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1 Introduction

It is generally accepted that many time series of practical interest exhibit
strong dependence, i.e., long memory. For such series, the sample autocor-
relations decay slowly and log-log periodogram plots indicate a straight-line
relationship. This necessitates a class of models for describing such behavior.
A popular class of such models is the autoregressive fractionally integrated
moving average (ARFIMA) (see [Ade74], [GJ80]), [Hos81], which is a linear
process. However, there is also a need for nonlinear long memory models. For
example, series of returns on financial assets typically tend to show zero cor-
relation, whereas their squares or absolute values exhibit long memory. See,
e.g., [DGE93]. Furthermore, the search for a realistic mechanism for generat-
ing long memory has led to the development of other nonlinear long memory
models. (Shot noise, special cases of which are Parke, Taqqu-Levy, etc). In this
chapter, we will present several nonlinear long memory models, and discuss
the properties of the models, as well as associated parametric and semipara-
metric estimators.

Long memory has no universally accepted definition; nevertheless, the
most commonly accepted definition of long memory for a weakly station-
ary process X = {X;, t € Z} is the regular variation of the autocovariance
function: there exist H € (1/2,1) and a slowly varying function L such that

cov(Xo, Xt) = L(t)|t|*7 2. (1)

Under this condition, it holds that:

lim n =27 L(n) 'var (zn: Xt> =1/(2H(2H —1)). (2)

n— 00
t=1

The condition (2) does not imply (1). Nevertheless, we will take (2) as an
alternate definition of long memory. In both cases, the index H will be referred


http://arXiv.org/abs/0706.1836v1

2 Rohit Deo, Mengchen Hsieh, Clifford M. Hurvich, and Philippe Soulier

to as the Hurst index of the process X. This definition can be expressed in
terms of the parameter d = H — 1/2, which we will refer to as the memory
parameter. The most famous long memory processes are fractional Gaussian
noise and the ARFIM A(p, d, q) process, whose memory parameter is d and
Hurst index is H = 1/2 + d. See for instance [Taq03] for a definition of these
processes.

The second-order properties of a stationary process are not sufficient to
characterize it, unless it is a Gaussian process. Processes which are linear with
respect to an i.i.d. sequence (strict sense linear processes) are also relatively
well characterized by their second-order structure. In particular, weak con-
vergence of the partial sum process of a Gaussian or strict sense linear long
memory processes {X;} with Hurst index H can be easily derived. Define

Su(t) = M (Xy — E[Xy]) in discrete time or S,(t) = [o" (X, — E[X,])ds
in continuous time. Then var(S,(1))~/2S,(t) converges in distribution to a
constant times the fractional Brownian motion with Hurst index H, that is
the Gaussian process By with covariance function

cov(Bia(s), Ba(t)) = g {IsP — |t — 5P+ 27}

In this paper, we will introduce nonlinear long memory processes, whose
second order structure is similar to that of Gaussian or linear processes, but
which may differ greatly from these processes in many other aspects. In Sec-
tion 2, we will present these models and their second-order properties, and
the weak convergence of their partial sum process. These models include con-
ditionally heteroscedastic processes (Section 2.1) and models related to point
processes (Section 2.2). In Section 3, we will consider the problem of estimat-
ing the Hurst index or memory parameter of these processes.

2 Models

2.1 Conditionally heteroscedastic models
These models are defined by
Xt = o, (3)

where {v;} is an independent identically distributed series with finite variance
and o7 is the so-called volatility. We now give examples.

LMSV and LMSD

The Long Memory Stochastic Volatility (LMSV) and Long Memory Stochas-
tic Duration (LMSD) models are defined by Equation (3), where 02 = exp(h;)
and {h:} is an unobservable Gaussian long memory process with memory pa-
rameter d € (0,1/2), independent of {v;}. The multiplicative innovation series
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{v;} is assumed to have zero mean in the LMSV model, and positive support
with unit mean in the LMSD model. The LMSV model was first introduced by
[BCAL98] and [Har98] to describe returns on financial assets, while the LMSD
model was proposed by [DHHO05] to describe durations between transactions
on stocks.

Using the moment generating function of a Gaussian distribution, it can
be shown (see [Har98]) for the LMSV/LMSD model that for any real s such
that E[|v|®] < o0,

ps(j) ~ Csj2d_1 J — 00,

where ps(j) denotes the autocorrelation of {|z|*} at lag j, with the convention
that s = 0 corresponds to the logarithmic transformation. As shown in [SV02],
the same result holds under more general conditions without the requirement
that {h:} be Gaussian.

In the LMSV model, assuming that {h;} and {v;} are functions of a mul-
tivariate Gaussian process, [Rob01] obtained similar results on the autocor-
relations of {|X;|*} with s > 0 even if {h;} is not independent of {v;}. Sim-
ilar results were obtained in [SV02], allowing for dependence between {h;}
and {v;}.

The LMSV process is an uncorrelated sequence, but powers of LMSV or
LMSD may exhibit long memory. [SV02] proved the convergence of the cen-
tered and renormalized partial sums of any absolute power of these processes
to fractional Brownian motion with Hurst index 1/2 in the case where they
have short memory.

FIEGARCH

The weakly stationary FIEGARCH model was proposed by [BM96]. The FIE-
GARCH model, which is observation-driven, is a long-memory extension of the
EGARCH (exponential GARCH) model of [Nel91]. The FIEGARCH model
for returns {X;} takes the form 2.1 innovation series {v;} are i.i.d. with zero
mean and a symmetric distribution, and

logo? =w + Z a;g(vi—j) (4)

Jj=1

with g(z) = 0z + v(Jz| — Elwe]), w > 0, 8 € R, v € R, and real constants
a;j such that the process {logo?} has long memory with memory parameter
d € (0,1/2). If 6 is nonzero, the model allows for a so-called leverage effect,
whereby the sign of the current return may have some bearing on the future
volatility. In the original formulation of [BM96], the {a;} are the AR(c0)
coefficients of an ARFIM A(p,d, q) process.

As was the case for the LMSV model, here we can once again express the
log squared returns as in (18) with 4 = E[log v?]+w, u; = log v? —E[logv?], and
h; = log o0? — w. Here, however, the processes {h;} and {u;} are not mutually
independent. The results of [SV02] also apply here, and in particular, the
processes {|X;|“}, {log(X?)} and {0} have the same memory parameter d.
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ARCH(x) and FIGARCH

In ARCH(o0) models, the innovation series {v;} is assumed to have zero mean
and unit variance, and the conditional variance is taken to be a weighted sum
of present and past squared returns:

o0
2 2
o} :W+Zant—j , (5)
k=1
where w,a;,j = 1,2,... are nonnegative constants. The general framework

leading to (3) and (5) was introduced by [Rob91]. [KLO03] have shown that
E;’;l a; < 1 1is a necessary condition for existence of a strictly stationary
solution to equations (3), (5), while [GKLO0O] showed that Z;’;l a; < 1is
a sufficient condition for the existence of a strictly stationary solution. If
Z;il a; = 1, the existence of a strictly stationary solution has ben proved by
[KLO03] only in the case where the coefficients a; decay exponentially fast. In
any case, if a stationary solution exists, its variance, if finite, must be equal
to w(l—Y 4o ar)” ', so that it cannot be finite if >~ ar = 1 and w > 0. If
w = 0, then the process which is identically equal to zero is a solution, but it
is not known whether a nontrivial solution exists.

In spite of a huge literature on the subject, the existence of a strictly or
weakly stationary solution to (3), (5) such that {o?}, {|X:|*} or {log(X?)}
has long memory is still an open question. If E;)il a; < 1, and the coefficients
a; decay sufficiently slowly, [GKLO00] found that it is possible in such a model
to get hyperbolic decay in the autocorrelations {p,} of the squares, though
the rates of decay they were able to obtain were proportional to r—? with
6 > 1. Such autocorrelations are summable, unlike the autocorrelations of a
long-memory process with positive memory parameter. For instance, if the
weights {a;} are proportional to those given by the AR(c0) representation of
an ARFIMA (p, d, q¢) model, then § = —1—d. If Z;L a; = 1, then the process
has infinite variance so long memory as defined here is irrelevant.

Let us mention for historical interest the FIGARCH (fractionally inte-
grated GARCH) model which appeared first in [BBM96]. In the FIGARCH
model, the weights {a;} are given by the AR(co) representation of an
ARFIMA(p, d, ) model, with d € (0,1/2), which implies that > 72 a; = 1,
hence the very existence of FIGARCH series is an open question, and in any
case, if it exists, it cannot be weakly stationary. The lack of weak stationarity
of the FIGARCH model was pointed out by [BBM96]. Once again, at the time
of writing this paper, we are not aware of any rigorous result on this process
or on any ARCH(o0) process with long memory.

LARCH

Since the ARCH structure (appearently) fails to produce long memory, an
alternative definition of heteroskedasticity has been considered in which long
memory can be proved rigorously. [GS02] considered models which satisfy the
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equation X; = (4A: + By, where {(;} is a sequence of i.i.d. centered ran-
dom variables with unit variance and A; and B; are linear in {X;} instead of
quadratic as in the ARCH specification. This model nests the LARCH model
introduced by [Rob91], obtained for B; = 0. The advantage of this model is
that it can exhibit long memory in the conditional mean B; and/or in the con-
ditional variance A;, possibly with different memory parameters. See [GS02,
Corollary 4.4]. The process {X;} also exhibits long memory with a memory
parameter depending on the memory parameters of the mean and the con-
ditional variance [GS02, Theorem 5.4]. If the conditional mean exhibits long
memory, then the partial sum process converges to the fractional Brownian
motion, and it converges to the standard Brownian motion otherwise. See
[GS02, Theorem 6.2]. The squares {X?} may also exhibit long memory, and
their partial sum process converge either to the fractional Brownian motion
or to a non Gaussian self-similar process. This family of processes is thus very
flexible. An extension to the multivariate case is given in [DTWO05].

We conclude this section by the following remark. Even though these pro-
cesses are very different from Gaussian or linear processes, they share with
weakly dependent processes the Gaussian limit and the fact that weak limits
and L? limits have consistent normalisations, in the sense that, if &, denotes
one of the usual statistics computed on a time series, there exists a sequence
v, such that v,&, converges weakly to a non degenerate distribution and
v2E[£2] converges to a positive limit (which is the variance of the asymptotic
distribution). In the next subsection, we introduce models for which this is no
longer true.

2.2 Shot noise processes

General forms of the shot-noise process have been considered for a long time;
see for instance [Tak54], [Dal71]. Long memory shot noise processes have been
introduced more recently; an early reference seems to be [GMS93]. We present
some examples of processes related to shot noise which may exhibit long mem-
ory. For simplicity and brevity, we consider only stationary processes.

Let {t;, j € Z} be the points of a stationary point process on the line,
numbered for instance in such a way that t_1 < 0 < tg, and for ¢t > 0, let
N(t) = ijo Lt, <4y be the number of points between time zero and ¢. Define
then

Xi = Zej]l{thKtj-i'm}’ t=>0. (6)
JEZ

In this model, the shocks {¢;} are an ii.d. sequence; they are generated at
birth times {¢;} and have durations {7;}. The observation at time ¢ is the
sum of all surviving present and past shocks. In model (6), we can take time
to be continuous, t € R or discrete, ¢t € Z. This will be made precise later for
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each model considered. We now describe several well known special cases of
model (6).

1. Renewal-reward process; [TL86], [Liu00].
The durations are exactly the interarrival times of the renewal process:
Mo = to, N; = tj+1 — t;, and the shocks are independent of their birth
times. Then there is exactly one surviving shock at time ¢:

Xt = GN(t)- (7)

2. ON-OFF model; [TWS97].

This process consists of alternating ON and OFF periods with indepen-
dent durations. Let {nx}>1 and {Cx}r>1 be two independent ii.d. se-
quences of positive random variables with finite mean. Let ¢ty be indepen-
dent of these sequences and define t; = to + > 7_; (M + Cx). The shocks
€; are deterministic and equal to 1. Their duration is 77;. The n;s are the
ON periods and the (;s are the OFF periods. The first interval ¢y can also
be split into two successive ON and OFF periods 79 and (y. The process
X can be expressed as

Xy = ]l{tN(t)St<tN(t)+77N(t)}' (8)

3. Error duration process; [Par99].
This process was introduced to model some macroeconomic data. The
birth times are deterministic, namely t; = j, the durations {n;} are i.i.d.
with finite mean and

Xe =3 ejliicjin)- (9)

Jj<t

4. Infinite Source Poisson model.

If the t; are the points of a homogeneous Poisson process, the dura-
tions {n;} are i.i.d. with finite mean and €¢; = 1, we obtain the infinite
source Poisson model or M/G /oo input model considered among others
in [MRRS02].

[MRRO2] have considered a variant of this process where the shocks (re-
ferred to as transmission rates in this context) are random, and possibly
contemporaneously dependent with durations.

In the first two models, the durations satisfy n; < t;;1 —t;, hence are not
independent of the point process of arrivals (which is here a renewal process).
Nevertheless 7; is independent of the past points {tx, k& < j}. The process
can be defined for all ¢ > 0 without considering negative birth times and
shocks. In the last two models, the shocks and durations are independent of
the renewal process, and any past shock may contribute to the value of the
process at time ¢.



Long Memory in Nonlinear Processes 7
Stationarity and second order properties

e The renewal-reward process (7) is strictly stationary since the renewal pro-
cess is stationary and the shocks are i.i.d. It is moroever weakly stationary if
the shocks have finite variance. Then E[X;] = E[e;] and

cov(Xo, X¢) = E[?] P(no > t) = AE[}] E[(m — t)4] , (10)

where 79 is the delay distribution and A = E[(t; — t9)] ! is intensity of the
stationary renewal process. Note that this relation would be true for a general
stationary point process. Cf. for instance [TL86] or [HHS04].

e The stationary version of the ON-OFF was studied in [HRS98]. The first
On and OFF period 79 and {y can be defined in such a way that the process
X is stationary. Let F,, and F,g be the distribution functions of the ON and
OFF periods 1, and ¢;. [HRS98, Theorem 4.3] show that if 1— F,,, is regularly
varying with index a € (1,2) and 1 — Fog(t) = o(Fon(t)) as t — oo, then

cov(Xo, Xy) ~ P(no > t) = cAE[(m —t)+], (11)

e Consider now the case when the durations are independent of the birth
times. To be precise, assume that {(n;,€¢;)} is an ii.d. sequence of random
vectors, independent of the stationary point process of points {¢;}. Then the
process { X, } is strictly stationary as long as E[n;] < oo, and has finite variance
if E[e211] < co. Then E[X;] = AE[e1m1] and

cov(Xo, X¢) = AE[€] (m1 — 1) 4]
+ {cov(er N(=m1,0],e2 N(t — 12, 1)) — AE[erez (m A (2 — )4},

where ) is the intensity of the stationary point process, i.e. \™! = E[to]. The
last term has no known general expression for a general point process, but it
vanishes in two particular cases:

- if N is a homogeneous Poisson point process;
- if €1 is centered and independent of 7).

In the latter case (10) holds, and in the former case, we obtain a formula
which generalizes (10):

cov(Xo, X1) = NE[&} (ni — )] (12)

We now see that second order long memory can be obtained if (10) holds and
the durations have regularly varying tails with index « € (1,2) or,

Elei Ly >0] = €0t . (13)

Thus, if (13) and either (11) or (12) hold, then X has long memory with Hurst
index H = (3 — «)/2 since
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cov(Xo, X;) ~ % (e (14)

Examples of interest in teletraffic modeling where ¢; and 7; are not indepen-
dent but (13) holds are provided in [MRR02] and [FRS05].

We conjecture that (14) holds in a more general framework, at least if the
interarrival times of the point process have finite variance.

Weak convergence of partial sums

This class of long memory process exhibits a very distinguishing feature. In-
stead of converging weakly to a process with finite variance, dependent sta-
tionary increments such as the fractional Brownian motion, the partial sums
of some of these processes have been shown to converge to an a-stable Levy
process, that is, an a-stable process with independent and stationary incre-
ment. Here again there is no general result, but such a convergence is easy to
prove under restrictive assumptions. Define

Tt
Sr(t) = | {X; —E[X,]}ds.

Then it is known in the particular cases described above that the finite di-
mensional distributions of the process £(T)T /Sy (for some slowly varying
function ¢) converge weakly to those of an a-stable process. This was proved in
[TL86] for the renewal reward process, in [MRRS02] for the ON-OFF and infi-
nite source Poisson processes when the shocks are constant. A particular case
of dependent shocks and durations is considered in [MRRO02]. [HHS04] proved
the result in discrete time for the error duration process; the adaptation to the
continuous time framework is straightforward. It is also probable that such a
convergence holds when the underlying point process is more general.

Thus, these processes are examples of second order long memory process
with Hurst index H € (1/2,1) such that T~#Sr(¢) converges in probability to
zero. This behaviour is very surprising and might be problematic in statistical
applications, as illustrated in Section 3.

It must also be noted that convergence does not hold in the space D of
right-continuous, left-limited functions endowed with the J; topology, since a
sequence of processes with continuous path which converge in distribution in
this sense must converge to a process with continuous paths. It was proved
in [RvdB00, Theorem 4.1] that this convergence holds in the M; topology for
the infinite source Poisson process. For a definition and application of the M;
topology in queuing theory, see [Whi02].

Slow growth and fast growth

Another striking feature of these processes is the slow growth versus fast
growth phenomenon, first noticed by [TL86] for the renewal-rewrd process
and more rigorously investigated by [MRRS02] for the ON-OFF and infinite
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source Poisson process®. Consider M independent copies X 1, <4 < M of
these processes and denote

M Tt
Apr(t) =) / (X —E[X,]}ds .
i=170

If M depends on T, then, according to the rate growth of M with respect to
T, a stable or Gaussian limit can be obtained. More precisely, the slow growth
and fast growth conditions are, up to slowly varying functions MT'=% — 0
and MT'~® — oo, respectively. In other terms, the slow and fast growth
conditions are characterized by var(Ay, (1)) < b(MT) and var(Ap, (1)) >
b(MT), respectively, where b is the inverse of the quantile function of the
durations.

Under the slow growth condition, the finite dimensional distributions of
L(MT)(MT)~Y*Ap 7 converge to those of a Levy a-stable process, where L
is a slowly varying function. Under the fast growth condition, the sequence of
processes T~ H¢=Y/2(TYM~Y/2 Ay 7 converges, in the space D(R) endowed
with the J; topology, to the fractional Brownian motion with Hurst index
H = (3 — «)/2. Tt is thus seen that under the fast growth condition, the
behaviour of a Gaussian long memory process with Hurst index H is recovered.

Non stationary versions

If the sum defining the process X in (6) is limited to non negative indices
j, then the sum has always a finite number of terms and there is no restric-
tion on the distribution of the interarrival times ¢;11 —t; and the durations
;. These models can then be nonstationary in two ways: either because of
initialisation, in which case a suitable choice of the initial distribution can
make the process stationary; or because these processes are non stable and
have no stationary distribution. The latter case arises when the interarrival
times and/or the durations have infinite mean. These models were studied
by [RRO0] and [MRO04] in the case where the point process of arrivals is a
renewal process. contrary to the stationry case, where heavy tailed durations
imply non Gaussian limits, the limiting process of the partial sums has non
stationary increments and can be Gaussian in some cases.

2.3 Long Memory in Counts

The time series of counts of the number of transactions in a given fixed interval
of time is of interest in financial econometrics. Empirical work suggests that
such series may possess long memory. See [DHHO05]. Since the counts are

3 Actually, in the case of the Infinite Source Poisson process, [MRRS02] consider a
single process but with an increasing rate A depending on 7', rather than super-
position of independent copies. The results obtained are nevertheless of the same
nature.
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induced by the durations between transactions, it is of interest to study the
properties of durations, how these properties generate long memory in counts,
and whether there is a connection between potential long memory in durations
and long memory in counts.

The event times determine a counting process N(t) = Number of events
n (0,t]. Given any fixed clock-time spacing At > 0, we can form the time
series {ANy } = {N(t'At) — N[(t' — 1)A¢t]} for t/ = 1,2,..., which counts the
number of events in the corresponding clock-time intervals of width At. We
will refer to the {ANy} as the counts. Let 7, > 0 denote the waiting time
(duration) between the k — 1’st and the k’th transaction.

We give some preliminary definitions taken from [DV.J03].

Definition 1. A point process N(t) = N(0,t] is stationary if for every
r =1,2,... and all bounded Borel sets A1,..., A, the joint distribution of
{N(A1 +1t),...,N(A, + 1)} does not depend on t € [0, c0).

A second order stationary point process is long-range count dependent
(LRcD) if

N(t
tlim 7\;&1«( ®) =00.

A second order stationary point process N(t) which is LRcD has Hurst

index H € (1/2,1) given by

N(t
H = sup{h : limsup w

t—oo

= oo} .

Thus if the counts {ANy}§2 __ on intervals of any fixed width At > 0
are LRD with memory parameter d then the counting process N(¢) must
be LRcD with Hurst index H = d + 1/2. Conversely, if N(¢) is an LRcD
process with Hurst index H, then { ANy } cannot have exponentially decaying
autocorrelations, and under the additional assumption of a power law decay of
these autocorrelations, { ANy } is LRD with memory parameter d = H —1/2.

There exists a probability measure P° under which the doubly infinite
sequence of durations {7;}%2 ___ are a stationary time series, i.e., the joint
distribution of any subcollection of the {7} depends only on the lags be-
tween the entries. On the other hand, the point process N on the real line is
stationary under the measure P. A fundamental fact about point processes is
that in general (a notable exception is the Poisson process) there is no single
measure under which both the point process N and the durations {7} are
stationary, i.e., in general P and P° are not the same. Nevertheless, there is a
one-to-one correspondence between the class of measures P that determine
a stationary duration sequence and the class of measures P that determine
a stationary point process. The measure P° corresponding to P is called the
Palm distribution. The counts are stationary under P, while the durations are
stationary under PP.

We now present an important theoretical result obtained by [Dal99).
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Theorem 1. A stationary renewal point process is LRcD and has Hurst in-
dex H = (1/2)(3—«) under P if the interarrival time has tail index 1 < v < 2
under P°.

Theorem 1 establishes a connection between the tail index of a duration
process and the persistence of the counting process. According to the theorem,
the counting process will be LRcD if the duration process is iid with infinite
variance. Here, the memory parameter of the counts is completely determined
by the tail index of the durations.

This prompts the question as to whether long memory in the counts can
be generated solely by dependence in finite-variance durations. An answer in
the affirmative was given by [DRV00], who provide an example outside of the
framework of the popular econometric models. We now present a theorem on
the long-memory properties of counts generated by durations following the
LMSD model. The theorem is a special case of a result proved in [DHSWO05],
who give sufficient conditions on durations to imply long memory in counts.

Theorem 2. If the durations {7} are generated by the LMSD process with
memory parameter d, then the induced counting process N(t) has Hurst index
H = 1/2+d, i.e. satisfies var(N(t)) ~ Ct>*¥+1 under P as t — oo where
C > 0.

3 Estimation of the Hurst index or memory parameter

A weakly stationary process with autocovariance function satisfying (1) has
a spectral density f defined by

1 ita
Fl) = 5= S A(He (15)
tez

This series converges uniformly on the compact subsets of [—m, 7] \ {0} and
in L!([—m, 7], dz). Under some strengthening of condition (1), the behaviour
of the function f at zero is related to the rate of decay of . For instance, if
we assume in addition that L is ultimately monotone, we obtain the following
Tauberian result [Taq03, Proposition 4.1], with d = H — 1/2.

li_)m0 L(z) ‘2?1 f(x) = n1I'(2d) cos(nd). (16)

Thus, a natural idea is to estimate the spectral density in order to estimate the
memory paramter d. The statistical tools are the discrete Fourier transform
(DFT) and the periodogram, defined for a sample Uy, ...,U,, as

Jg)j = (27m)71/2ZUteitwj7 Iy(w;) = |Jg,j ?
t=1
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where w; = 2j7/n, 1 < j < n/2 are the so-called Fourier frequencies. (Note
that for clarity the index n is omitted from the notation). In the classical
weakly stationary short memory case (when the autocovariance function is
absolutely summable), it is well known that the periodogram is an asymptot-
ically unbiased estimator of the spectral density fy defined in (15). This is no
longer true for second order long memory processes. [HB93] showed (in the
case where the function L is continuous at zero but the extension is straight-
forward) that for any fixed positive integer j, there exists a positive constant
c(k, H) such that

Jim B[y (w;)/ fu(wy)] = e(4, H)-

The previous results are true for any second order long memory process.
Nevertheless, spectral method of estimation of the Hurst parameter, based
on the heuristic (but incorrect) assumption that the renormalised DFTs

51/2(wj)J,§])j are i.i.d. standard complex Gaussian have been proposed and
theoretically justifed in some cases. The most well known is the GPH esti-
mator of the Hurst index, introduced by [GPHS83] and proved consistent and
asymptotically Gaussian for Gaussian long memory processes by [Rob95b] and
for a restricted class of linear processes by [Vel00]. Another estimator, often
referred to as the local Whittle or GSE estimator was introduced by [Kiin87]
and again proved consistent asymptotically Gaussian by [Rob95a] for linear
long memory processes.

These estimators are built on the m first log-periodogram ordinates, where
m is an intermediate sequence, i.e. 1/m +m/n — 0 as n — oo. The choice
of m is irrelevant to consistency of the estimator but has an influence on the
bias. The rate of convergence of these estimators, when known, is typically
slower than \/n. Trimming of the lowest frequencies, which means taking the
{ first frequencies out is sometimes used, but there is no theoretical need for
this practice, at least in the Gaussian case. See [HDB98]. For nonlinear series,
we are not sure yet if trimming may be needed in general.

In the following subsections, we review what is known, both theoretically
and empirically, about these and related methods for the different types of
nonlinear processes described previsoulsy.

We start by describing the behaviour of the renormalized DFTs at low
frequencies, that is, when the index j of the frequency w; remains fixed as
n — 0o.

3.1 Low-Frequency DFTs of Counts from Infinite-Variance
Durations

To the best of our knowledge there is no model in the literature for long
memory processes of counts. Hence the question of parametric estimation
has not arisen so far in this context. However, one may still be interested in
semiparametric estimation of long memory in counts. We present the following
result on the behavior of the Discrete Fourier Transforms (DFTSs) of processes
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of counts induced by infinite-variance durations that will be of relevance to
us in understanding the behavior of the GPH estimator. Let n denote the
number of observations on the counts, w; = 2mj/n, and define

J AN/e‘t “i,
ae Ly

t'=1
Assume that the distribution of the durations satisfies

P(ri > x) v L(z)x™“ T — 0 (17)

where {(z) is a slowly varying function with lim, % 1 VEk > 0 and
£(x) is ultimately monotone at oco.

Theorem 3. Let {7} be i.i.d. random variables which satisfy (17) with « €
(1,2) and mean .. Then for each fized j, £(n)~*n'/?~ 1/O‘JAN converges in
dzstmbutzon to a complex a-stable distribution. Moreover, for each fized j,

fJnAjv — O, where d =1 — «/2.

The theorem implies that when j is fixed, the normalized periodogram of
the counts, wjzdl AN (wj) converges in probability to zero. The degeneracy of
the limiting distribution of the normalized DFTs of the counts suggests that
the inclusion of the very low frequencies may induce negative finite-sample
bias in semiparametric estimators. In addition, the fact that the suitably nor-
malized DFT has an asymptotic stable distribution could further degrade
the finite-sample behavior of semiparametric estimators, more so perhaps for
the Whittle-likelihood-based estimators than for the GPH estimator since the
latter uses the logarithmic transformation.

By contrast, for linear long-memory processes, the normalized periodogram
has a nondegenerate positive limiting distribution. See, for example, [TH94].

3.2 Low-Frequency DFTs of Counts from LMSD Durations

We now study the behavior of the low-frequency DFTs of counts generated
from finite-variance LMSD durations.

Theorem 4. Let the durations {1y} follow an LMSD model with memory
parameter d. Then for each fized j, denAj\/’ converges in distribution to a
zero-mean Gaussian random variable.

This result is identical to what would be obtained if the counts were a
linear long-memory process, and stands in stark contrast to Theorem 3. The
discrepancy between these two theorems suggests that the low frequencies will
contribute far more bias to semiparametric estimates of d based on counts
if the counts are generated by infinite-variance durations than if they were
generated from LMSD durations.
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3.3 Low and High Frequency DFTs of Shot-Noise Processes

Let X be either the renewal-reward process defined in (7) or the error duration
process (9). [HHS04], Theorem 4.1, have proved that Theorem 3 still holds,
ie. nl/zfl/o‘ij converges in distribution to an a-stable law, where « is the
tail index of the duration. This result can probably be extended to all the
shot-noise process for which convergence in distribution of the partial sum
process can be proved.

The DFTs of these processes have an interesting feature, related to the
slow growth/fast growth phenomenon. The high frequency DFTs, i. e. the
DFT J,f ; computed at a frequency w; whose index j increases as n for some
p > 1—1/a, renormalized by the square root of the spectral density computed
at wj, have a Gaussian weak limit. This is proved in Theorem 4.2 of [HHS04].

3.4 Estimation of the memory parameter of the LMSV and LMSD
models

We now discuss parametric and semiparametric estimation of the memory
parameter for the LMSV/LMSD models. Note that in both the LMSV and
LMSD models, logx? can be expressed as the sum of a long memory signal
and 7id noise. Specifically, we have

IOgXt2 = ,u—i-ht—i-ut, (18)

where p = E (logv?) and u; = logv} — E (logv}?) is a zero-mean iid series
independent of {h;} . Since all the extant methodology for estimation for the
LMSV model exploits only the above signal plus noise representation, the
methodology continues to hold for the LMSD model.

Assuming that {h:} is Gaussian, [DH01] derived asymptotic theory for the
log-periodogram regression estimator (GPH; [GPHS83]) of d based on {log X?}.
This provides some justification for the use of GPH for estimating long mem-
ory in volatility. Nevertheless, it can also be seen from Theorem 1 of [DHO1]
that the presence of the noise term {u;} induces a negative bias in the GPH
estimator, which in turn limits the number m of Fourier frequencies which
can be used in the estimator while still guaranteeing /m-consistency and
asymptotic normality. This upper bound, m = o[n*¥(44+1] where n is the
sample size, becomes increasingly stringent as d approaches zero. The results
in [DHO1] assume that d > 0 and hence rule out valid tests for the presence of
long memory in {h:}. Such a test based on the GPH estimator was provided
and justified theoretically by [HS02].

[SP03] proposed a nonlinear log-periodogram regression estimator dnLp
of d, using Fourier frequencies 1,...,m. They partially account for the noise
term {u;} through a first-order Taylor expansion about zero of the spectral
density of the observations, {log X?}. They establish the asymptotic normality
of m'/2(dxpp — d) under assumptions including n~44m?*@+1/2 — Const. Thus,
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dxrp, with a variance of order n=44/(44+1/2) " converges faster than the GPH
estimator, but still arbitrarily slowly if d is sufficiently close to zero. [SP03]
also assumed that the noise and signal are Gaussian. This rules out most
LMSV/LMSD models, since {logv?} is typically non-Gaussian.

For the LMSV/LMSD model, results analogous to those of [DHO1] were
obtained by [Art04] for the GSE estimator, based once again on {log X?}. The
use of GSE instead of GPH allows the assumption that {h:} is Gaussian to be
weakened to linearity in a Martingale difference sequence. [Art04] requires the
same restriction on m as in [DHO1]. A test for the presence of long memory
in {h:} based on the GSE estimator was provided by [HMS05].

[HRO3] proposed a local Whittle estimator of d, based on log squared re-
turns in the LMSV model. The local Whittle estimator, which may be viewed
as a generalized version of the GSE estimator, includes an additional term
in the Whittle criterion function to account for the contribution of the noise
term {u;} to the low frequency behavior of the spectral density of {log X?}.
The estimator is obtained from numerical optimization of the criterion func-
tion. It was found in the simulation study of [HRO3] that the local Whittle
estimator can strongly outperform GPH, especially in terms of bias when m
is large.

Asymptotic properties of the local Whittle estimator were obtained by
[HMSO05], who allowed {h:} to be a long-memory process, linear in a Martin-
gale difference sequence, with potential nonzero correlation with {u;}. Under
suitable regularity conditions on the spectral density of {h;}, [HMS05] es-
tablished the y/m-consistency and asymptotic normality of the local Whittle
estimator, under certain conditions on m. If we assume that the short memory
component of the spectral density of {h:} is sufficiently smooth, then their
condition on m reduces to

lim (m ™00t 4 =4S log?(m)) =0 (19)

n—oo
for some arbitrarily small § > 0.

The first term in (19) imposes a lower bound on the allowable value of m,
requiring that m tend to oo faster than n*®/ (44+1) Tt is interesting that [DHO1],
under similar smoothness assumptions, found that for mt/? (db pu — d) to be
asymptotically normal with mean zero, where depr is the GPH estimator,
the bandwidth m must tend to oo at a rate slower than n*®/(44+1) Thus for
any given d, the optimal rate of convergence for the local Whittle estimator
is faster than that for the GPH estimator.

Fully parametric estimation in LMSV/LMSD models once again is based
on {log X?} and exploits the signal plus noise representation (18). When {h;}
and {u;} are independent, the spectral density of {log X?} is simply the sum
of the spectral densities of {h:} and {u}, viz.

frogx2(N) = fr(X) + o3/ (2m), (20)

where fioq x2 is the spectral density of {log X2}, fn is the spectral density of
{h:} and 02 = var(u;), all determined by the assumed parametric model. This
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representation suggests the possibility of estimating the model parameters in
the frequency domain using the Whittle likelihood. Indeed, [Hos97] claims
that the resulting estimator is y/n-consistent and asymptotically normal. We
believe that though the result provided in [Hos97] is correct, the proof is
flawed. [Deo95] has shown that the quasi-maximum likelihood estimator ob-
tained by maximizing the Gaussian likelihood of {log X?} in the time domain
is y/n-consistent and asymptotically normal.

One drawback of the latent-variable LMSV/LMSD models is that it is dif-
ficult to derive the optimal predictor of |X¢|*. In the LMSV model, {|X;|*}
for s > 0 serves as a proxy for volatility, while in the LMSD model, {X;}
represents durations. A computationally efficient algorithm for optimal linear
prediction of such series was proposed in [DHLO5], exploiting the Precondi-
tioned Conjugate Gradient (PCG) algorithm. In [CHLO5], it is shown that the
computational cost of this algorithm is O(nlog®?n), in contrast to the much
more expensive Levinson algorithm, which has cost of O(n?).

3.5 Simulations on the GPH Estimator for Counts

We simulated i.i.d. durations from a positive stable distribution with tail index
«a = 1.5, with an implied d for the counts of .25. We also simulated durations
from an LMSD (1,d,0) model with Weibull innovations, AR(1) parameter
of —.42, and d = .3545, as was estimated from actual tick-by-tick durations
in [DHHO05]. The stable durations were multiplied by a constant ¢ = 1.21 so
that the mean duration matches that found in actual data. For the LMSD
durations, we used ¢ = 1. One unit in the rescaled durations is taken to repre-
sent one second. Tables 1 and 2, for the stable and LMSD cases respectively,
present the GPH estimates based on the resulting counts for different values
of At, using n = 10,000, m = n%% and m = n®8. For the stable case, the
bias was far more strongly negative for the smaller value of m, whereas for
the LMSD case, the bias did not change dramatically with m. This is consis-
tent with the discussion in Section 3.2, and also with the averaged log — log
periodogram plots presented in Figure 1, where the averaging is taken over a
large number of replications, and all positive Fourier frequencies are consid-
ered, j = 1,...,n/2. The plot for the stable durations (upper panel) shows
a flat slope at the low frequencies. For this process, using more frequencies
in the regression seems to mitigate the negative bias induced by the flatness
in the lower frequencies as indicated by the less biased estimates of d when
m = n"8,

For the LMSD process, if the conjecture is correct then the counts should
have the same memory parameter as the durations, d = .3545. Assuming that
this is the case, we did not find severe negative bias in the GPH estimators
on the counts, though the estimate of d seems to increase with At in the case
when m = n%5. The averaged log — log periodogram plot presented in the
lower panel of Figure 1 shows a near-perfect straight line across all frequencies,
which is quite different from the pattern we observed in the case of counts
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based on stable durations. The straight-line relationship here is consistent
with the bias results in our LMSD simulations, and with the discussion in
Section 3.2.

Statistical properties of depr and the choice of m for Gaussian long-
memory time series have been discussed in recent literature. [Rob95b] showed
for Gaussian processes that the GPH estimator is m'/2-consistent and asymp-
totically normal if an increasing number of low frequencies L is trimmed from
the regression of the log periodogram on log frequency. [HDB98] showed that
trimming can be avoided for Gaussian processes. In our simulations, we did
not use any trimming. There is as yet no theoretical justification for the GPH
estimator in the current context since the counts are clearly non-Gaussian,
and presumably constitute a nonlinear process. It is not clear whether trim-
ming would be required for such a theory, but our simulations and theoretical
results suggest that in some situations trimming may be helpful, while in
others it may not be needed.

Table 1. GPH estimators for counts with different At. Counts generated from
iid stable durations with skewness parameter 8 = 0.8 and tail index « 1.5.
The corresponding memory parameter for counts is d = .25. We generated 500
replications each with sample size n = 10, 000. The number of frequencies in the log
periodogram regression was m = n’® = 1585 and m = y/n = 100. t-values marked
with * reject the null hypothesis, d = 0.25 in favor of d < 0.25.

At m = 05 = 0%
c=121 Mean(deH)‘ t-Value Mean(deH)‘t—Value
5 min 0.1059 —17.65" 0.2328 —5.77*
10 min 0.0744 —23.08" 0.2212 —8.31%
20 min 0.0715 —23.23* 0.2186 —7.75"

Table 2. Mean of the GPH estimators for counts with different At. Counts generated
from LMSD durations with Weibull (1, ) shocks. The number of frequencies in the
log periodogram regression was m = /n and m = n%®%. We used d = .3545 and
v = 1.3376 for our simulations. We simulated 200 replications of the counts, each
with sample size n = 10,000. t-values marked with * reject the null hypothesis,
d = 0.3545 in favor of d < 0.3545.

AT = 05 = 0F
c=1 Mean(dng)‘t-Value Mean(dng)‘t-Value
5 min 0.3458 —1.76* 0.3471 —6.49"
30 min 0.3873 3.45* 0.3469 —3.59*
60 min 0.3923 4.05* 0.3478 —3.20%
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Fig. 1. Averaged log —log periodogram plots for the counts generated from iid
Stable and LMSD durations.
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3.6 Estimation of the memory parameter of the Infinite Source
Poisson process

Due to the underlying Poisson point process, the Infinite Poisson Source pro-
cess is a very mathematically tractable model. Computations are very easy
and in particular, convenient formulas for cumulants of integrals along paths
of the process are available. This allows to derive the theoretical properties of
estimators of the Hurst index or memory parameter. [FRS05] have defined an
estimator of the Hurst index of the Infinite Poisson source process (with ran-
dom transmission rate) related to the GSE and proved its consistency and rate
of convergence. Instead of using the DFTs of the process, so-called wavelets
coefficients are defined as follows. Let 1) be a measurable compactly supported
function on R such that [ (s)ds =0.For j € Nand k =0,..., 27 — 1, define

Wik = /QS(S)XS ds .

If (13) holds, then E[w; ;] = 0 and var(w;;) = L(27)2@2~7 = [(27)224
where « is the tail index of the durations, d = 1—a«/2 is the memory parameter
and L is a slowly varying function at infinity. This scaling property makes it
natural to define a contrast function

W(d') = log <Z(j.k)€A 22d,jw]27k) + 0d' log(2) ,

where A is the admissible set of coefficients, which depends on the interval
of observation and the support of the function . The estimator of d is then
d = arg ming e (o,1/2) W(d'). [FRS05] have proved under some additional tech-
nical assumptions that this estimator is consistent. The rate of convergence
can be obtained, but the asymptotic distribution is not known, though it is
conjectured to be Gaussian, if the set A is properly chosen.

Note in passing that here again, the slow growth/fast growth phenomenon
arises. It can be shown, if the shocks and durations are independent, that for
fixed k, 2(172)3/24; 1 converges to an a-stable distribution, but if k tends to
infinity at a suitable rate, 2-%w;; converges to a complex Gaussian distri-
bution. This slow growth/fast growth phenomenon is certainly a very deep
property of these processes that should be understood more deeply.
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Appendix

Proof ( of Theorem 8). For simplicity, we set the clock-time spacing At = 1.
Define

o)
Srn@)=>m 0<60<1,
k=1

[n6)
Sann(0)=> ANy  0<60<1.

t'=1

Since o < 2 and {7} is an i.i.d. sequence, by the fonctional central limit
theorem (FCLT) for random variables in the domain of attraction of a stable
law (see [EKM97, Theorem 2.4.10]), I(n)n='/*{S, () — |nf]u,} converges
weakly in D(0,1) to an a-stable motion, for some slowly varying function .
Now define

Un(9) = (2m) ' 2Un)n~ *{Sann(6) — [n6)/pr} .

By the equivalence of FCLT's for the counting process and its associated partial
sums of duration process (see [[WT1]), U, also converges weakly in D([0, 1])
to an a-stable motion, say S. Summation by parts yields, for any nonzero
Fourier frequency w; (with fixed j > 0)

l(n)n1/271/aJnA)§V _ (271_)71/21(”)”71/04 Z{ANt’ . 1/MT}eit’wj
t'=1

= S U /n) — Un((t/ = 1) fn)} &' = /0 o297 4T () .

t'=1

Hence by the continuous mapping theorem
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d Ui
V2 l(n)nlm_l/o‘Jﬁ;\] — / AT 48 (x)
0

which is a stochastic integral with respect to a stable motion, hence has a
stable law.

To prove the second statement of the theorem, note that for fixed j and
as n — 0o, f(w;) ~ ll(n)wj_zd for some slowly varying function [y, so

a— AN
l(n)nl/ 1/2 Jnj

s

71/2 . AN =
/ (WJ)Jn,J f1/2(wj) l(n)nl/o‘_l/2

AN
Jhj

~ Cll(n)nl/a+a/2—3/2 )
u;l_l/al(n)nl/a—l/2

Since 1/a+a/2—3/2 < 0, we have [(n)n!/*+*/2=3/2 _ 0. Hence by Slutsky’s
Theorem, (21) converges to zero. O

Proof (of Theorem 4). Let S, (t) = n=H Zgﬂ(m — E[m]), t € (0,1). It is

shown in Surgailis and Viano (2002) that S, (t) 4 By (t) in D([0,1]) where
Bpg(t) is fractional Brownian motion with Hurst parameter H = d + 1/2.
Thus, by Iglehart and Whitt (1971), it follows that t = N — ABy in D([0, 1]),
where A is a nonzero constant. The result follows as above by the continuous
mapping theorem and summation by parts. a



