
ar
X

iv
:0

70
5.

45
88

v1
  [

st
at

.M
E

]  
31

 M
ay

 2
00

7

Variable Selection Incorporating Prior Constraint Inform ation into Lasso
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Abstract

We propose the variable selection procedure incorporatingprior constraint information into

lasso. The proposed procedure combines the sample and priorinformation, and selects signifi-

cant variables for responses in a narrower region where the true parameters lie. It increases the

efficiency to choose the true model correctly. The proposed procedure can be executed by many

constrained quadratic programming methods and the initialestimator can be found by least square

or Monte Carlo method. The proposed procedure also enjoys good theoretical properties. More-

over, the proposed procedure is not only used for linear models but also can be used for generalized

linear models(GLM), Cox models, quantile regression models and many others with the help of

Wang and Leng (2007)’s LSA, which changes these models as theapproximation of linear models.

The idea of combining sample and prior constraint information can be also used for other modi-

fied lasso procedures. Some examples are used for illustration of the idea of incorporating prior

constraint information in variable selection procedures.

Keywords: lasso; linear models; prior constraint information; sample information; variable

selection;

1. Introduction

In practice, a number of variables are included into an initial regression analysis, but many of

them may not be significant to the response variables and should be excluded from the final model

in order to increase the accuracy of prediction and interpretation. Variable selection is fundamental

in statistical modeling. The least absolute shrinkage and selection operator (LASSO) (Tibshirani
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1996) is a useful and well-studied approach to the problem ofvariable selection (Knight and

Fu 2000; Fan and Li 2001; Leng et al. 2006; Wang et al. 2007a; Yuan and Lin 2007). It shrinks

some coefficients and sets others to 0, and hence tries to retain the goodfeatures of both subset

selection and ridge regression. Moreover, lasso’s major advantage is its simultaneous execution

of both parameter estimation and variable selection. In particular, allowing an adaptive amount of

shrinkage for each regression coefficient results in an estimator which is as efficient as oracle (Zou

2006; Wang et al. 2007b; Wang and Leng 2007). About the computational techniques, please see

Osborne et al. (2000), Efron et al. (2004), Rosset (2004), Zhao and Yu (2004) and Park and Hastie

(2006).

In spite of that, in variable selection or the estimation of regression coefficients, except for sam-

ple information, some prior constraint information can be known. Constraints can be expressed

asg(β) ≤ 0 including equalities and inequalities whereg(·) are k-dimensional linear or nonlinear

functions (see Rao and Toutenburg 1995; Silvapulle and Sen 2005). In fact, the common simple

orderβ1 ≤ · · · ≤ βp; tree orderβi ≤ βp for i = 1, · · · , p − 1; umbrella orderβ1 ≤ · · · ≤ βl ≥ · · · ≥ βp

or more generallyAβ ≤ a are only the special cases ofg(β) ≤ 0. All these constraints have very

important applications in biomedical studies, life science, econometrics and social research etc.

For example, in many biomedical studies, treatment groups in a clinical trial many be formulated

according to increasing levels of dosage of a drug and the severity of disease in patients. In econo-

metrics, the homogeneity of degree zero of a demand equationimplies that the price and income

elasticities add up to zero, whereas the negativity of the substitution matrix in consumer demand

theory requires that all latent roots of the substitution matrix should be nonpositive. Stahlecker

(1987) shows a variety of examples from the field of economics(such as input-output models),

where the constraints for the parameters are so-called workability conditions of the formβi ≥ 0

or βi ∈ (ai, bi) or E(yt |X) ≤ at. Literature deals with this problem under the generic term con-

strained least squares (see Judge and Takayama 1966; Dufour1989; Geweke 1986; Moors and

van Houwelingen 1987; Rao and Toutenburg P75 1995). Dorfmanand McIntosh (2001) show

that imposing the curvature conditions on a system of demandequations improves the MSEs on

estimated elasticities from 2 to 50% depending on the signal-to-noise ratio and the sample size.

For researchers, it will increase the efficiency of variable selection and parameter estimation to

effectively combine the sample and prior information because prior information tells us a narrower

region to select these variables and estimate these parameters.
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This paper proposes a procedure to combine prior and sample information into lasso and hopes

to obtain more accurate variable selection and parameter estimation. The idea of combining prior

constraint and sample information can be shown by the black region in Figure 1. It shows that

when we know some prior information of parameters, then variable selection will be executed in a

narrower black region AEFD not in a wide region ABCD. It will increase the efficiency of choosing

the true model correctly. Moreover, our procedure incorporating prior constraint information is not

only used for linear models but also can be used for generalized linear models, Cox models and

quantile regression models with the help of Wang and Leng (2007)’s LSA, which changes these

models as the approximation of linear models. In fact, priorconstraint information can be also used

for other modified lasso procedures, e.g. Tibrashini et al. (2005)’s fused lasso and the modified

lasso procedure for an adaptive amount of shrinkage for eachregression coefficient (Zou 2006;

Wang et al. 2007b; Wang and Leng 2007) etc.

The paper is organized as follows: Section 2 introduces variable selection procedure combin-

ing sample and prior constraint information in lasso and other modified lasso procedures. Main

theoretical properties are discussed in Section 3. Section4 discusses degrees of freedom of the

lasso procedure incorporating prior constraint information. The proposed procedure is illustrated

by some examples in Section 5. Section 6 gives a short discussion.

2. Variable Selection Combining Sample and Prior Constraint Information into Lasso

2.1 Variable Selection Combining Sample and Prior Constraint Information into Lasso in

Linear Models

We first consider variable selection incorporating prior constraint information into lasso in

linear models:

min
β

n∑

i=1

(
yi − xT

i β
)2

subject to
∑

j

|β j| ≤ s and g(β) ≤ 0

or

β̂s = Arg

min
β

(
Y − XTβ

)T (
Y − XTβ

)
subject to

∑

j

|β j| ≤ s and g(β) ≤ 0

 . (1)
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whereY = (y1, · · · , yn)T , X = (xT
1 , · · · , xT

n )T andg(·) are linear or nonlinear functions. That is, the

modified lasso objective function is as follows

min
β

n∑

i=1

(yi − xT
i β)

2 + λ(1)
∑

j

|β j| + (λ(2))T g(β)

whereλ(1) andλ(2) = (λ(2)
1 , · · · , λ

(2)
k )T are tuning parameters. The tuning parameters can be obtained

by estimating the prediction error for the procedure incorporating prior constraint information

into lasso by cross-validation (CV) as described in chapter 17 of Efron and Tibshirani (1993) or

generalized cross-validation (GCV). The prediction error of prediction term ˆη(X) of CV is given

by

PE = E{Y − η̂(X)}2.

Then the value ˆs yielding the lowest estimated PE is selected.

In the following, we introduce how to choose the tuning parameters from CV in detail. Simi-

larly, GCV can be used to choose the tuning parameters.l-fold CV is one of the methods to choose

the tuning parameterss. l-fold CV is to split the n patterns into a training set of sizen− l and a test

of sizel. l-fold CV averages the squared error on the left-out pattern over all the possible ways of

obtaining such a partition. The advantage is that all the data can be used for training - none has to

be held back in a separate test set. Takel = 1 for an example. Let

β̂(− j)
s = Arg

min
β

n∑

i=1,i, j

(yi − xT
i β)

2 subject to
∑

h

|βh| ≤ s and g(β) ≤ 0

 (2)

wherêβ(− j)
s is the estimation on the training datax1, · · ·, x j−1, x j+1, · · ·, xn for j = 1, · · · , n from the

procedure incorporating prior constraint information into lasso. LetPEs =
n∑

j=1

(
y j − xT

j β̂
(− j)
s

)2
be

the estimated prediction error of 1-fold CV given the tuningparameters. Then the chosen tuning

parameterss is as follows

ŝ = Arg
{
min

s
PEs

}
= Arg

min
s

n∑

j=1

(
y j − xT

j β̂
(− j)
s

)2



where ˆs minimizes the estimated prediction error. Then the simultaneous parameter estimation and

variable selection incorporating prior constraint information is as follows

β̂ŝ = Arg

min
β

n∑

i=1

(yi − xT
i β)

2 subject to
∑

h

|βh| ≤ ŝ and g(β) ≤ 0

 . (3)
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Remark 1. (Algorithm)We know that the most important thing for obtainingβ̂ŝ is to compute

β̂
(− j)
s . If there are no constraints on the parameters, many well developed procedures can be used

to find the solution for

min
β

n∑

i=1,i, j

(yi − xT
i β)

2 subject to
∑

h

|βh| ≤ s.

For example, quadratic programming (Tibshirani 1996), theshooting algorithm (Fu 1998), local

quadratic approximation (Fan and Li 2001) and lease angle regression (LARS) (Efron et al. 2004).

When there are prior constraint information, the above procedures can not be directly used for (2).

But if some modifications are made for these algorithms, (2) may be solved by them. It will be an

interesting topic for us in the future. In fact, many quadratic programming methods can be used to

find the solution for (2) (see Dantig and Eaves 1974). The solution of the quadratic programming

does not yield a sparse solution. If a tolerance is set, the small parameter estimate can be regarded

as 0.

Remark 2. (Initial Estimator) In fact, the OLS estimator may be regarded as the initial estima-

tor. But in order to obtain more accurate estimator, Monte Carlo method can be used for the initial

estimator of (1) or (2). The optimal problem (1) can be written as

(Y − Xβ)T (Y − Xβ) = βT XT Xβ − 2βT XT Y + YT Y

= (β − µ)TΣ−1(β − µ) + YT
(
I − X(XT X)−1XT

)
Y

with knownµp×1 =
(
XT X

)−1
XT Y andΣp×p =

(
XT X

)−1
. That is,

β̂s = Arg

min
β

(β − µ)TΣ−1(β − µ) subject to
p∑

h=1

|βh| ≤ s andg(β) ≤ 0



or

β̂s = Arg max
β
−1

2

[
(β − µ)TΣ−1(β − µ) + log(|Σ|)

]
subject to



p∑
j=1
|β j| ≤ s

g(β) ≤ 0
(4)

where

l(β) = −
1
2

(β − µ)TΣ−1(β − µ) −
1
2

log(|Σ|) (5)

is just the log-density ofN(µ,Σ) regardingβ as a random variable. Randomly drawm = 100000

samplesZ1, · · · ,Zm from N(µ,Σ) whereZ j = (Z1 j, · · ·, Zp j)T for j = 1, · · · ,m. SetZold as the initial
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estimator which satisfies

Zold = Arg

 max
j=1,···,m

l(Z j) subject to
p∑

h=1

|Zh j| ≤ s andg(Z j) ≤ 0

 .

2.2 Variable Selection Combining Sample and Prior Constraint Information into Other

Modified Lassos

The limitation of lasso is that all the regression coefficients share the same amount of shrinkage

min
β

n∑
i=1

(
yi − xT

i β
)2
+ λ

p∑
j=1
|β j|. Then Wang et al. (2007b) extend the lasso to the modified lasso∗

criterion which allows for different tuning parameters for different coefficients

min
β

n∑

i=1

(
yi − xT

i β
)2
+

p∑

j=1

λ j|β j|.

In order to combining the sample and prior constraint information, variable selection procedure

can be executed as follows

min
β

n∑

i=1

(
yi − xT

i β
)2
+

p∑

j=1

λ j|β j| + φT g(β)

which not only uses the prior information but also overcomesthe limitation of the traditional lasso

procedure.

Similarly, the prior constraint information can be incorporated into Tibshirani et al. (2005)’s

fused lasso which encourages sparsity in their differences, i.e. flatness of the coefficient profilesβ j

as a function ofj.

2.3 Variable Selection Combining Sample and Prior Constraint Information into Lasso in

Nonlinear Models

The proposed variable selection procedure can not be directly used for nonlinear models, e.g.

generalized linear models; Cox models and quantile regression models etc. But with the help of

Wang and Leng (2007)’sLSA, the proposed variable selection procedure can be used for these

nonlinear models. LSA regards

(β − β̃)T Σ̂−1(β − β̃) (6)
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as the least square approximation of the original lossn−1Ln(β) whereβ̃ is the unpenalized estimator

obtained by minimizingLn(β), Σ̂−1 = n−1L̈n(β̃) and L̈n(·) is the second derivatives of the loss

function Ln(·). The expression (6) is similar to the log-densityl(β) in (5). So it is clear that the

lasso procedure incorporating prior constraint information can also be used for variable selection

in nonlinear models with the help of the least squares approximation.

3. Some Theoretical Properties

In this section, we derive some theoretical results for the lasso combining the sample and prior

constraint information that are analogous to those for the lasso and fused lasso (Knight and Fu

(2000); Tibshirani et al (2005)). The penalized least squares criterion is

n∑

i=1

(yi − XT
i β)

2 + λ(1)
n


p∑

j=1

|β j| − s

 + g(β)Tλ(2)
n

with β = (β1, · · · , βp)T and xi = (xi1, · · · , xip)T , and the Lagrange multipliersλ(1)
n and λ(2)

n are

functions of the sample sizen. Let the optimal solution bêβn.

For simplicity, we assume thatp is fixed asn → ∞ andg(·) are differential convex functions.

The following theorem adequately illustrates the basic dynamics of the lasso combining sample

and prior constraint information.

Theorem 1. If λ(l)
n /
√

n→ λ(l)
0 (l = 1, 2) and

C = lim
n→∞


1
n

n∑

i=1

XiX
T
i



is non-singular, then
√

n(̂βn − β)
D→ arg min

u
V(u)

where

V(u) = −2uT W + uTCu + λ(1)
0

p∑

j=1

{u jsgn(β j)I(β j , 0)} + |u j|I(β j = 0)+

(
∂g(β)
∂β

u

)T

λ
(2)
0

andW has ann(0, σ2C) distribution.
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Proof.
n∑

i=1

(yi − XT
i β)

2 + λ(1)
n


p∑

j=1

|β j| − s

 + g(β)Tλ(2)
n

whereλ(1)
n andλ(2)

n are functions of the sample sizen. DefineVn(u) by

Vn(u) =
n∑

i=1

{(εi − uT xi/
√

n)2 − ε2
i } + λ(1)

n

p∑

j=1

(
|β j + u j/

√
n| − |β j|

)
+

(
g(β + u/

√
n) − g(β)

)T
λ(2)

n

with u = (u1, · · · , up)T and note thatVn(u) is minimized at
√

n(̂βn − β). First note that

n∑

i=1

{(εi − uT xi/
√

n)2 − ε2
i }

D→ −2uT W + uTCu

with finite dimensional convergence holding trivially where

C = lim
n→∞


1
n

n∑

i=1

XiX
T
i

 and W ∼ n(0, σ2C).

We also have

λ(1)
n

p∑

j=1

(
|β j + u j/

√
n| − |β j|

) D→ λ(1)
0

p∑

j=1

{u jsgn(β j)I(β j , 0)} + |u j|I(β j = 0)

and
(
g(β + u/

√
n) − g(β)

)T
λ(2)

n =

(
∂g(β)
∂β

u

)T

λ
(2)
0 .

ThusVn(u)
D→ V(u), with finite dimensional convergence holding trivially where

V(u) = −2uT W + uTCu + λ(1)
0

p∑

j=1

[
u jsgn(β j)I(β j , 0)

]
+ |u j|I(β j = 0)+

(
∂g(β)
∂β

u

)T

λ
(2)
0 .

SinceVn is convex andV has a unique minimum, it follows (Geyer, 1996) that

arg min
u

Vn(u) =
√

n(̂βn − β)
D→ arg min

u
V(u).

Theorem 2. The procedure incorporating prior constraint informationinto lasso will increase

efficiency of selecting significant variables for responses compared with the traditional lasso pro-

cedures.
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Proof. Theoretically, the general lasso procedure is as follows

β̃s̃ = Arg

min
β

n∑

i=1

(yi − xT
i β)

2 subject to
∑

h

|βh| ≤ s̃



where GCV or CV is used to choose the tuning parameter ˜s which minimizes the estimated pre-

diction errors

s̃ = Arg
{
min

s
PEs

}
.

If the estimatorβ̃s̃ satisfies prior constraintsg(βs̃) ≤ 0, it means that̃βs̃ clearly minimizes the

estimated prediction errors in a narrower regiong(β) ≤ 0. That is,

β̃s̃ = β̂ŝ

whereβ̂ŝ is the estimator of parameter by the lasso procedure incorporating prior constraint infor-

mation in (3). Now, we take Figure 1 as an example. From Figure1, we know that̃βs̃ lies in the

regionABCD and minimizes the estimated prediction errors. Moreover, we know that̃βs̃ lies in the

regionAEFD. It is clear that̃βs̃ minimizes the estimated prediction errors in the region above the

line EF. Furthermore, the true model also lies in the region above the lineEF. So we obtain that if

β̃s̃ selects the true variables correctly, that is, the nonzero components of̃βs̃ are just the significant

covariates, then̂βŝ also selects the true variables correctly.

If β̃s̃ doesn’t select significant variables correctly, some priorconstraint information may bring

us into a narrower region to select these variables again. Itwill increase the efficiency of variable

selection.

4. Standard error and degrees of freedom of the lasso estimate

Since our lasso procedure combining sample and prior constraint information is a nonlinear

and nondifferentiable function of the response values even for a fixed value of s, it is difficult to

obtain an accurate estimate of its standard error. The problem can be solved by bootstrap approach:

eithers can be fixed or we may optimize overs for each bootstrap sample.

Efron et al. (2004) consider a definition of degrees of freedom using the formula of Stein

(1981):

d f (h(y)) =
1
σ2

n∑

i=1

cov(yi, hi) = E


n∑

i=1

∂h(y)
∂yi



9



wherey = (y1, · · · , yn)T is a multivariate normal vector with meanµ and covariance I, andh(y)

is an estimator, an almost differential function fromR
n to R

n. For the lasso with orthonormal

designXTX = I p×p, the degrees of freedom are the number of non-zero coefficients. Tibshirani et

al.(2005) show that the natural estimate of the degrees of freedom of the fused lasso is

d f ((̂y)) = #{non-zero coefficient block in̂β}

= p − #{β j = 0} − #{β j − β j−1 = 0, β j, β j−1 , 0}

similarly, the natural estimate of the degrees of freedom ofthe lasso incorporating prior constraint

information is

d f (ŷ) = p − #{β j = 0} − #{g(β) = 0}.

The degrees can be used for BIC-type tuning parameter selector.

5. Some Examples

In the following, we give three examples for illustration ofthe proposed procedure’s practical

applications in many models.

Example 1:linear inequality constraints in linear models

Wolak (1989) or (Silvapulle and Sen 2005 P9) consider the following double-log demand func-

tion

logQt = α + β1 logPEt + β2 logPGt + β3 log It + γ1D1t + γ2D2t + γ3D3t + ǫt

which is a linear model where

Qt = aggregate electricity demand,

PEt = average price of electricity to the residential sector,

PGt = price of natural gas to the residential sector,

It = income per capita,

andD1t,D2t,D3t are seasonal dummy variables.

10



Prior knowledge suggests that 
1 0 0
0 1 0
0 0 1




β1

β2

β3

 ≥


0
0
0



which are linear inequality constraints. A typical model selection question is whether or not the

foregoing model provides a better fit than the simpler model

logQt = α + γ1D1t + γ2D2t + γ3D3t + ǫt.

Wolak (1989) or Wang et al. (2007b) discuss the model selection problem by a test method or by

a variable selection method, respectively.

Example 2:nonlinear inequality constraints in linear models

Dufour (1989) considers the following econometric model

yi = f (xi, β) + ǫi = β1 + β2xi2 + β3xi3 + β4x2
i2 + β5x2

i3 + 2β6xi2xi3 + ǫi.

This could be a production function or a unit cost function whereyi is the production or unit cost

and{xi2, xi3} are inputs. A problem of interest in econometrics is whetherf (xi, β) is concave inxi,

which can be expressed by the following nonlinear inequality constraints

β4 ≤ 0, β5 ≤ 0, β4β5 − β2
6 ≥ 0.

Dufour (1989) discusses the model selection problem by a test method.

Example 3:linear equality and inequality constraints in generalizedlinear models

An assay was carried out with the bacteriumE. colistrain 343/358(+) to evaluate the genotoxic

effects of 9-aminoacridine (9-AA) and potassium chromate (KCr). Piegorsch (1990) and Silvapulle

(1994) consider the following log-linear model

log(1− πi j) = µ + αi + τ j + ηi j. (7)

to evaluate whether potassium chromate and 9-AA have a synergistic effect wherei = 1, 2, j =

1, · · · , 5 and

πi j = Pr{positive response for a test unit in cell (i,j)}.

11



In fact, the log-linear model is just logistic regression model which is one of generalized linear

models(GLM). To ensure that the parameters in (7) are identified, Piegorsch (1990) and Silvapulle

(1994) impose the constraintsα1 = τ1 = ηi1 = η1 j = 0 for all (i, j) and


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





η22

η23

η24

η25


≥



0
0
0
0



which means that potassium chromate and 9-AA have a synergistic effect. The model selection

problem is analyzed by a test in Piegorsch (1990), Silvapulle (1994) and Silvapulle and Sen (2005

P161).

6. Discussion

We proposed a modified lasso procedure combining prior constraint and sample information

for variable selection and parameter estimation. The proposed procedure increases the efficiency of

choosing the true model correctly because it executes variable selection and parameter estimation

in a narrower region where the true parameters lie. The procedure may be computed by many

quadratic programming methods.

Moreover, the idea of incorporating prior constraint information can be used for other lasso

procedures, e.g. fused lasso and modified lasso procedure for an adaptive amount of shrinkage for

each regression coefficient.

More work remains to be done. Efron et al. (2004)’s LARS is a good computational procedure

which only needsp steps. But now it is not directly used for the lasso procedureincorporating

prior constraint information. In our procedure, Monte Carlo estimator can be used for the initial

estimator. How to extend LARS to the lasso procedure incorporating prior constraint information

is an interesting topic for future study.
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