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Abstract

We propose the variable selection procedure incorporatiiay constraint information into
lasso. The proposed procedure combines the sample andrgfoanation, and selects signifi-
cant variables for responses in a narrower region wherertigeparameters lie. It increases the
efficiency to choose the true model correctly. The proposedegiire can be executed by many
constrained quadratic programming methods and the ies@nator can be found by least square
or Monte Carlo method. The proposed procedure also enjoyd teeoretical properties. More-
over, the proposed procedure is not only used for linear ilsdue also can be used for generalized
linear modelsGLM), Cox models, quantile regression models and many othersthe help of
Wang and Leng (2007)’s LSA, which changes these models apitreximation of linear models.
The idea of combining sample and prior constraint infororattan be also used for other modi-
fied lasso procedures. Some examples are used for illustratithe idea of incorporating prior
constraint information in variable selection procedures.

Keywords: lasso; linear models; prior constraint inforimiat sample information; variable
selection;

1. Introduction

In practice, a number of variables are included into anahregression analysis, but many of
them may not be significant to the response variables anddhewexcluded from the final model
in order to increase the accuracy of prediction and intéapion. Variable selection is fundamental
in statistical modeling. The least absolute shrinkage afetton operatorl(ASSO) (Tibshirani
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1996) is a useful and well-studied approach to the probleracéble selection (Knight and
Fu 2000; Fan and Li 2001; Leng et al. 2006; Wang et al. 2007anMand Lin 2007). It shrinks
some cofficients and sets others to 0, and hence tries to retain thefgatates of both subset
selection and ridge regression. Moreover, lasso’s majeardge is its simultaneous execution
of both parameter estimation and variable selection. Itiquaar, allowing an adaptive amount of
shrinkage for each regression @o@ent results in an estimator which is @@ent as oracle (Zou
2006; Wang et al. 2007b; Wang and Leng 2007). About the coatipuial techniques, please see
Osborne et al. (2000), Efron et al. (2004), Rosset (20043pznd Yu (2004) and Park and Hastie
(2006).

In spite of that, in variable selection or the estimationagfression cd&cients, except for sam-
ple information, some prior constraint information can l@wn. Constraints can be expressed
asg(B) < 0 including equalities and inequalities wheyg) are k-dimensional linear or nonlinear
functions (see Rao and Toutenburg 1995; Silvapulle and 866)2 In fact, the common simple
orderp, < --- < Bp; tree orde; < Bpfori=1,---,p—1;umbrellaordep; <---<B >--- > 8,
or more generallyA8 < a are only the special cases@(3) < 0. All these constraints have very
important applications in biomedical studies, life scieneconometrics and social research etc.
For example, in many biomedical studies, treatment gromasdlinical trial many be formulated
according to increasing levels of dosage of a drug and therisgwof disease in patients. In econo-
metrics, the homogeneity of degree zero of a demand equatioiies that the price and income
elasticities add up to zero, whereas the negativity of thesttution matrix in consumer demand
theory requires that all latent roots of the substitutiortrmahould be nonpositive. Stahlecker
(1987) shows a variety of examples from the field of econor(sosh as input-output models),
where the constraints for the parameters are so-calledaldity conditions of the forng; > 0
or Bi € (&,h;) or E(w|X) < a&. Literature deals with this problem under the generic team-c
strained least squares (see Judge and Takayama 1966; [L9@@r Geweke 1986; Moors and
van Houwelingen 1987; Rao and Toutenburg P75 1995). DorfamhMciIntosh (2001) show
that imposing the curvature conditions on a system of denegii@dtions improves the MSEs on
estimated elasticities from 2 to 50% depending on the sitprabise ratio and the sample size.
For researchers, it will increase th&ieency of variable selection and parameter estimation to
effectively combine the sample and prior information becauge jformation tells us a narrower
region to select these variables and estimate these pamamnet



This paper proposes a procedure to combine prior and sanfplenation into lasso and hopes
to obtain more accurate variable selection and parameiara®n. The idea of combining prior
constraint and sample information can be shown by the blegion in Figure 1. It shows that
when we know some prior information of parameters, theratédeiselection will be executed in a
narrower black region AEFD not in a wide region ABCD. It witldrease thef&ciency of choosing
the true model correctly. Moreover, our procedure incaapnog prior constraint information is not
only used for linear models but also can be used for generhlinear models, Cox models and
guantile regression models with the help of Wang and Len@{26 LSA, which changes these
models as the approximation of linear models. In fact, prasrstraint information can be also used
for other modified lasso procedures, e.g. Tibrashini et200%)’s fused lasso and the modified
lasso procedure for an adaptive amount of shrinkage for esgession cdécient (Zou 2006;
Wang et al. 2007b; Wang and Leng 2007) etc.

The paper is organized as follows: Section 2 introducesblliselection procedure combin-
ing sample and prior constraint information in lasso ancgepthodified lasso procedures. Main
theoretical properties are discussed in Section 3. Sedtidiscusses degrees of freedom of the
lasso procedure incorporating prior constraint informatiThe proposed procedure is illustrated
by some examples in Section 5. Section 6 gives a short discuss

2. \Variable Selection Combining Sample and Prior Constraim Information into Lasso

2.1 Variable Selection Combining Sample and Prior Constrait Information into Lasso in
Linear Models

We first consider variable selection incorporating priongtoaint information into lasso in
linear models:

mlnz = X ,8 subject to Z Bjl<s and g(B) <0
j

or

Bs = Arg{rr}jin(Y - XT,B)T (Y -X"B) subjectto Z,: Bjl<s and g(B) < O}. (1)
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whereY = (y1,---,¥n)", X = (XI,---,x])T andg(:) are linear or nonlinear functions. That is, the
modified lasso objective function is as follows

min v = x[B)° + A% 3 1811 + (1) g(8)
i=1 i

whered® anda® = (A9, .., A®)T are tuning parameters. The tuning parameters can be othtaine
by estimating the prediction error for the procedure inooaging prior constraint information
into lasso by cross-validatiorC{/) as described in chapter 17 of Efron and Tibshirani (1993) or
generalized cross-validatioGCV). The prediction error of prediction terg(X) of CV is given
by

PE = E{Y — 7(X)}%.

Then the values yielding the lowest estimated PE is selected.

In the following, we introduce how to choose the tuning pagtars from CV in detail. Simi-
larly, GCV can be used to choose the tuning parameltdodd CV is one of the methods to choose
the tuning parametess |-fold CV is to split the n patterns into a training set of sizel and a test
of sizel. I-fold CV averages the squared error on the left-out patteen all the possible ways of
obtaining such a partition. The advantage is that all tha dah be used for training - none has to
be held back in a separate test set. Tlakel for an example. Let

787 = Arg{mln Z (yi —x'B)* subjectto Z IBnl < s and g(B) < O} (2)

i=Li#]

whereﬁs‘j) is the estimation on the training datg - - -, Xj_1, Xj41, - -+, Xa for j = 1,---,nfrom the
n

procedure incorporating prior constraint informatioroitasso. LetPEs = ), ( T,B“ ‘))
j=1

the estimated prediction error of 1-fold CV given the tunpegametes. Then the chosen tuning
parametersis as follows

n
o : _ : TRV
S= Arg{msln PES} = Arg{msln; (yJ ~ X B’ ) }

wheresminimizes the estimated prediction error. Then the sinmaltaus parameter estimation and
variable selection incorporating prior constraint infation is as follows

Bs = Arg{rr}jn Z(Yi —x'B)? subject to Z 1Bl < & and g(B) < O}. (3)
i=1 h
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Remark 1. (Algorithm)We know that the most important thing for obtainjfigis to compute
BE‘”. If there are no constraints on the parameters, many weélldped procedures can be used
to find the solution for

n

rr}gin.Z.(yi ~X{B)? subject to Z 1Bl < s.

i=Li#j h

For example, quadratic programming (Tibshirani 1996),gheoting algorithm (Fu 1998), local
guadratic approximation (Fan and Li 2001) and lease anglession LARS) (Efron et al. 2004).
When there are prior constraint information, the above gdaces can not be directly used for (2).
But if some modifications are made for these algorithiis, @) be solved by them. It will be an
interesting topic for us in the future. In fact, many quaidratogramming methods can be used to
find the solution for[(R) (see Dantig and Eaves 1974). Thetgolwf the quadratic programming
does not yield a sparse solution. If a tolerance is set, ttedl grarameter estimate can be regarded
as 0.

Remark 2. (Initial Estimato) In fact, the OLS estimator may be regarded as the initiaieast
tor. But in order to obtain more accurate estimator, Montdddaethod can be used for the initial
estimator of[(I) orl(R). The optimal problef (1) can be writées

(Y =XB)T(Y = XB) =B"X"XB—-28"XTY +YTY
=(B-w)' =B - )+ YT (1 - X(XTX)IXT) Y

with knownp,q = (XTX)_leY andX,,, = (XTX)_l. That s,

P
ES = Arg{rr%in(ﬁ —u)'2YB-u) subjectto Z |Bnl < sandg(B) < O}
h=1

or
p
Bs = Arg max—% [(ﬁ —W)'EB -+ Iog(lZI)] subject to { ,-gl Bil<s (4)
' o6) < 0
where . .
(B) = 58— 1)'T7(B — 1) — 5 log(Z) (5)

is just the log-density oN(u, X) regardings as a random variable. Randomly draw= 100000
sample<y, - - -, Zm from N(u, ) whereZ ; = (Zyj, - -+, Zp;)" for j = 1,---, m. SetZyq as the initial
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estimator which satisfies

P
Zog = Arg{max 1(Z;) subjectto Z |Znj| < sandg(Z;) < O}.
J=Lm h=1

2.2 Variable Selection Combining Sample and Prior Constrait Information into Other
Modified Lassos

The limitation of lasso is that all the regression meents share the same amount of shrinkage
n p

mﬂin Y (v - xiT,fg’)2 + 1Y |8jl. Then Wang et al. (2007b) extend the lasso to the modified 1asso
i=1 j=1

criterion which allows for diferent tuning parameters forftérent coéicients

n P
rr};inz (yi —~ xiT,fg’)2 + Z/ljl,le.
i1 =1

In order to combining the sample and prior constraint infation, variable selection procedure
can be executed as follows

n p
rr'IBinZ (yi - xiT,B)2 + Z Aj|Bjl + ¢"9(B)
i=1 j=1

which not only uses the prior information but also overcothedimitation of the traditional lasso
procedure.

Similarly, the prior constraint information can be incorgid into Tibshirani et al. (2005)’s
fused lasso which encourages sparsity in théfedences, i.e. flatness of the didgient profiless;
as a function ofj.

2.3 Variable Selection Combining Sample and Prior Constrait Information into Lasso in
Nonlinear Models

The proposed variable selection procedure can not be Winestd for nonlinear models, e.g.
generalized linear models; Cox models and quantile regmessodels etc. But with the help of
Wang and Leng (2007)'6SA, the proposed variable selection procedure can be usetideet
nonlinear models. LSA regards

B-B)=B-B) (6)



as the least square approximation of the original to$k,(8) whereg is the unpenalized estimator
obtained by minimizingLa(8), £ = n1L,(8) and L.(-) is the second derivatives of the loss
function L,(-). The expressiori{6) is similar to the log-dendig) in (5). So itis clear that the
lasso procedure incorporating prior constraint informraitan also be used for variable selection
in nonlinear models with the help of the least squares appation.

3. Some Theoretical Properties

In this section, we derive some theoretical results for dlsed combining the sample and prior
constraint information that are analogous to those for &ssd and fused lasso (Knight and Fu
(2000); Tibshirani et al (2005)). The penalized least sgsiariterion is

n P
D W= X8+ AP [Z 1Bil - s) +9(B)" Y
i=1 j=1
with 8 = (B.---.B8,)"T andx; = (X1.---,Xp)", and the Lagrange multiplier&? and 1% are
functions of the sample size Let the optimal solution bg.

For simplicity, we assume thatis fixed asn — oo andg(-) are diferential convex functions.
The following theorem adequately illustrates the basicaayics of the lasso combining sample
and prior constraint information.

Theorem 1 If A0/ i — A0(1 = 1,2) and

(10 ot
Czim(ﬁ;xixi)

is non-singular, then
VB, - B) > arg minV(u)
u

where

p T
V(u) = —2u"W + u"Cu + ﬂgl)Z{ujsgn(B,-)l(B,- # 0)} + |ujl1 (8; = 0) + (ag—l(f)u) A
=1

andW has am(0, o->C) distribution.



Proof.

n P

D= XBY + AP [Z 18l - S] +9(B)" A%

i=1 =1
whered andA? are functions of the sample sire DefineV,(u) by

;
Vi(u) = Z (61 — ™%/ V)2 - &7} + WZ 1B; + ui/ Vil = 18i]) + (9(8 + u/ V) — 9(8)) AP
i=1

with u = (uy, - - -, up)" and note thaV¥/,(u) is minimized at\/ﬁ(ﬁn — B). First note that

Z{(si —u'x/Vn)? - &2 5 _2u™wW+u'Cu

i=1

with finite dimensional convergence holding trivially weer

Nn—oo

= lim ( ZXXT) and W ~ n(0,0%C).
We also have
p p
AP (18 + ug/ VA= 1811) = A u;san(8))1 (8; # 0)) + ujll (8 = 0)
j=1 j=1

and

.
(908 + u/ V) — g(B)) A9 = (ag—f) U) .
ThusV,(u) 5 V(u), with finite dimensional convergence holding trivially ere

V(u) = —2u"W +u'Cu + /1(1) Z u;sgn(B;)! (B # 0)] + |yl (8; = 0) + (89(,8) ) (2).

=1

SinceV, is convex and/ has a unique minimum, it follows (Geyer, 1996) that

arg minVy(u) = V(B — B) > arg minV (u).

Theorem 2. The procedure incorporating prior constraint informatito lasso will increase
efficiency of selecting significant variables for responsespamed with the traditional lasso pro-
cedures.



Proof. Theoretically, the general lasso procedure is sl
n
Bs = Arg{rr}jn Z(Yi - x'B)*> subject to Z 1Bnl < §}
i=1 h

where GCV or CV is used to choose the tuning paramgtehich minimizes the estimated pre-
diction errors
S=Arg {min PES} .
S
If the estimatorss satisfies prior constraint(8s) < O, it means thaf3s clearly minimizes the
estimated prediction errors in a narrower regigf) < 0. That is,

Bs = Bs
wheregs is the estimator of parameter by the lasso procedure incatipg prior constraint infor-
mation in [3). Now, we take Figure 1 as an example. From Fidumee know thaps lies in the
regionABCD and minimizes the estimated prediction errors. Moreoverkmow thafs lies in the
regionAEFD. It is clear thaj3s minimizes the estimated prediction errors in the regiorvatibe
line EF. Furthermore, the true model also lies in the region aboeéitle EF. So we obtain that if

s selects the true variables correctly, that is, the nonzemponents ofs are just the significant
covariates, theﬁg also selects the true variables correctly.

If Bs doesn't select significant variables correctly, some praorstraint information may bring
us into a narrower region to select these variables agawill lincrease the fficiency of variable
selection.

4. Standard error and degrees of freedom of the lasso estimat

Since our lasso procedure combining sample and prior @nsinformation is a nonlinear
and nondiferentiable function of the response values even for a fixégevar s, it is difficult to
obtain an accurate estimate of its standard error. The @mobén be solved by bootstrap approach:
eitherscan be fixed or we may optimize ovefor each bootstrap sample.

Efron et al. (2004) consider a definition of degrees of freedesing the formula of Stein
(1981):

— 1 n L - = n M
df(hy) = — ;COV(V"h') B E{.Z‘ 4 }

9



wherey = (y1,---,Yn)" is a multivariate normal vector with meanand covariance |, ant(y)
is an estimator, an almostftérential function fromR" to R". For the lasso with orthonormal
designXTX = Il p, the degrees of freedom are the number of non-zerfiicimmts. Tibshirani et
al.(2005) show that the natural estimate of the degreegetlom of the fused lasso is

df((y)) = #non-zero cofficient block irg}

= p-#Bj =0} - #pBj - Bj-1= 0,8}, Bj-1 # 0}

similarly, the natural estimate of the degrees of freedoth@lasso incorporating prior constraint
information is

df(y) = p—-#B; = 0} - #g(B) = O}.

The degrees can be used for BIC-type tuning parameter select

5. Some Examples

In the following, we give three examples for illustrationtb& proposed procedure’s practical
applications in many models.

Example 1:linear inequality constraints in linear models

Wolak (1989) or (Silvapulle and Sen 2005 P9) consider tHeviohg double-log demand func-
tion
log Q; = @ + B110g PE; + B210g PG; + B3log i + y1D1; + y,D2; + y3D3; + &

which is a linear model where

Q: = aggregate electricity demand
PE; = average price of electricity to the residential sector
PG; = price of natural gas to the residential sector

Iy = income per capita

andD1;, D2, D3; are seasonal dummy variahles
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Prior knowledge suggests that

10 0)\(p 0
00 1)\ 8 0

which are linear inequality constraints. A typical moddkséon question is whether or not the
foregoing model provides a better fit than the simpler model

logQ: = a + y1D1; + y,D2; + v3D3; + €.

Wolak (1989) or Wang et al. (2007b) discuss the model selegiroblem by a test method or by
a variable selection method, respectively.

Example 2:nonlinear inequality constraints in linear models
Dufour (1989) considers the following econometric model
yi = f(X,B) + & = B1 + BaXiz + BaXiz + aXs + PsXs + 2B6XiaXi3 + €.

This could be a production function or a unit cost functiorewdy; is the production or unit cost
and{x, X3} are inputs. A problem of interest in econometrics is whefi{gr, 8) is concave in;,
which can be expressed by the following nonlinear inequabinstraints

Ba <0, Bs <0, Bafis — 5> 0.
Dufour (1989) discusses the model selection problem bytartethod.
Example 3:linear equality and inequality constraints in generalizedlinear models

An assay was carried out with the bacteritrcolistrain 343358(+) to evaluate the genotoxic
effects of 9-aminoacridine (9-AA) and potassium chromate {KBiegorsch (1990) and Silvapulle
(1994) consider the following log-linear model

|Og(1—7rij):/1+a/i+7'j+nij. (7)

to evaluate whether potassium chromate and 9-AA have agigtierefect wherel = 1,2, | =
1,---,5and
miij = Pr{positive response for a test unit in cell ()
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In fact, the log-linear model is just logistic regressiondabwhich is one of generalized linear
modelsGLM). To ensure that the parameterslih (7) are identified, Psetai1990) and Silvapulle
(1994) impose the constraintg = 71 = i1 = 1715 = 0 for all (i, j) and

1 0 0 O)( 1o 0

0100 n23 > 0
0010 24 - 0
0 001 no2s 0

which means that potassium chromate and 9-AA have a sytiergigect. The model selection
problem is analyzed by a test in Piegorsch (1990), Silveqdi®94) and Silvapulle and Sen (2005
P161).

6. Discussion

We proposed a modified lasso procedure combining prior cainstand sample information
for variable selection and parameter estimation. The megprocedure increases tligaency of
choosing the true model correctly because it executeshlargelection and parameter estimation
in a narrower region where the true parameters lie. The pguoeemay be computed by many
guadratic programming methods.

Moreover, the idea of incorporating prior constraint imh@tion can be used for other lasso
procedures, e.g. fused lasso and modified lasso proceduaa talaptive amount of shrinkage for
each regression cfiient.

More work remains to be done. Efron et al. (2004)'s LARS is adycomputational procedure
which only need9 steps. But now it is not directly used for the lasso proceducerporating
prior constraint information. In our procedure, Monte ©@agktimator can be used for the initial
estimator. How to extend LARS to the lasso procedure ingatpay prior constraint information
is an interesting topic for future study.
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