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Orthogonal arrays from Hermitian varietiesA. Aguglia ∗ L. Giuzzi ∗AbstratA simple orthogonal array OA(q2n−1, q2n−2, q, 2) is onstruted by usingthe ation of a large subgroup of PGL(n + 1, q2) on a set of non�degenerateHermitian varieties in PG(n, q2).Keywords: Orthogonal array; Hermitian variety; ollineation.1 IntrodutionLet Q = {0, 1, . . . , q − 1} be a set of q symbols and onsider a (k × N)�matrix Awith entries inQ. The matrix A is an orthogonal array with q levels and strength t,in short an OA(N, k, q, t), if any (t×N)�subarray of A ontains eah t×1�olumnwith entries in Q, exatly µ = N/qt times. The number µ is alled the index ofthe array A. An orthogonal array is simple when it does not ontain any repeatedolumn.Orthogonal arrays were �rst onsidered in the early Forties, see Rao [9, 10℄,and have been intensively studied ever sine, see [13℄. They have been widely usedin statisti, omputer siene and ryptography.There are also remarkable links between these arrays and a�ne designs, see[12, 14℄. In partiular, an OA(qµ1, k, q, 1) exists if and only if there is a resolvable
1−(qµ1, µ1, k) design. Similarly, the existene of an OA(q2µ2, k, q, 2), is equivalentto that of an a�ne 1 − (q2µ2, qµ2, k) design, see [12℄A general proedure for onstruting an orthogonal array depends on homoge-neous forms f1, . . . , fk, de�ned over a subset W ⊆ GF(q)n+1. The array

A(f1, . . . , fk;W) =









f1(x)
f2(x)...
fk(x)


 : x ∈ W





,
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with an arbitrary order of olumns, provides an orthogonal array if the size of theintersetion V (fi)∩V (fj)∩W for distint varieties V (fi) and V (fj), is independentof the hoie of i, j. Here V (f) denotes the algebrai variety assoiated to f . Thisproedure was applied for linear funtions by Bose [3℄, and for quadrati funtionsby Fuji-Hara and Miyamoto [5, 6℄.In this paper, we onstrut a simple orthogonal arrayA0 = OA(q2n−1, q2n−2, q, 2)by using the above proedure for Hermitian forms. To do this we look into theation of a large subgroup of PGL(n+1, q2) on a set of non�degenerate Hermitianvarieties in PG(n, q2). The resulting orthogonal array A0 is losely related to ana�ne 2− (q(2n−1), q2(n−1), q(2n−3) + . . . + q + 1) design S, that for q ≥ 2, provides anon�lassial model of the (2n − 1)�dimensional a�ne spae AG(2n − 1, q). Pre-isely, the points of S are labelled by the olumns of A0, some parallel lasses of
S orrespond to the rows of A0 and eah of the q parallel bloks assoiated to agiven row of A0 is labelled by one of the q di�erent symbols in that row.2 Preliminary results on Hermitian varietiesLet Σ = PG(n, q2) be the desarguesian projetive spae of dimension n over GF(q2)and denote by X = (x1, x2, . . . , xn+1) homogeneous oordinates for its points. Thehyperplane Σ∞ : Xn+1 = 0 will be taken as the hyperplane at in�nity.We use σ to write the involutory automorphism of GF(q2) whih leaves all theelements of the sub�eld GF(q) invariant. A Hermitian variety H(n, q2) is the setof all points X of Σ whih are self onjugate under a Hermitian polarity h. If H isthe Hermitian (n+1)× (n+1)�matrix assoiated to h, then the Hermitian variety
H(n, q2) has equation

XH(Xσ)T = 0.When A is non�singular, the orresponding Hermitian variety is non�degenerate,whereas if A has rank n, the related variety is a Hermitian one. The radial of aHermitian one, that is the set {Y ∈ Σ| Y H(Xσ)T = 0 ∀X ∈ Σ}, onsists of onepoint, the vertex of the one.All non�degenerate Hermitian varieties are projetively equivalent; a possibleanonial equation is
Xq+1

1 + . . . + Xq+1
n−1 + Xq

nXn+1 + XnX
q
n+1 = 0, (1)where the polynomial on the left side of (1) is a Hermitian form. All Hermitianones of Σ are also projetively equivalent.A non�degenerate Hermitian varietyH(n, q2) of Σ has several remarkable prop-erties, see [11, 7℄; here we just reall the following.2



(1) The number of points on H(n, q2) is
µn(q) = q2n−1 + q(qn−ǫ + . . . + q2n−4) + qn+ǫ−2 + . . . + q2 + 1,where ǫ = 0 or 1, aording as n is even or odd.(2) A maximal subspae of Σ inluded in H(n, q2) has dimension

⌊
n − 1

2

⌋
.These maximal subspaes are alled generators of H(n, q2).(3) Any line of Σ meets H(n, q2) in 1, q + 1 or q2 + 1 points. The lines meeting Hin one point are alled tangent lines.(4) The polar hyperplane πP with respet to h of a point P on H(n, q2) is thelous of the lines through P either ontained in H(n, q2) or tangent to it at

P . This hyperplane πP is also alled the tangent hyperplane at P of H(n, q2).Furthermore,
|H(n, q2) ∩ πP | = 1 + q2µn−2(q).(5) Every hyperplane π of Σ whih is not a tangent hyperplane of H(n, q2) meets

H(n, q2) in a non�degenerate Hermitian variety H(n − 1, q2) of π.In Setion 4 we shall make extensive use of non�degenerate Hermitian vari-eties, together with Hermitian ones of vertex the point P∞(0, 0, . . . , 1, 0). Let
AG(n, q2) = Σ \Σ∞ be the a�ne spae embedded in Σ. We may provide an a�nerepresentation for the Hermitian ones with vertex at P∞ as follows.Let ε be a primitive element of GF(q2). Take a point (a1, . . . , an−1, 0) on thea�ne hyperplane Π : Xn = 0 of AG(n, q2). We an always write ai = a1

i + εa2
ifor any i = 1, . . . , n − 1. There is thus a bijetive orrespondene ϑ between thepoints of Π and those of AG(2n − 2, q),

ϑ(a1, . . . , an−1, 0) = (a1
1, a

2
1, . . . , a

1
n−1, a

2
n−1).Pik now a hyperplane π′ in AG(2n−2, q) and onsider its pre�image π = ϑ−1(π′)in Π. The set of all the lines P∞X with X ∈ π is a Hermitian one of vertex P∞.The set π is a basis of this one.Let T0 = {t ∈ GF(q2) : tr(t) = 0}, where tr : x ∈ GF(q2) 7→ xq + x ∈ GF(q) isthe trae funtion. Then, suh an Hermitian one Hω,v is represented by

ωq
1X1 − ω1X1 + ωq

2X
q
2 − ω2X2 + . . . + ωq

n−1X
q
n−1 − ωn−1Xn−1 = v, (2)where ωi ∈ GF(q2), v ∈ T0 and there exists at least one i ∈ {1, . . . , n − 1} suhthat ωi 6= 0. 3



3 ConstrutionIn this setion we provide a family of simple orthogonal arrays OA(q2n−1, q2n−2, q, 2),where n is a positive integer and q is any prime power. Several onstrutions basedon �nite �elds of orthogonal arrays are known, see for instane [3, 5, 6℄. The on-strution of [3℄ is based upon linear transformations over �nite �elds. Non�linearfuntions are used in [5, 6℄. In [6℄, the authors dealt with a subgroup of PGL(4, q),in order to obtain suitable quadrati funtions in 4 variables; then, the domain
W of these funtions was appropriately restrited, thus produing an orthogo-nal array OA(q3, q2, q, 2). The onstrution used in the aforementioned papersstarts from k distint multivariate funtions f1, . . . , fk, all with a ommon domain
W ⊆ GF(q)n+1, whih provide an array

A(f1, . . . , fk;W) =








f1(x)
f2(x)...
fk(x)


 : x ∈ W





,with an arbitrary order of olumns.In general, it is possible to generate funtions fi starting from homogeneouspolynomials in n + 1 variables and onsidering the ation of a subgroup of theprojetive group PGL(n + 1, q). Indeed, any given homogeneous polynomial f isassoiated to a variety V (f) in Σ of equation
f(x1, . . . , xn+1) = 0.The image V (f)g of V (f) under the ation of an element g ∈ PGL(n + 1, q) is avariety V (f g) of Σ, assoiated to the polynomial f g.A neessary ondition for A(f1, . . . , fk;W) to be an orthogonal array, when allthe fi's are homogeneous, is that |V (fi)∩ V (fk)∩W| is independent of the hoieof i, j, whenever i 6= j.Here, we onsider homogeneous polynomials whih are Hermitian forms of

GF(q2)[X1, . . . , Xn, Xn+1]. Denote by G the subgroup of PGL(n+1, q2) onsistingof all ollineations represented by
α(X ′

1, . . . , X
′

n+1) = (X1, . . . , Xn+1)M

4



where α ∈ GF (q2) \ {0}, and
M =




1 0 . . . 0 j1 0
0 1 . . . 0 j2 0... ...
0 0 1 jn−1 0
0 0 . . . 0 1 0
i1 i2 . . . in−1 in 1




−1

, (3)
with is, jm ∈ GF(q2). The group G has order q2(2n−1). It stabilises the hyperplane
Σ∞, �xes the point P∞(0, . . . , 0, 1, 0) and ats transitively on AG(n, q2).Let H be the non�degenerate Hermitian variety assoiated to the Hermitianform

F = Xq+1
1 + . . . + Xq+1

n−1 + Xq
nXn+1 + XnXq

n+1.The hyperplane Σ∞ is the tangent hyperplane at P∞ of H. The Hermitian formassoiated to the variety Hg, as g varies in G, is
F g = Xq+1

1 + . . . + Xq+1
n−1 + Xq

nXn+1 + XnX
q
n+1 + Xq+1

n+1(i
q+1
1 + . . . + iq+1

n−1 + iqn + in)

+ tr
(
Xq

n+1(X1(i
q
1 + j1) + . . . + Xn−1(i

q
n−1 + jn−1))

) (4)The subgroup Ψ of G preserving H onsists of all ollineations whose matriessatisfy the ondition




j1 = −iq1...
jn−1 = −iqn−1

iq+1
1 + . . . + iq+1

n−1 + iqn + in = 0

.Thus, Ψ ontains q(2n−1) ollineations and ats on the a�ne points of H as asharply transitive permutation group. Let C = {a1 = 0, . . . , aq} be a system ofrepresentatives for the osets of T0, viewed as an additive subgroup of GF(q2).Furthermore, let R denote the subset of G whose ollineations are indued by
M ′ =




1 0 . . . 0 0 0
0 1 . . . 0 0 0... ...
0 0 1 0 0
0 0 . . . 0 1 0
i1 i2 . . . in−1 in 1




−1

, (5)
5



where i1, . . . , in−1 ∈ GF (q2), and for eah tuple (i1, . . . , in−1), the element in is theunique solution in C of equation
iq+1
1 + . . . + iq+1

n−1 + iqn + in = 0. (6)The set R has ardinality q2n−2 and an be used to onstrut a set of Hermitianform {F g|g ∈ R} whose related varieties are pairwise distint.Theorem 3.1. For any given prime power q, the matrix A = A(F g, g ∈ R;W),where
W = {(x1, . . . , xn+1) ∈ GF(q2)n+1 : xn+1 = 1},is an OA(q2n, q2n−2, q, 2) of index µ = q2n−2.Proof. It is su�ient to show that the number of solutions in W to the system

{
F (X1, X2, . . . , Xn, Xn+1) = α
F g(X1, X2, . . . , Xn, Xn+1) = β

(7)is q2n−2 for any α, β ∈ GF(q), g ∈ R \ {id}. By de�nition of W, this system isequivalent to
{

Xq+1
1 + . . . + Xq+1

n−1 + Xq
n + Xn = α

Xq+1
1 + . . . + Xq+1

n−1 + Xq
n + Xn + tr

(
X1i

q
1 + . . . + Xn−1i

q
n−1

)
= β

(8)Subtrating the �rst equation from the seond we get
tr(X1i

q
1 + . . . + Xn−1i

q
n−1) = γ, (9)where γ = β − α. Sine g in not the identity then, (iq1, . . . , i

q
n−1) 6= (0, . . . , 0), andhene Equation (9) is equivalent to the union of q linear equations over GF(q2)in X1, . . . , Xn−1. Thus, there are q2n−3 tuples (X1, . . . , Xn−1) satisfying (9). Foreah suh a tuple, (8) has q solutions in Xn that provide a oset of T0 in GF(q2).Therefore, the system (7) has q2n−2 solutions in W and the result follows.The array A of Theorem 3.1 is not simple sine

F g(x1, . . . , xn, 1) = F g(x1, . . . , xn + r, 1) (10)for any g ∈ R, and r ∈ T0.We now investigate how to extrat a subarray A0 of A whih is simple. Weshall need a preliminary lemma.Lemma 3.2. Let x ∈ GF(q2) and suppose tr(αx) = 0 for any α ∈ GF(q2). Then,
x = 0. 6



Proof. Consider GF(q2) as a 2�dimensional vetor spae over GF(q). By [8, The-orem 2.24℄, for any linear mapping Ξ : GF(q2) → GF(q), there exists exatlyone α ∈ GF(q2) suh that Ξ(x) = tr(αx). In partiular, if tr(αx) = 0 for any
α ∈ GF(q2), then x, is in the kernel of all linear mappings Ξ. It follows that
x = 0.Theorem 3.3. For any prime power q, the matrix A0 = A(F g, g ∈ R,W0), where

W0 = {(x1, . . . , xn+1) ∈ W : xn ∈ C}is a simple OA(q2n−1, q2n−2, q, 2) of index µ = q2n−3.Proof. We �rst show that A0 does not ontain any repeated olumn. Let A be thearray introdued in Theorem 3.1, and index its olumns by the orresponding ele-ments in W. Observe that the olumn (x1, . . . , xn, 1) is the same as (y1, . . . , yn, 1)in A if, and only if,
F g(x1, . . . , xn, 1) = F g(y1, . . . , yn, 1),for any g ∈ R. We thus obtain a system of q2n−2 equations in the 2n indeterminates

x1, . . . xn, y1, . . . , yn. Eah equation is of the form
tr(xn − yn) =

n−1∑

t=1

(
yq+1

t − xq+1
t + tr(at(yt − xt))

)
, (11)where the elements at = iqt vary in GF(q2) in all possible ways. The left handside of the equations in (11) does not depend on the elements at; in partiular, for

a1 = a2 = . . . = at = 0 we have,
tr(xn − yn) =

n−1∑

t=1

(yq+1
t − xq+1

t );hene,
n−1∑

t=1

(yq+1
t − xq+1

t ) =
n−1∑

t=1

(
yq+1

t − xq+1
t + tr(at(yt − xt))

)Thus, ∑n−1
t=1 tr(at(yt−xt)) = 0. By the arbitrariness of the oe�ients at ∈ GF(q2),we obtain that for any t = 1, . . . n − 1, and any α ∈ GF(q2),

tr(α(yt − xt)) = 0.Lemma 3.2 now yields xt = yt for any t = 1, . . . , n − 1 and we also get from (11)
tr(xn − yn) = 0.7



Thus, xn and yn are in the same oset of T0. It follows that two olumns of A arethe same if and only if the di�erene of their indexes in W is a vetor of the form
(0, 0, 0, . . . , 0, r, 0) with r ∈ T0. By onstrution, there are no two distint vetorsin W0 whose di�erene is of the required form; thus, A0 does not ontain repeatedolumns.The preeding argument shows that the olumns of A are partitioned into q2n−1lasses, eah onsisting of q repeated olumns. Sine A0 is obtained from A bydeletion of q−1 olumns in eah lass, it follows that A0 is an OA(q2n−1, q2n−2, q, 2)of index q2n−3.4 A non�lassial model of AG(2n − 1, q)We keep the notation introdued in the previous setions. We are going to on-strut an a�ne 2 −

(
q2n−1, q2n−2, q(2n−3) + . . . + q + 1

) design S that, as we willsee, is related to the array A0 de�ned in Theorem 3.3. Our onstrution is ageneralisation of [1℄.Let again onsider the subgroup G of PGL(n + 1, q2) whose ollineations areindued by matries (3). The group G ats on the set of all Hermitian ones ofthe form (2) as a permutation group. In this ation, G has q(2n−3) + . . . +1 orbits,eah of size q. In partiular the q(2n−3) + . . . + 1 Hermitian ones Hω,0 of a�neequation
ωq

1X1 − ω1X1 + ωq
2X

q
2 − ω2X2 + . . . + ωq

n−1X
q
n−1 − ωn−1Xn−1 = 0, (12)with (ω1, . . . , ωn−1) ∈ GF (q2)n−1 \ {(0, . . . , 0)}, onstitute a system of representa-tives for these orbits.The stabiliser in G of the origin O(0, . . . , 0, 1) �xes the line OP∞ point�wise,while is transitive on the points of eah other line passing through P∞. Further-more, the entre of G omprises all ollineations indued by




1 0 . . . 0 0 0
0 1 . . . 0 0 0... ...
0 0 1 0 0
0 0 . . . 0 1 0
0 0 . . . 0 in 1




−1

, (13)
with in ∈ GF (q2). The subset of (13) with in ∈ T0 indues a normal subgroup
N of G ating semiregularly on the a�ne points of AG(n, q2) and preserving eahline parallel to the Xn-axis. Furthermore, N is ontained in Ψ and also preservesevery a�ne Hermitian one Hω,v. 8



We may now de�ne an inidene struture S = (P,B, I) as follows. The set
P onsists of all the point�orbits of AG(n, q2) under the ation of N . Write
N(x1, . . . , xn) for the orbit of the point (x1, . . . , xn) in AG(n, q2)under the ationof N .The elements of B are the images of the Hermitian variety H of a�ne equation

Xq+1
1 + . . . + Xq+1

n−1 + Xq
n + Xn = 0, (14)together with the images of the Hermitian ones (12) under the ation of G. If ablok B ∈ B arises from (14), then it will be alled Hermitian�type, whereas if Barises from (12), it will be one�type. Inidene is given by inlusion.Theorem 4.1. The aforementioned inidene struture S is an a�ne

2 − (q(2n−1), q2(n−1), q(2n−3) + . . . + q + 1)design, isomorphi, for q > 2, to the point�hyperplane design of the a�ne spae
AG(2n − 1, q).Proof. By onstrution, S has q2n−1 points and q(2n−1) +q2(n−1) . . .+q bloks, eahblok onsisting of q2(n−1) points.We �rst prove that the number of bloks through any two given points is
q(2n−3) + . . . + q + 1. Sine S has a point�transitive automorphism group, we mayassume, without loss of generality, one of these points to be O = N(0, . . . , 0). Let
A = N(x1, x2, . . . , xn) be the other point. We distinguish two ases, aording asthe points lie on the same line through P∞ or not.We begin by onsidering the ase (0, 0, . . . , 0) 6= (x1, x2, . . . , xn−1). The line ℓrepresented by X1 = x1, . . . , Xn−1 = xn−1, is a seant to the Hermitian variety H.Sine the stabiliser of the origin is transitive on the points of ℓ, we may assumethat A ⊆ H; in partiular, (x1, x2, . . . , xn) ∈ H and

xq+1
1 + . . . + xq+1

n−1 + xq
n + xn = 0. (15)Observe that this ondition is satis�ed by every possible representative of A. An-other Hermitian type blok arising from the variety Hg assoiated to the form (4),ontains the points O and A if and only if

iq+1
1 + . . . + iq+1

n−1 + iqn + in = 0 (16)and
xq+1

1 + . . . + xq+1
n−1 + xq

n + xn + xq
1(i1 + jq

1) + . . . + xq
n−1(in−1 + jq

n−1)+

+x1(i
q
1 + j1) + . . . + xn−1(i

q
n−1 + jn−1) + iq+1

1 + . . . + iq+1
n−1 + iqn + in = 0.

(17)9



Given (15) and (16), Equation (17) beomes
tr(x1(i

q
1 + j1) + . . . + xn−1(i

q
n−1 + jn−1)) = 0 (18)Condition (16) shows that there are q2n−1 possible hoies for the tuples i =

(i1, . . . , in); for any suh a tuple, beause of (18), we get q2n−3 values for j =
(j1, . . . , jn−1). Therefore, the total number of Hermitian�type bloks through thepoints O and A is exatly

q4(n−1)

q2n−1
= q2n−3.On the other hand, one�type bloks ontaining O and A are just ones with basisa hyperplane of AG(2n− 2, q), through the line joining the a�ne points (0, . . . , 0)and θ(x1, . . . , xn−1, 0); hene, there are preisely q2n−4 + . . . + q + 1 of them.We now deal with the ase (x1, x2, . . . , xn−1) = (0, 0, . . . , 0). A Hermitian�type blok through (0, . . . , 0) meets the Xn-axis at points of the form (0, . . . , 0, r)with r ∈ T0. Sine xn /∈ T0, no Hermitian�type blok may ontain both O and

A. On the other hand, there are q2n−3 + . . . + q + 1 one-type bloks throughthe two given points that is, all ones with basis a hyperplane in AG(2n − 2, q)ontaining the origin of the referene system in AG(2n− 2, q). It follows that S isa 2 − (q(2n−1), q2(n−1), q(2n−3) + . . . + q + 1) design.Now we reall that two bloks of a design may be de�ned parallel if they areeither oinident or disjoint. In order to show that S is indeed an a�ne design weneed to hek the following two properties, see [4, Setion 2.2, page 72℄:(a) any two distint bloks either are disjoint or have q2n−3 points in ommon;(b) given a point N(x1, . . . , xn) ∈ P and a blok B ∈ B suh that N(x1, . . . , xn) /∈
B, there exists a unique blok B′ ∈ B satisfying both N(x1, . . . , xn) ∈ B′ and
B ∩ B′ = ∅.We start by showing that (a) holds for any two distint Hermitian�type bloks.As before, we may suppose one of them to be H and denote by Hg the other one,assoiated to the form (4). We need to solve the system of equations given by (15)and (17). Subtrating (15) from (17),

tr(x1(i
q
1 + j1) + . . . + xn−1(i

q
n−1 + jn−1)) = γ, (19)where γ = −(iq+1

1 + . . . + iq+1
n−1 + iqn + in).Suppose that (iq1 + j1, . . . , i

q
n−1 + jn−1) 6= (0, . . . , 0). Arguing as in the proofof Theorem 3.1, we see that there are q2n−3 tuples (x1, . . . , xn−1) satisfying (19)and, for eah suh a tuple, (15) has q solutions in x1. Thus, the system givenby (15) and (17) has q2n−2 solutions; taking into aount the de�nition of a point10



of S, it follows that the number of the ommon points of the two bloks underonsideration is indeed q2n−3.In the ase (iq1 + j1, . . . , i
q
n−1 + jn−1) = (0, . . . , 0), either γ 6= 0 and the twobloks are disjoint, or γ = 0 and the two bloks are the same.We now move to onsider the ase wherein both bloks are one�type. Thebases of these bloks are either disjoint or share q2(n−2) a�ne points; in the formerase, the bloks are disjoint; in the latter, they have q2(n−2) lines in ommon. Sineeah line of AG(n, q2) onsists of q points of S, the intersetion of the two blokshas size q2n−3.We �nally study the intersetion of two bloks of di�erent type. We mayassume again the Hermitian�type blok to be H. Let then C be one�type. Eahgenerator of C meets the Hermitian variety H in q points whih form an orbit of

N . Therefore, the number of ommon points between the two bloks is, as before,
q2n−3; this ompletes the proof of (a).We are going to show that property (b) is also satis�ed. By onstrution, anyone�type blok meets every Hermitian�type blok. Assume �rst B to be theHermitian variety H and P = N(x1, x2, . . . , xn) 6⊆ H. Sine we are looking for ablok B′ through P , disjoint from H, also B′ must be Hermitian�type. Let β bethe ollineation indued by




1 0 . . . 0 0 0
0 1 . . . 0 0 0... ...
0 0 1 0 0
0 0 . . . 0 1 0
0 0 . . . 0 in 1




−1

,

with iqn + in + xq+1
1 + . . . + xq+1

n−1 + xq
n + xn = 0. Then, the image B′ of H under

β is disjoint from H and ontains the set P . To prove the uniqueness of the bloksatisfying ondition (b), assume that there is another blok B̃, whih is the imageof H under the ollineation ω indued by



1 0 . . . 0 b1 0
0 1 . . . 0 b2 0... ...
0 0 1 bn−1 0
0 0 . . . 0 1 0
a1 a2 . . . an−1 an 1




−1

,

and suh that B̃ ∩H = ∅ and P ⊆ B̃. As B̃ and H are disjoint, the system given11



by (15) and
xq+1

1 + . . . + xq+1
n−1 + xq

n + xn + xq
1(a1 + bq

1) + . . . + xq
n−1(an−1 + bq

n−1)+

+x1(a
q
1 + b1) + . . . + xn−1(a

q
n−1 + bn−1) + aq+1

1 + . . . + aq+1
n−1 + aq

n + an = 0.(20)must have no solution. Arguing as in the proof of (a), we see that this impliesthat (aq
1 + b1, . . . , a

q
n−1 + bn−1) = (0, . . . , 0). On the other hand, P ∈ B̃ ∩B′ yields

iqn + in + aq+1
1 + . . . + aq+1

n−1 + aq
n + an = 0, that is ω−1β is in the stabiliser Ψ of Hin G; hene, B′ = B̃.Now, assume B to be a one-type blok. Denote by π its basis and let P ′ =

(x1
1, x

2
1, . . . , x

1
n−1, x

2
n−1) be the image ϑ(x1, . . . , xn−1, 0) on the a�ne spae AG(2n−

2, q) identi�ed, via ϑ, with the a�ne hyperplane Xn = 0. In AG(2n − 2, q) thereis a unique hyperplane π′ passing trough the point P ′ and disjoint from π. Thishyperplane π′ uniquely determines the blok B′ with property (b).In order to onlude the proof of the urrent theorem we shall require a deepharaterisation of the high�dimensional a�ne spae, namely that an a�ne design
S suh that q > 2, is an a�ne spae if and only if every line onsists of exatly qpoints, see [4, Theorem 12, p. 74℄.Reall that the line of a design D through two given points L, M is de�ned asthe set of all points of D inident to every blok ontaining both L and M . Thus,hoose two distint points in S. As before, we may assume that one of them is
O = N(0, . . . , 0) and let A = N(x1, . . . , xn) be the other one.Suppose �rst that A lies on the Xn-axis. In this ase, as we have seen before,there are exatly q2n−3 + . . .+ q +1 bloks inident to both O and A, eah of themone�type. Their intersetion onsists of q points of S on the Xn-axis.We now examine the ase where A is not on the Xn-axis. As before, we mayassume that A ⊆ H, hene (15) holds. Exatly q2n−3+. . .+q+1 bloks are inidentto both O and A: q2n−2 are Hermitian�type, the remaining q2n−4+ . . .+q+1 beingone�type. Hermitian�type bloks passing through O and A are represented by

Xq+1
1 + . . . + Xq+1

n−1 + Xq
n + Xn + Xq

1(i1 + jq
1) + . . .+

Xq
n−1(in−1 + jq

n−1) + X1(i
q
1 + j1) + . . . + Xn−1(i

q
n−1 + jn−1) = 0,

(21)with (18) satis�ed. Set xs = x1
s + εx2

s for any s = 1, . . . , n, with x1
s, x

2
s ∈ GF(q).The one�type bloks inident to both O and A are exatly those with basis ahyperplane of AG(2n − 2, q) ontaining the line through the points (0, . . . , 0) and

(x1
1, x

2
1, . . . , x

1
n−1, x

2
n−1). Hene, these bloks share q generators, say rt, with a�neequations of the form

rt





X1 = tx1...
Xn−1 = txn−112



as t ranges over GF(q). Eah generator rt meets the intersetion of the Hermitian�type bloks through O and A at those points (tx1, tx2, . . . , txn−1, xn) satisfying eahof the (21), that is
t2xq+1

1 + . . . + t2xq+1
n−1 + xq

n + xn + txq
1(i1 + jq

1) + . . . + txq
n−1(in−1 + jq

n−1)+
+tx1(i

q
1 + j1) + . . . + txn−1(i

q
n−1 + jn−1) = 0. (22)Given (15), (18), Equations (22) beome

xq
n + xn − t2(xq

n + xn) = 0. (23)Sine t2(xq
n + xn) ∈ GF(q), (23) has q solutions, all of the form {xn + r|r ∈

T0}. The point-set {(tx1, tx2, . . . , txn−1, xn + r)|r ∈ T0} oinides with the point
N(tx1, tx2, . . . , txn−1, xn) ∈ P and as t varies in GF (q), we get that the intersetionof all bloks ontaining O and A onsists, also in this ase, of q points of S.Remark 4.2. The array A0 de�ned in Theorem 3.3 is losely related to the a�nedesign S = (P,B, I). Preisely, W0 is a set of representatives for P. The rows of
A0 are generated by the forms F g for g varying in R, whose assoiated Hermitianvarieties provide a set of representatives for the q2n−2 parallel lasses of Hermitian�type bloks in B.Referenes[1℄ Aguglia, A. Designs arising from Buekenhout-Metz unitals J. Combin. Des.11 (2003), 79�88.[2℄ Beth, T. Jungnikel, D., Lenz, H. � Design Theory �, Vol. I, II, CambridgeUniversity Press, Cambridge, (1999).[3℄ Bose, R. C., Mathematial theory of the symmetrial fatorial design, Sankhya8, (1947), 107�166.[4℄ Dembowski, P., Finite Geometries, Springer�Verlag, Berlin, Heidelberg, NewYork, 1968.[5℄ Fuji-Hara, R. and Miyamoto, N., Balaned arrays from quadrati funtions,J. Statist. Plann. Inferene 84 (2000), 285�293.[6℄ Fuji-Hara and R., Miyamoto, N., A onstrution of ombinatorial arrays fromnon-linear funtions Util. Math. 52 (1997), 183�192.[7℄ Hirshfeld, J.P.W. �Projetive Geometries Over Finite Fields,� Oxford Uni-versity Press, Oxford, 1998. 13
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