,Φ) efficient score function defined by (2.4)
e(W ) =

∫

l
∗(X,W,ΦW )dP expectation

en(W ) =
∫

l
∗(X,W, Φ̂W )dPn empirical expectation

B
(k)
n = (B

(k)
n1 , . . . ,B

(k)
nnk

)T B-splines defined on [bnk, bnk]

An(Wk) =
∫

B
(k)
n B

(k)T
n (WkX)dPn served in coefficients of φ̂Wk

Dn(Wk) =
∫

(B
(k)
n )′(WkX)dPn served in coefficients of φ̂Wk

γn(Wk) =An(Wk)−1Dn(Wk) served as coefficients of φ̂Wk

A(Wk) =
∫

B
(k)
n B

(k)T
n (WkX)dP served in coefficients of φ̂Wk

D(Wk) =
∫

(B
(k)
n )′(WkX)dP served in coefficients of φ̂Wk

γ(Wk) =A(Wk)−1D(Wk) served as coefficients of φ̂Wk

G(k)
n = {aT

B
(k)
n :a ∈Rnk} closed linear span of B-splines

φ̂Wk
= γn(Wk)T

B
(k)
n estimator of φWk

in G(k)
n defined by (2.10)

φ̂Wk
= γ(Wk)T

B
(k)
n estimator of φWk

in G(k)
n defined by (A.3)

Proposition 6.1. Under the conditions of Theorem 3.1, we have

en(WP ) =

∫

l
∗(X,WP ,ΦP )dPn + oP (n−1/2).

Proof. Recall the definition of en(W ) given by (2.12) and that of
l
∗(x,W,Φ) given by (2.4)–(2.8). It is sufficient to show that for 1≤ i 6= j ≤m,

α̂i − αi = oP (1) and β̂i − βi = oP (1), where (αi, βi) and (α̂i, β̂i) are defined
in (2.7) and (2.11), respectively, and

∫

φ̂WPi
(Si)Sj dPn =

∫

φWPi
(Si)Sj dPn + oP (n−1/2),(6.1)

where Si =WPiX , Sj =WPjX .
The first two are not hard verify with the law of large numbers and

Lemma A.7. Here, we will just show (6.1). Observe that
∣

∣

∣

∣

∫

φ̂WPi
(Si)Sj dPn −

∫

φWPi
(Si)Sj dPn

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

[φ̂WPi
(Si)− φ̂WPi

(Si)]Sj dPn

∣

∣

∣

∣
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+

∣

∣

∣

∣

∫

[φ̂WPi
(Si)− φi,n(Si)]Sj dPn

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

(φi(Si)− φi,n(Si))Sj dPn

∣

∣

∣

∣

= [1] + [2] + [3].

In the following, we will show that all of [1], [2] and [3] are oP (n−1/2).
First, by Lemma A.2(7) and Lemma A.3,

[1] =

∣

∣

∣

∣

∫

(γn(WPi)− γ(WPi))
T
B

(i)
n (Si)Sj dPn

∣

∣

∣

∣

≤ ‖γn(WPi)− γ(WPi)‖2

∥

∥

∥

∥

∫

B
(i)
n (Si)Sj dPn

∥

∥

∥

∥

2

= oP (1)OP (n−1/2).

Further, E([2])2 = 1
nE(φ̂WPi

(Si) − φWPi,n(Si))
2E(S2

j ). By Lemma A.6,

|φ̂WPi
− φWPi,n|∞ ≤ cδ2n|φ′′′WPi,n

|∞. Thus, by C6,

[2] = n−1/2δ2n|φ′′′WPi,n|∞OP (1) = oP (n−1/2).

For [3], since P (Si /∈ [bni, bni])→ 0, we have

E([3])2 =
1

n
E(φi(Si)

2I(Si /∈ [bni, bni]))E(S2
j ) = o

(

1

n

)

.

So [3] = oP (n−1/2). �

Proposition 6.2. Under conditions C1, C2 and C4 of Theorem 3.1,
e(W ) is differentiable w.r.t. W in a neighborhood of WP and

ė(WP ) =−E{l∗l∗T (X,WP ,ΦP )}
is nonsingular.

Proof. Let Tw(·) = ∂
∂w{φw(·)} for any nonzero row vector w ∈ R

m.
By (A.1) in the Appendix, after exchanging the order of differentiation and
integration, we have E[Tw(wX)] = 0. Then by (2.5), we have for k = 1, . . . ,m,

E

{

∂

∂Wk
{l∗(X,W,ΦW )}WP

}

=E

{

∂

∂Wk
{l∗(X,W,ΦP )}WP

}

.

Since the left-hand side of the above is ė(WP ), by Lemma A.8, the right-
hand side is equal to

ė(WP ) = −E{l∗l∗T (X,WP ,ΦP )}.(6.2)

Note that the elements of M in (2.5)–(2.6) are linearly independent, and
that this is also true for the elements of l

∗(.,WP ,ΦP ). Thus, ė(WP ) must
be nonsingular. �
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Proposition 6.3. Under the conditions of Theorem 3.1, for i, j, k =
1, . . . ,m, we have

sup
Ωn

∣

∣

∣

∣

∫

φ̂Wi
(WiX)Xk dPn(X)−

∫

φPi(WPiX)Xk dP

∣

∣

∣

∣

= oP (1)(6.3)

and for i 6= j,

sup
Ωn

∣

∣

∣

∣

∫

∂

∂Wi
{φ̂Wi

(WiX)}WjX dPn −
∫

∂

∂Wi
{φPi(WPiX)}WPjX dP

∣

∣

∣

∣

(6.4)
= oP (1).

Thus, condition [U] holds.

Proof. We omit the superscript (i) in B
(i)
n henceforth. By the Cauchy–

Schwarz inequality,
∥

∥

∥

∥

∫

B
(i)
n (WiX)Xk dPn

∥

∥

∥

∥

2

2
≤
∫

|Xk|2 dPn

∫ ni
∑

l=1

[Bnl(WiX)]2 dPn.

Since
∑ni

l=1[Bnl(WiX)]2 < 1 by property III of B-splines in the Appendix,
we have

sup
Ωn

∥

∥

∥

∥

∫

Bn(WiX)Xk dPn

∥

∥

∥

∥

2
=OP (1)(6.5)

and by Lemma A.2(7), supΩn
‖γn(Wk)− γ(Wk)‖2 = oP (1), so

sup
Ωn

∣

∣

∣

∣

∫

φ̂Wi
(WiX)Xk dPn(X)−

∫

φ̂Wi
(WiX)Xk dPn

∣

∣

∣

∣

= sup
Ωn

∣

∣

∣

∣

(γn(Wk)− γ(Wk))
T
∫

Bn(WiX)Xk dPn

∣

∣

∣

∣

(6.6)

≤ sup
Ωn

‖γn(Wk)− γ(Wk)‖2 sup
Ωn

∥

∥

∥

∥

∫

Bn(WiX)Xk dPn

∥

∥

∥

∥

2

= oP (1)OP (1).

Further, by Lemma A.6, supΩn
|φ̂Wi

(WiX)−φWi,n|∞ ≤ supΩn
c|φ′′′Wi,n

|∞δ2n,
so

sup
Ωn

∣

∣

∣

∣

∫

φ̂Wi
(WiX)Xk dPn(X)−

∫

φWi,n(WiX)Xk dPn

∣

∣

∣

∣

≤ sup
Ωn

|φ′′′Wi,n|∞δ2n
∫

|Xk|Pn(6.7)

= oP (1) (by C6).
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By C4, ULLN holds for {φWi
(WiX)Xk :W ∈ Ωn}, and by Lemma A.1,

supΩn
P (WiX /∈ [bni, bni]) = o(1), so

sup
Ωn

∣

∣

∣

∣

∫

φWi
(WiX)XkI(WiX /∈ [bni, bni])dPn

∣

∣

∣

∣

= oP (1).(6.8)

Recall that φWi,n(x) = φWi
(x)I(x ∈ [bni, bni]). From (6.6)–(6.8), we obtain

sup
Ωn

∣

∣

∣

∣

∫

φ̂Wi
(WiX)Xk dPn(X)−

∫

φWi
(WiX)Xk dPn(X)

∣

∣

∣

∣

= oP (1).(6.9)

Now, by C4,

sup
Ωn

∣

∣

∣

∣

∫

φWi
(WiX)Xk d(Pn − P )

∣

∣

∣

∣

= oP (1),(6.10)

and by continuity,

sup
Ωn

∣

∣

∣

∣

∫

φWi
(WiX)Xk dP −

∫

φWPi
(WPiX)Xk dP

∣

∣

∣

∣

= o(1).(6.11)

(6.3) then follows from (6.9)–(6.11).
In the following, we prove (6.4). Note that

∂

∂Wik
{φ̂Wi

(WiX)} =
∂

∂Wik
{γT

n (Wi)}Bn(WiX) + φ̂′Wi
(WiX)Xk.(6.12)

It suffices to show that the following hold:

[4] sup
Ωn

∣

∣

∣

∣

∫

φ̂′Wi
(WiX)XkWjX dPn(X)−

∫

φ′Pi(WPiX)XkWPjX dP

∣

∣

∣

∣

= oP (1);

[5] sup
Ωn

∣

∣

∣

∣

∫

∂

∂Wik
{γT

n (Wi)}Bn(WiX)WjX dPn(X)

∣

∣

∣

∣

= oP (1).

Similarly to (6.3), the uniform convergence of [4] can be verified using
conditions C4, C6, C7 and Lemmas A.1, A.2 and A.6. Further, the left-hand
side of [5] is bounded by

sup
Ωn

{∥

∥

∥

∥

∂

∂Wik
γn(Wi)

∥

∥

∥

∥

2
·
∥

∥

∥

∥

∫

Bn(WiX)WjX dPn

∥

∥

∥

∥

2

}

=OP (δ−7/2
n n

1/2
i εnδ

−1
n n

1/2
i )

= oP (1),

where the first equality follows from Lemma A.2 and Lemma A.4 and the
second follows from C7. Thus, [5] holds and, hence, (6.4) is proved. �

Proposition 6.4. Under the conditions of Theorem 3.1, condition [V]
holds, that is,

sup
W∈Ωn

∣

∣

∣

∣

∫

l̂
∗
l̂
∗T (X,W )dPn −

∫

l
∗
l
∗T (X,WP ,ΦWP

)dP

∣

∣

∣

∣

= oP (1).
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Proof. By checking the elements of l̂
∗
l̂
∗T (x,W ), it suffices to show that

for 1 ≤ i, j, k, k′ ≤m and i 6= j,

sup
Ωn

∣

∣

∣

∣

∫

φ̂Wi
(WiX)φ̂Wj

(WjX)XkXk′ dPn

−
∫

φPi(WPiX)φPj(WPjX)XkXk′ dP

∣

∣

∣

∣

= oP (1),

sup
Ωn

∣

∣

∣

∣

∫

φ̂Wi
(WiX)XkXk′ dPn(X)−

∫

φPi(WPiX)XkXk′ dP

∣

∣

∣

∣

= oP (1)

and

sup
Ωn

∣

∣

∣

∣

∫

φ̂Wi
(WiX)Xkκ(WjX)dPn(X)−

∫

φPi(WPiX)Xkκ(WPjX)dP

∣

∣

∣

∣

= oP (1).

Each of these can be verified using Lemmas A.1, A.2, A.6 and conditions
C4, C6 and C7 with arguments similar to those used in proving (6.3). �

7. Conclusion. In this paper, we viewed the classical ICA model within
the framework of semiparametric models and obtained an asymptotically ef-
ficient estimator for the unmixing matrix by solving an approximate efficient
score equation. The main difference between this new method and popular
parametric ICA methods is that we estimate the density score functions
of hidden sources adaptively. A variety of simulations have illustrated sta-
tistical efficiency of this estimator in comparison with state-of-the-art ICA
algorithms.

APPENDIX

A.1. Some useful formulas. Let v =wW−1
P . Then wX = vS. If vk 6= 0 for

some k ∈ {1, . . . ,m}, then by the classical convolution formula, we have

fw(t) =

∫

1

vk
rk

(

t−∑j 6=k vjsj

vk

)

∏

j 6=k

rj(sj)dsj =E

{

1

vk
rk

(

t−∑j 6=k vjSj

vk

)}

.

Since fw(t) is a marginal density function of (vS,Sj : 1 ≤ j 6= k ≤m), by a
standard formula (see, e.g., [4]),

φw(t) =− 1

vk
E

{

r′k
rk

(

t−∑j 6=k vjSj

vk

)

∣

∣

∣vS = t

}

=
1

vk
E[φk(Sk)|vS = t](A.1)

and further calculation gives

∂

∂t
φw(t) = φ2

w(t)− 1

v2
k

E

{

r′′k
rk

(

t−∑j 6=k vjSj

vk

)

∣

∣

∣vS = t

}

.(A.2)
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A.2. Calculation of the efficient score. To formulate the tangent space
defined in Section 2.1 for each nuisance parameter ri, by taking the smooth
submodel {ri(·; t) = ri(·)ethi(·) : |t|< 1} for some hi ∈ L2(P ), we have

lim
t→0

∂

∂t
{log pX(x,W, r1, . . . , ri(·; t), . . . , rm)}= hi(Wix).

Since ri(·; t) needs to be a probability density function which satisfies the
mean and absolute median assumptions, hi needs to satisfy E[hi(Si)] = 0,
E[hi(Si)Si] = 0 and E[hi(Si)κ(Si)] = 0, but is otherwise arbitrary. Thus, the
tangent space for ri can be expressed as

TS i = {hi(Wix) ∈L2(P )|E[hi(Si)] = 0,E[hi(Si)Si] = 0,E[hi(Si)κ(Si)] = 0}.
Note that the tangent spaces {TS i : 1 ≤ i ≤m} are perpendicular to each
other since the Si are mutually independent. Thus, any projection onto
the tangent space of (r1, . . . , rm) is equal to the summation of the partial
projection onto each TS i. The efficient score of W becomes

l
∗(.,W,Φ) = l̇W −

m
∑

i=1

π(l̇W |TS i),

where π(.|L) denotes the projection operator in L2(P(W,r1,...,rm)) onto L.

Since each off-diagonal entry of Im×m −Φ(S)ST is perpendicular to all TS i

and each diagonal entry of it is perpendicular to all but one TS i, l
∗ can

be obtained as in (2.4)–(2.8) of Section 2.3 by using the fact that TS⊥
i =

span{1, Si, κ(Si)}.

A.3. Some properties of cubic B-splines. Let ξ1 < ξ2 < · · ·< ξN be fixed
points. The first order B-spline basis functions based on these knots can be
expressed as B1

i (x) = I(x ∈ [ξi, ξi+1)), i = 1, . . . ,N − 1, and the kth order
B-spline basis functions can be obtained recursively (k ≥ 2) by

Bk
i (x) =

x− ξi
ξi+k−1 − ξi

Bk−1
i (x) +

ξi+k − x

ξi+k − ξi+1
Bk−1

i+1 (x),

for i= 1, . . . ,N − k. Each Bk
i (x) is differentiable w.r.t. x up to order k − 2

and its first order derivative can be expressed as

d

dx
Bk

i (x) =
k− 1

ξi+k−1 − ξi
Bk−1

i (x)− k− 1

ξi+k − ξi+1
Bk−1

i+1 (x).

We use the 4th order, so-called cubic, B-splines {B4
i : 1 ≤ i ≤ N − 4}

with equally spaced knots, that is, ξi+1 − ξi = δ (i= 1, . . . ,N − 1) for some
algorithm-determined δ. For simplicity, the superscript in B4

i is omitted be-
low. The following properties of cubic B-splines will be frequently used in
proving the lemmas below (see [11, 23] for details):
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(I) 0≤Bi(x)< 1, Bi(x)Bj(x) = 0 if |i− j|> 3.

(II) | d
dxBi(x)|< δ−1, | d2

dx2Bi(x)|< 2δ−2.

(III)
∑N

i=1[Bi(x)]
2 < 1,

∑N
i=1[

d2

dx2Bi(x)]
2 < 6δ−4.

A.4. Supporting lemmas for Propositions 6.1–6.4. In this subsection, we

prove all of the lemmas used in the proofs of Propositions 6.1–6.4. Recall
that for each φk (k = 1, . . . ,m), we have an interval [bnk, bnk] and nk cubic

B-spline basis functions defined thereupon using equally spaced knots on it,

say B
(k)
n = (B

(k)
n1 , . . . ,B

(k)
nnk)T , as in Section 2.4. Thus, we have constructed

a sequence of sieves G(k)
n using B

(k)
n as basis functions. For any W ∈Ωn, we

have a class of estimates φ̂Wk
∈ G(k)

n for φWk
, as defined in Section 2.4. For

convenience, the superscript of B
(k)
n is often omitted below.

Let Ω
(k)
n = {Wk :W ∈ Ωn} for k = 1, . . . ,m. We also need an intermediate

approximation function φ̂Wk
∈ G(k)

n , defined as follows. For w ∈ Ω
(k)
n ,

φ̂w = γ(w)T B
(k)
n ,(A.3)

where γ(w) =A(w)−1D(w) with A(w) =
∫

B
(k)
n B

(k)T
n (wX)dP and D(w) =

∫

[B
(k)
n ]′(wX)dP . Note that the subscript w of φ̂w should always be associ-

ated with Ω
(k)
n for some k ∈ {1, . . . ,m}, similarly for φ̂w.

In the following, c denotes a constant (only dependent on the population

law P ), but its exact value may vary in different places (even in a single line)

without clarification. For a column vector x ∈ R
m, ‖x‖2 =

√
xTx. For an m×

m real matrix A, ‖A‖1 = max1≤i≤m ‖Ai‖2, ‖A‖2 = maxx∈Rm,‖x‖2=1 ‖Ax‖2

and ‖A‖F =
√

tr (ATA), thus, ‖A‖2 ≤ ‖A‖1.

The following Lemmas A.1–A.8 hold under the conditions of Theorem 3.1.
Jin [17] obtained results similar to Lemma A.2 and Lemmas A.5–A.7 con-

cerning the B-spline approximation, but in generally different settings.

Lemma A.1. For sufficient large n, sup
w∈Ω

(k)
n
|fw|∞ <∞, sup

w∈Ω
(k)
n
|f ′w|∞

<∞, sup
w∈Ω

(k)
n

mint∈[bnk ,bnk ] fw(t) ≥ cδn and sup
w∈Ω

(k)
n
P (wX /∈ [bni, bni]) =

o(1).

Proof. The first two inequalities follow easily from C3. The remaining

two are proved as follows. For any w ∈ Ω
(k)
n , ‖w−WPk‖2 ≤ εn. If we let v =

wW−1
P , then |vj | → 0 for 1 ≤ j 6= k ≤m and vk → 1 as n→∞. Since fw(t) =

E[ 1
vk
rk(

t−
∑

j 6=k
vjSj

vk
)], we can consider the right-hand side as a function (say
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h) of v. By the first order Taylor expansion,

|fw(t)− rk(t)| ≤ εn‖W−1
P ‖2

{

m
∑

j=1

sup
w∈Ω

(k)
n

∣

∣

∣

∣

∂

∂vj
h(v)

∣

∣

∣

∣

}

≤ cεn,

where by direct calculation and using C3, | ∂
∂vj

h(v)| is uniformly bounded

with w ∈ Ω
(k)
n and t ∈ R. Recall that rk(t) ≥ cδn for t ∈ [bnk, bnk] and εn ≪ δn,

thus

sup
w∈Ω

(k)
n

min
t∈[bnk,bnk ]

fw(t)≥ cδn.

Finally,

P (wX ∈ [bni, bni]) =

∫

[bnk ,bnk]
fw(t)dt≥

∫

[bnk ,bnk ]
(rk(t)− cεn)dt

= P (Sk ∈ [bnk, bnk])− cεn(bnk − bnk).

Since εn(bnk−bnk) = o(1) andP (Sk ∈ [bnk, bnk])→ 1, we have inf
w∈Ω

(k)
n
P (wX ∈

[bni, bni]) → 1. �

Recall the definitions of φ̂Wk
, γn(Wk), An(Wk) and Dn(Wk) in Section 2.4

and that of γ(w) = [A(w)]−1D(w) in (A.3). The lemmas below give their
uniform convergence rates.

Lemma A.2. The following holds for k, i= 1, . . . ,m:

(1) ‖D(w)‖2 ≤ cδnn
1/2
k ; cδ2n ≤ eig(A(w)) ≤ cδn for w ∈ Ω

(k)
n ;

(2) sup
w∈Ω

(k)
n
‖Dn(w)−D(w)‖2 =OP ((nk lognk)

1/2(nδn)−1/2);

(3) sup
w∈Ω

(k)
n
‖Dn(w)‖2 =Op(δnn

1/2
k );

(4) sup
w∈Ω

(k)
n
‖An(w)−A(w)‖2 =OP ((δn lognk)

1/2n−1/2);

(5) sup
w∈Ω

(k)
n
‖A−1

n (w)‖2 =OP (δ−2
n );

(6) sup
w∈Ω

(k)
n
‖γn(w)‖2 =Op(n

1/2
k δ−1

n );

(7) sup
Ω

(k)
n

‖γn(w)− γ(w)‖2 = oP (1);

(8) sup
Ω

(k)
n

‖ ∂
∂wi

{An(w)}‖2 =OP (δ
−1/2
n );

(9) sup
Ω

(k)
n

‖ ∂
∂wi

{Dn(w)}‖2 =OP (δ−2
n );

(10) sup
Ω

(k)
n

‖ ∂
∂wi

{γn(w)}‖2 = oP (δ
−7/2
n n

1/2
k ).

Proof. The procedure is as follows. First, (3) is implied by (1) and (2).
Second, (6) is implied by (3) and (5). Third, since

∂

∂wi
{γn(w)} = −A−1

n (w)
∂

∂wi
{An(w)}γn(w) +A−1

n (w)
∂

∂wi
{Dn(w)},
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(10) is implied by (5), (6), (8) and (9). Hence, it suffices to prove (1), (2),
(4), (5), (7), (8) and (9). Further, the proofs of (2) and (4) are similar and
the proofs of (8) and (9) are similar. Thus the proofs of (4) and (9) are
omitted.

Proof of (1). By taking the derivatives of the cubic B-splines, B′
ni(t) =

δ−1
n (B3

ni(t)−B3
n,i+1(t)), where B3

ni are the third order B-splines defined on
the same knots, i= 1, . . . , nk, we have

|Di(w)| = δ−1
n

∣

∣

∣

∣

∫

(B3
n,i(t)−B3

n,i+1(t))fw(t)dt

∣

∣

∣

∣

= δ−1
n

∣

∣

∣

∣

∫

B3
n,i(t)(fw(t)− fw(t+ δn))dt

∣

∣

∣

∣

≤
∫

B3
n,i(t)dt|f ′w|∞ < 3δn|f ′w|∞.

So the first result holds due to Lemma A.1. The second result follows from
Lemma 5.1 of [17]. �

Proof of (2). Note that

P
(

sup
w∈Ω

(k)
n

‖Dn(w)−D(w)‖2 ≥ t
)

= P

(

sup
w∈Ω

(k)
n

∥

∥

∥

∥

∫

B
′
n(wX)d(Pn −P )

∥

∥

∥

∥

2
≥ t

)

≤
nk
∑

i=1

P

(

sup
w∈Ω

(k)
n

∣

∣

∣

∣

∫

B′
n,i(wX)d(Pn − P )

∣

∣

∣

∣

≥ t√
nk

)

.

For a fixed pair (i, k), let Fn = {gw(x) = B′
n,i(wx) :w ∈ Ω

(k)
n }, a class of

functions indexed by Ω
(k)
n . Then for w,v ∈ Ω

(k)
n , ‖gw(x)−gv(x)‖2 ≤ 2δ−2

n ‖w−
v‖2‖x‖2 by property II of cubic B-splines. Now, the index set Ω

(k)
n can be

covered by N = cεmn u
−m balls of radius u and for any w,v in the same ball,

E[‖gw(X) − gv(X)‖2] ≤ cδ−2
n u. Further, by property I of cubic B-splines,

supgw∈Fn
|gw|∞ ≤ δ−1

nk . Then for cmax(δ−1
n , εnδ

−2
n )≤ a≤ c

√
n,

P

(

sup
w∈Ω

(k)
n

√
n

∣

∣

∣

∣

∫

B′
n,i(wX)d(Pn −P )

∣

∣

∣

∣

≥ a

)

≤ exp(−ca2δn).

This follows from Theorem 5.11 of van de Geer ([24], page 75) which gener-
alizes Hoeffding’s inequality and calculates the uniform convergence rate for
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a class of functions in terms of its size measure, or so-called bracketing en-

tropy ; see [24] for details. Note that εn ≪ δn by C7, so for t≥ cn
1/2
k n−1/2δ−1

n ,
we have

P
(

sup
w∈Ω

(k)
n

‖Dn(w)−D(w)‖2 ≥ t
)

≤ nk exp(−ct2nδnn−1
k ).

Thus,

sup
Ω

(k)
n

‖Dn(w)−D(w)‖2 =Op

(

√

nk lognk

nδn

)

. �

Proof of (5). Since A−1
n = (A+An−A)−1 =A−1(I+(An−A)A−1)−1,

by (1) and (4) (omitting the index w), we have

sup
w∈Ω

(k)
n

‖An −A‖2‖A−1‖2 = op(1),

hence,

sup
w∈Ω

(k)
n

‖A−1
n ‖2 ≤ sup

w∈Ω
(k)
n

‖A−1‖2(1−‖An −A‖2‖A−1‖2)
−1 =OP (δ−2

n ).

Here, we use the inequality of matrix norm ‖(I +A)−1‖2 ≤ (1−‖A‖2)
−1 for

any square matrix A with ‖A‖2 < 1, where I is the identity matrix. �

Proof of (7). Since by (1)–(5),

sup
w∈Ω

(k)
n

‖γn(w)− γ(w)‖2 = sup
w∈Ω

(k)
n

‖A−1(Dn −D)−A−1
n (An −A)A−1Dn‖2

=Op

(

δ−2
n

√

nk lognk

nδn
+ δ−2

n

√

δn lognk

n
δn
√
nkδ

−2
n

)

= oP (1),

where the last equality follows from C7. �

Proof of (8). Note that the partial derivative is (omitting (i) from

B
(i)
n ),

∂

∂wk
{An(w)}jj′ =

∫

(BnjB
′
nj′ +B′

njBnj′)(wX)Xk dPn.

By the Cauchy–Schwarz inequality,
∣

∣

∣

∣

∫

(BnjB
′
nj′ +B′

njBnj′)(wX)Xk dPn

∣

∣

∣

∣

2

≤
∫

(BnjB
′
nj′ +B′

njBnj′)
2(wX)dPn

∫

X2
k dPn.
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Similarly, we can calculate the uniform convergence rate,

sup
0≤j,j′≤ni,|j−j′|≤3

sup
w∈Ω

(i)
n

∫

(BnjB
′
nj′ +B′

njBnj′)
2(wX)d(Pn −P ) = op(1).

Further, from Lemma A.1, sup
w∈Ω

(k)
n
|fw| is bounded so after algebraic ex-

pansion, we have

sup
w∈Ω

(i)
n

∫

(BnjB
′
nj′ +B′

njBnj′)
2(wX)dP ≤ cδ−1

n .

Thus, | ∂
∂wk

{An(w)}jj′ | ≤ cδ
−1/2
n . For cubic B-splines, Bnj(x)B

′
nj′(x) ≡ 0 for

|j − j′| > 3, thus, each row of ∂
∂wk

{An(w)} has at most seven nonzero ele-
ments. So,

sup
Ω

(i)
n

∥

∥

∥

∥

∂

∂wk
{An(w)}

∥

∥

∥

∥

2
≤ sup

Ω
(i)
n

∥

∥

∥

∥

∂

∂wk
{An(w)}

∥

∥

∥

∥

1
=Op(δ

− 1
2

n ). �

Lemma A.3. ‖ ∫ B
(i)
n (Si)Sj dPn‖2 =OP (n−1/2), where Si =WPiX, 1 ≤

i 6= j ≤m.

Proof. (We omit (i) in B
(i)
n ,B

(i)
nk .)

E

(∥

∥

∥

∥

∫

Bn(Si)Sj dPn

∥

∥

∥

∥

2

2

)

=
1

n
E

(

ni
∑

k=1

Bnk(Si)
2S2

j

)

≤ 4

n
E(S2

j ). �

Lemma A.4. supΩn
‖ ∫ B

(i)
n (WiX)WjX dPn‖2 =Op(εnδ

−1
n n

−1/2
i ) for 1≤

i 6= j ≤m.

Proof. Similarly to the proof of Lemma A.2(2), we have

sup
Ωn

∥

∥

∥

∥

∫

Bn(WiX)WjX d(Pn − P )

∥

∥

∥

∥

2
=OP

(

√

δ2nni logni

n

)

.

Further, note that |Bnk(x)−Bnk(y)| ≤ δ−1
n |x− y|, so for any W ∈ Ωn,

∥

∥

∥

∥

∫

Bn(WiX)WjX dP

∥

∥

∥

∥

2

2

=
ni
∑

k=1

∣

∣

∣

∣

∫

(Bnk(WiX)WjX −Bnk(WPiX)WPjX)dP

∣

∣

∣

∣

2

≤
ni
∑

k=1

(δ−1
n E‖X‖2

2‖Wi −WPi‖2‖Wi‖2 +E‖X‖2‖Wi −WPi‖2)
2

≤ cε2nδ
−2
n ni.
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Thus, supΩn
‖ ∫ B

(i)
n (WiX)WjX dPn‖2 =OP (

√

δ2
nni logni

n + εnδ
−1
n n

1/2
i ). �

Lemma A.5. E{(φ̂Wi
(WiX)− φWi,n(WiX))2} ≤ δ6n|φ′′′Wi,n

|2∞.

Proof. Let d(φWi,n,Gn) = infh∈Gn
|φWi,n − h|∞. Then by the Jackson-

type theorem [11],

d(φWi,n,Gn)≤ cδ3n|φ′′′Wi,n|∞.
Thus, the result follows from

E{(φ̂Wi
(WiX)− φWi,n(WiX))2} = inf

h∈G
(i)
n

E{(h(WiX)− φWi,n(WiX))2}

≤ d(φWi,n,Gn)2. �

Lemma A.6. |φ̂Wi
−φWi,n|∞ ≤ cδ2n|φ′′′Wi,n

|∞; |φ̂
′

Wi
−φ′Wi,n

|∞ ≤ c|φ′′′Wi,n
|∞δn.

Proof. By Theorem XII.4 of de Boor (1978), there exists a quasi-
interpolant with some a ∈ R

ni ,

˜̂
φWi

(t) = aT
Bn(t),

such that
˜̂
φWi

simultaneously approximates φWi,n and its first derivative to
optimal order, that is,

|˜̂φWi
− φWi,n|∞ = c|φ′′′Wi,n|∞δ3n and |˜̂φ

′

Wi
− φ′Wi,n|∞ = c|φ′′′Wi,n|∞δ2n.

So,

E(
˜̂
φWi

(WiX)− φWi,n(WiX))2 ≤ c|φ′′′Wi,n|2∞δ6n.
Combining this with Lemma A.5, we have

E(φ̂Wi
− ˜̂
φWi

)2 ≤E(
˜̂
φWi

− φWi,n)2 +E(φ̂Wi
− φWi,n)2 ≤ c|φ′′′Wi,n|2∞δ6n.

Let coef (
˜̂
φWi

) and coef (φ̂Wi
) be coefficients of Bn in

˜̂
φWi

and φ̂Wi
, respec-

tively. Then

E(φ̂Wi
− ˜̂
φWi

)2 = E((coef (
˜̂
φWi

)− coef (φ̂Wi
))T

Bn)2

≥ λn‖coef (
˜̂
φWi

)− coef (φ̂Wi
)‖2

2,

where λn is the minimum eigenvalue of A(Wi) =E[BnB
T
n (WiX)]. By Lemma A.2,

λn ≥ cδ2n. Thus,

|φ̂Wi
− ˜̂
φWi

|∞ ≤ ‖coef (
˜̂
φWi

)− coef (φ̂Wi
)‖2 ≤ c|φ′′′Wi,n|∞δ2n.
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Hence,

sup
Ωn

|φ̂Wi
− φWi,n| ≤ sup

Ωn

c|φ′′′Wi,n|∞δ2n.

Further, by observing that |B′
nk|∞ ≤ δ−1

n , we have

|φ̂
′

Wi
− ˜̂
φ
′

Wi
|∞ ≤ ‖coef (

˜̂
φWi

)− coef (φ̂Wi
)‖2δ

−1
n ≤ c|φ′′′Wi,n|∞δn.

Thus,

|φ̂
′

Wi
− φ′Wi,n|∞ ≤ |˜̂φ

′

Wi
− φ′Wi,n|∞ + |φ̂

′

Wi
− ˜̂
φ
′

Wi
|∞ ≤ c|φ′′′Wi,n|∞δn. �

Lemma A.7.
∫

(φ̂WPk
(Sk)− φk(Sk))

2 dPn = op(1).

Proof. Observe that

1

3

∫

(φ̂WPk
(Sk)− φk(Sk))

2 dPn ≤
∫

(φ̂WPk
(Sk)− φ̂WPk

(Sk))
2 dPn

+

∫

(φ̂WPk
(Sk)− φk,n(Sk))

2 dPn

+

∫

φk(Sk)
2I(Sk /∈ [bnk, bnk])dPn.

The remainder of the proof is similar to the use of (6.1) in proving Propo-
sition 6.1 by using Lemma A.2 and Lemma A.6. �

Lemma A.8. Let {p(·, θ, η) :θ ∈Ω ⊂ R
d, η ∈ E} be a parametric or semi-

parametric model, where θ is the parameter of interest. Suppose that moder-

ate regularity conditions are satisfied and that l
∗(·, θ, η) is the efficient score

function of θ, as defined in [5]. Then

∫

∂

∂θ
l
∗(X,θ, η)dP(θ,η) =−

∫

l
∗
l
∗T (X,θ, η)dP(θ,η).

Proof. We only prove this for the parametric case E ⊂ R
m. Let I(θ, η)

be the information matrix of (θ, η). Then by classic likelihood theory (e.g.,
Proposition 2.4.1 of [5]), l

∗(·, θ, η) = l̇1 − (I12I
−1
22 )(θ, η)l̇2. Here, l̇1 and l̇2 are

the partial derivatives of l(·, θ, η) ≡ log p(·, θ, η) w.r.t. θ and η, respectively.
Similarly, l̈ij (i, j = 1,2) are defined as second order derivatives of l(·, θ, η)
w.r.t. (θ, η). Thus, ∂

∂θ l
∗(X,θ, η) = l̈11−(I12I

−1
22 )(θ, η)̈l21− ∂

∂θ{(I12I
−1
22 )(θ, η)}l̇2.

Since
∫

l̇2(X,θ, η)dP(θ,η) = 0, we have

∫

∂

∂θ
l
∗(X,θ, η)dP(θ,η) =

∫

l̈11 dP(θ,η) − (I12I
−1
22 )(θ, η)

∫

l̈21 dP(θ,η).
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Since the information matrix satisfies Iij = − ∫ l̈ij(X,θ, η)dP(θ,η), i, j = 1,2,

the result follows by
∫

l
∗
l
∗T dP = I11− I12I

−1
22 I21 (see Proposition 2.4.1 of [5],

page 32). For the semiparametric case, the reader is referred to [5] for a
generalization of this proof. �
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