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1 Introduction

Let P be a Markov tranition kernel on a state space X equipped with a count-
ably generated σ-field X . For a control function f : X → [1,∞), the f -total
variation or f -norm of a signed measure µ on X is defined as

‖µ‖f := sup
|g|≤f

|µ(g)| .

When f ≡ 1, the f -norm is the total variation norm, which is denoted ‖µ‖TV.
Assume that P is aperiodic positive Harris recurrent with stationary distri-
bution π. Then the iterated kernels Pn(x, ·) converge to π. The rate of con-
vergence of Pn(x, .) to π does not depend on the starting state x, but exact
bounds may depend on x. Hence, it is of interest to obtain non uniform or
quantitative bounds of the following form

∞
∑

n=1

r(n)‖Pn(x, ·) − π‖f ≤ g(x) , for all x ∈ X (1)

where f is a control function, {r(n)}n≥0 is a non-decreasing sequence, and g
is a nonnegative function which can be computed explicitly.

As emphasized in [RR04, section 3.5], quantitative bounds have a sub-
stantial history in Markov chain theory. Applications are numerous including
convergence analysis of Markov Chain Monte Carlo (MCMC) methods, tran-
sient analysis of queueing systems or storage models, etc. With few exception
however, these quantitative bounds were derived under conditions which im-
ply geometric convergence, i.e. r(n) = βn, for some β > 1 (see for instance
[MT94], [Ros95], [RT99], [RR04], and [Bax05]).

Geometric convergence does not hold for many chains of practical inter-
est. Hence it is necessary to derive bounds for chains which converge to the
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stationary distribution at a rate r which grows to infinity slower than a geo-
metric sequence. These sequences are called subgeometric sequences and are
defined in [NT83] as non decreasing sequences r such that log r(n)/n ↓ 0 as
n → ∞. These sequences include among other examples the polynomial se-

quences r(n) = nγ with γ > 0 and subgeometric sequences r(n)ecnδ

with
c > 0 and δ ∈ (0, 1).

The first general results proving subgeometric rates of convergence were
obtained by [NT83] and later extended by [TT94], but do not provide com-
putable expressions for the bound in the rhs of (1). A direct route to quanti-
tative bounds for subgeometric sequences has been opened by [Ver97, Ver99],
based on coupling techniques. Such techniques were later used in specific con-
texts by many authors, among others, [FM00] [JR01] [For01] [FM03b].

The goal of this paper is to give a short and self contained proof of general
bounds for subgeometric rates of convergence, under practical conditions. This
is done in two steps. The first one is Theorem 1 whose proof, based on coupling,
provides an intuitive understanding of the results of [NT83] and [TT94]. The
second step is the use of a very general drift condition, recently introduced in
[DFMS04]. This condition is recalled in Section 2.1 and the bounds it implied
are stated in Proposition 1.

This paper complements the works [DFMS04] and [DMS05], to which we
refer for applications of the present techniques to practical examples.

2 Explicit bounds for the rate of convergence

The only assumption for our main result is the existence of a small set.

(A1). There exist a set C ∈ X , a constant ǫ > 0 and a probability measure ν
such that, for all x ∈ C, P (x, ·) ≥ ǫν(·).

For simplicity, only one-step minorisation is considered in this paper. Adapta-
tions to m-step minorisation can be carried out as in [Ros95] (see also [For01]
and [FM03b]).

Let P̌ be a Markov transition kernel on X × X such that, for all A ∈ X ,

P̌ (x, x′, A× X) = P (x,A)1(C×C)c(x, x′) +Q(x,A)1C×C(x, x′) (2)

P̌ (x, x′,X ×A) = P (x′, A)1(C×C)c(x, x′) +Q(x′, A)1C×C(x, x′) (3)

where Ac denotes the complementary of the subset A and Q is the so-called
residual kernel defined, for x ∈ C and A ∈ X by

Q(x,A) =

{

(1 − ǫ)−1 (P (x,A) − ǫν(A)) 0 < ǫ < 1

ν(A) ǫ = 1
(4)

One may for example set
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P̌ (x, x′;A×A′) =

P (x,A)P (x′, A′)1(C×C)c(x, x′) +Q(x,A)Q(x′, A)1C×C(x, x′) , (5)

but this choice is not always the most suitable; cf. Section 2.2. For (x, x′) ∈
X × X, denote by P̌x,x′ and Ěx,x′ the law and the expectation of a Markov
chain with initial distribution δx ⊗ δx′ and transition kernel P̌ .

Theorem 1. Assume (A1).

For any sequence r ∈ Λ, δ > 0 and all (x, x′) ∈ X × X,

∞
∑

n=1

r(n)‖Pn(x, ·) − Pn(x′, ·)‖TV ≤ (1 + δ)Ěx,x′

[

σ
∑

k=0

r(k)

]

+
1 − ǫ

ǫ
M , (6)

with M = (1 + δ) supn≥0 {R
∗r(n− 1) − ǫ(1 − ǫ)δR(n)/(1 + δ)}+ and R∗ =

sup(y,y′)∈C×C Ěy,y′ [
∑τ

k=1 r(k)].

Let W : X× X → [1,∞) and f be a non-negative function f such that f(x) +
f(x′) ≤W (x, x′) for all (x, x′) ∈ X × X. Then,

∞
∑

n=1

‖Pn(x, ·) − Pn(x′, ·)‖f ≤ Ěx,x′

[

σ
∑

k=0

W (Xk, X
′
k)

]

+
1 − ǫ

ǫ
W ∗ . (7)

with W ∗ = sup(y,y′)∈C×C Ěy,y′ [
∑τ

k=1W (Xk, X
′
k)].

Remark 1. Integrating these bounds with respect to π(dx′) yields similar
bounds for ‖Pn(x, ·) − π‖TV and ‖Pn(x, ·) − π‖f .

Remark 2. The trade off between the size of the coupling set and the constant ǫ
appears clearly: if the small set is big, then the chain returns more often to
the small set and the moments of the hitting times can expected to be smaller,
but the constant ǫ will be smaller. This trade-off is illustrated numerically in
[DMS05, Section 3].

By interpolation, intermediate rates of convergence can be obtained. Let
α and β be positive and increasing functions such that, for some 0 ≤ ρ ≤ 1,

α(u)β(v) ≤ ρu+ (1 − ρ)v , for all (u, v) ∈ R
+ × R

+ . (8)

Functions satisfying this condition can be obtained from Young’s inequality.
Let ψ be a real valued, continuous, strictly increasing function on R

+ such
that ψ(0) = 0; then for all a, b > 0,

ab ≤ Ψ(a) + Φ(b) ,where Ψ(a) =

∫ a

0

ψ(x)dx and Φ(b) =

∫ b

0

ψ−1(x)dx ,

where ψ−1 is the inverse function of ψ. If we set α(u) = Ψ−1(ρu) and β(v) =
Φ−1((1− ρ)v), then the pair (α, β) satisfies (8). A trivial example is obtained
by taking ψ(x) = xp−1 for some p ≥ 1, which yields α(u) = (pρu)1/p and
β(u) = (p(1 − ρ)u/(p− 1))(p−1)/p. Other examples are given in Section 2.1.
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Corollary 1. Let α and β be two positive functions satisfying (8) for some
0 ≤ ρ ≤ 1. Then, for any non-negative function f such that f(x) + f(x′) ≤
β ◦W (x, x′) and δ > 0, for all x, x′ ∈ X and n ≥ 1,

∞
∑

n=1

α(r(n))‖Pn(x, ·) − Pn(x′, ·)‖f ≤ ρ(1 + δ)Ěx,x′

[

σ
∑

k=0

r(k)

]

+ (1 − ρ)Ěx,x′

[

σ
∑

k=0

W (Xk, X
′
k)

]

1 − ǫ

ǫ
{ρM + (1 − ρ)W ∗} . (9)

2.1 Drift Conditions for subgeometric ergodicity

The bounds obtained in Theorem 1 and Corollary 1 are meaningful only if
they are finite. Sufficient conditions are given in this section in the form of
drift conditions. The most well known drift condition is the so-called Foster-
Lyapounov drift condition which not only implies but is actually equivalent
to geometric convergence to the stationary distribution, cf. [MT93, Chapter
16]. [JR01], simplifying and generalizing an argument in [FM00], introduced
a drift condition which implies polynomial rates of convergence. We consider
here the following drift condition, introduced in [DFMS04], which allows to
bridge the gap between polynomial and geometric rates of convergence.
Condition D(φ, V, C): There exist a function V : X → [1,∞], a concave
monotone non decreasing differentiable function φ : [1,∞] 7→ (0,∞], a mea-
surable set C and a constant b > 0 such that

PV + φ ◦ V ≤ V + b1C .

If the function φ is concave, non decreasing and differentiable, define

Hφ(v) :=

∫ v

1

dx

φ(x)
. (10)

Then Hφ is a non decreasing concave differentiable function on [1,∞). More-
over, since φ is concave, φ′ is non increasing. Hence φ(v) ≤ φ(1)+φ′(1)(v−1)
for all v ≥ 1, which implies that Hφ increases to infinity. We can thus define
its inverse H−1

φ : [0,∞) → [1,∞), which is also an increasing and differen-

tiable function, with derivative (H−1
φ )′(x) = φ ◦ H−1

φ (x). For k ∈ N, z ≥ 0
and v ≥ 1, define

rφ(z) := (H−1
φ )′(z) = φ ◦H−1

φ (z) . (11)

It is readily checked that if limt→∞ φ
′(t) = 0, then rφ ∈ Λ, cf [DFMS04,

Lemma 2.3].
Proposition 2.2 and Theorem 2.3 in [DMS05] show that the drift condition

D(φ, V, C) implies that the bounds of Theorem 1 are finite. We gather here
these results.
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Proposition 1. Assume that Condition D(φ, V, C) holds for some small set
C and that infx/∈C φ ◦ V (x) > b. Fix some arbitrary λ ∈ (0, 1 − b/ infx/∈C φ ◦
V (x)) and define W (x, x′) = λφ(V (x) + V (x′) − 1). Define also V ∗ = (1 −
ǫ)−1 supy∈C {PV (y) − ǫν(V )}. Let σ be the hitting time of the set C×C. Then

Ěx,x′

[

σ
∑

k=0

rφ(k)

]

≤ 1 +
rφ(1)

φ(1)
{V (x) + V (x′)}1(x,x′)/∈C×C ,

Ěx,x′

[

σ
∑

k=0

W (Xk, X
′
k)

]

≤ sup
(y,y′)∈C×C

W (y, y′) + {V (x) + V (x′)}1(x,x′)/∈C×C ,

R∗ ≤ 1 +
rφ(1)

φ(1)
{2V ∗ − 1}

W ∗ ≤ sup
(y,y′)∈C×C

W (y, y′) + 2V ∗ − 1 .

Remark 3. The condition infy/∈C φ◦V (y) > b may not be fulfilled. If level sets
{V ≤ d} are small, then the set C can be enlarged so that this condition holds.
This additional condition may appear rather strong, but can be weakened by
using small sets associated to some iterate Pm of the kernel (see e.g. [Ros95],
[For01] and [FM03b]).

We now give examples of rates that can be obtained by (11).

Polynomial rates

Polynomial rates of convergence are obtained when Condition D(φ, V, C)
holds with φ(v) = cvα for some α ∈ [0, 1) and c ∈ (0, 1]. The rate of con-
vergence in total variation distance is rφ(n) ∝ nα/(1−α) and the pairs (r, f)
for which (9) holds are of the form (n(1−p)α/(1−α), V αp) for p ∈ [0, 1], or in
other terms, (nκ−1, V 1−κ(1−α)) for 1 ≤ κ ≤ 1/(1 − α), which is Theorem 3.6
of [JR01].

It is possible to extend this result by using more general interpolation
functions. For instance, choosing for b > 0, α(x) = (1 ∨ log(x))b and β(x) =
x(1 ∨ log(x))−b yields the pairs (n(1−p)α/(1−α) logb(n), V αp(1 + logV )−b), for
p ∈ [0, 1].

Logarithmic rates of convergence

Rates of convergence slower than any polynomial can be obtained when con-
dition D(φ, V, C) holds with a function φ that increases to infinity slower than
polynomially, for instance φ(v) = c(1+ log(v))α for some α ≥ 0 and c ∈ (0, 1].
A straightforward calculation shows that

rφ(n) ≍ logα(n) .

Pairs for which (9) holds are thus of the form ((1 + log(n))(1−p)α, (1 +
log(V ))pα).
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Subexponential rates of convergence

Subexponential rates of convergence faster than any polynomial are obtained
when the condition D(φ, V, C) holds with φ such that v/φ(v) goes to infinity
slower than polynomially. Assume for instance that φ is concave and differen-
tiable on [1,+∞) and that for large v, φ(v) = cv/ logα(v) for some α > 0 and
c > 0. A simple calculation yields

rφ(n) ≍ n−α/(1+α) exp
(

{c(1 + α)n}1/(1+α)
)

.

Choosing α(x) = x1−p(1 ∨ log(x))−b and β(x) = xp(1 ∨ log(x))b for p ∈ (0, 1)
and b ∈ R; or p = 0 and b > 0; or p = 1 and b < −α yields the pairs

n−(α+b)/(1+α) exp
(

(1 − p){c(1 + α)n}1/(1+α)
)

, V p(1 + logV )b .

2.2 Stochastically monotone chains

Let X be a totally ordered set and let the order relation be denoted by �
and for a ∈ X, let (−∞, a] denote the set of all x ∈ X such that x � a. A
transition kernel on X is said to be stochastically monotone if x � y implies
P (x, (−∞, a]) ≥ P (y, (−∞, a]) for all a ∈ X. If Assumption (A1) holds, for a
small set C = (−∞, a0], then instead of defining the kernel P̌ as in (5), it is
convenient to define it, for x, x′ ∈ X and A ∈ X ⊗ X , by

P̌ (x, x′;A) = 1(x,x′)/∈C×C

∫ 1

0

1A(P←(x, u), P←(x′, u)) du

+ 1C×C(x, x′)

∫ 1

0

1A(Q←(x, u), Q←(x′, u)) du ,

where, for any transition kernel K on X, K←(x, ·) is the quantile function of
the probability measure K(x, ·), and Q is the residual kernel defined in (4).
This construction makes the set {(x, x′) ∈ X × X : x � x′} absorbing for P̌ .
This means that if the chain (Xn, X

′
n) starts at (x0, x

′
0) with x0 � x′0, then

almost surely, Xn � X ′n for all n. Let now σC and σC×C denote the hitting
times of the sets C and C × C, respectively. Then, we have the following
very simple relations between the moments of the hitting times of the one
dimensional chain and that of the bidimensional chain with transition kernel
P̌ . For any sequence r and any non negative function V all x � x′

Ěx,x′

[

σC×C
∑

k=0

r(k)V (Xk, X
′
k)

]

≤ Ex′

[

σC
∑

k=0

r(k)V (X ′k)

]

.

A similar bound obviously holds for the return times. Thus, there only re-
main to obtain bounds for this quantities, which is very straightforward if
moreover condition D(φ,V,C) holds. Examples of stochastically monotone
chains with applications to queuing and Monte-Carlo simulation that satisfy
condition D(φ,V,C) are given in [DMS05, section 3].
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3 Proof of Theorem 1

Define a transition kernel P̃ on the space X̃ = X × X × {0, 1} endowed with
the product σ-field X̃ , for any x, x′ ∈ X and A,A′ ∈ X , by

P̃ ((x, x′, 0), A×A′ × {0}) = {1 − ǫ1C×C(x, x′)}P̌ ((x, x′), A×A′) , (12)

P̃ ((x, x′, 0), A×A′ × {1}) = ǫ1C×C(x, x′)νx,x′(A ∩A′) , (13)

P̃ ((x, x′, 1), A×A′ × {1}) = P (x,A ∩A′) . (14)

For any probability measure µ̃ on (X̃, X̃ ), let P̃µ̃ be the probability measure

on the canonical space (X̃N, X̃⊗N) such that the coordinate process {X̃k} is a
Markov chain with transition kernel P̃ and initial distribution µ̃. The corre-
sponding expectation operator is denoted by Ẽµ̃.

The transition kernel P̃ can be described algorithmically. Given X̃0 =
(X0, X

′
0, d0) = (x, x′, d), X̃1 = (X1, X

′
1, d1) is obtained as follows.

• If d = 1 then draw X1 from P (x, ·) and set X ′1 = X1, d1 = 1.
• If d = 0 and (x, x′) ∈ C × C, flip a coin with probability of heads ǫ.

– If the coin comes up heads, draw X1 from νx,x′ and set X ′1 = X1 and
d1 = 1.

– If the coin comes up tails, draw (X1, X
′
1) from P̌ (x, x′; ·) and set d1 = 0.

• If d = 0 and (x, x′) 6∈ C × C, draw (X1, X
′
1) from P̌ (x, x′; ·) and set d1 = 0.

The variable dn is called the bell variable; it indicates whether coupling has
occurred by time n (dn = 1) or not (dn = 0). The first index n at which
dn = 1 is the coupling time;

T = inf{k ≥ 1 : dk = 1}.

If dn = 1 then Xk = X ′k for all k ≥ n. This coupling construction is carried

out in such a way that under P̃ξ⊗ξ′⊗δ0
, {Xk} and {X ′k} are Markov chains

with transition kernel P with initial distributions ξ and ξ′ respectively.

The main tool of the proof is the following relation between Ẽx,x′,0 and
Ěx,x′ , proved in [DMR04, Lemma 1]. For any non-negative adapted process
(χk)k≥0 and (x, x′) ∈ X × X,

Ẽx,x′,0[χn1{T>n}] = Ěx,x′

[

χn (1 − ǫ)Nn−1

]

, (15)

where Nn =
∑n

i=0 1C×C(Xi, X
′
i) is the number of visits to C × C before

time n.
We now proceed with the proof of Theorem 1.

Step 1 Lindvall’s inequality [Lin79, Lin92]

∞
∑

k=0

r(k)‖P k(x, ·) − P k(x′, ·)‖f ≤ Ẽx,x′,0





T−1
∑

j=0

r(j) {f(Xj) + f(X ′j)}



 . (16)
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Proof. For any measurable function φ such that |φ| ≤ f , and for any (x, x′) ∈
X × X it holds that

|P kφ(x) − P kφ(x′)| =
∣

∣

∣
Ẽx,x′,0[{φ(Xk) − φ(X ′k)}1{dk=0}]

∣

∣

∣

≤ Ẽx,x′,0[{f(Xk) + f(X ′k)}1{T>k}] .

Hence ‖P k(x, · · · )−P k(x′, ·)‖f ≤ Ẽx,x′,0[{f(Xk)+ f(X ′k)}1{T>k}]. Summing
over k yields (16). ⊓⊔

Step 2 Denote Wr,f (x, x′) = Ěx,x′ [
∑σ

k=0 r(k)f(Xk, X
′
k)] and W ∗(r, f) =

sup(x,x′)∈C×C [
∑τ

k=1 r(k)f(Xk, X
′
k)] /r(0). Then

Ẽx,x′,0

[

T−1
∑

k=0

r(k)f(Xk, X
′
k)

]

≤Wr,f (x, x′) + ǫ−1(1 − ǫ)W ∗r,f Ẽx,x′,0[r(T − 1)] . (17)

Proof. Applying (15), we obtain

Ẽx,x′,0

[

T−1
∑

k=0

r(k)f(Xk, X
′
k)

]

=

∞
∑

k=0

Ẽx,x′,0

[

r(k)f(Xk, X
′
k)1{T>k}

]

=

∞
∑

k=0

Ěx,x′

[

r(k)f(Xk, X
′
k)(1 − ǫ)Nk−1

]

=

∞
∑

j=0

∞
∑

k=0

(1 − ǫ)j
Ěx,x′

[

r(k)f(Xk, X
′
k)1{Nk−1=j}

]

= Wr,f (x, x′) +

∞
∑

j=1

∞
∑

k=0

(1 − ǫ)j
Ěx,x′

[

r(k)f(Xk, X
′
k)1{Nk−1=j}

]

For j ≥ 0, let σj denote the (j + 1)-th visit to C × C. Then Nk−1 = j iff
σj−1 < k ≤ σj . Since r is a subgeometric sequence, r(n+m) ≤ r(n)r(m)/r(0),
thus

∞
∑

k=0

r(k)f(Xk, X
′
k)1{Nk−1=j} =

σj
∑

k=σj−1+1

r(k)f(Xk, X
′
k)

=

τ◦θσj−1

∑

k=1

r(σj−1 + k)f(Xk, X
′
k)

≤
r(σj−1)

r(0)

(

τ◦θσj−1

∑

k=1

r(k)f(Xk, X
′
k)

)

◦ θσj−1 .

Applying the strong Markov property yields
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Ẽx,x′,0

[

T−1
∑

k=0

r(k)f(Xk, X
′
k)

]

≤Wr,f (x, x′)

+ (1 − ǫ)W ∗(f, g)

∞
∑

j=0

(1 − ǫ)j
Ěx,x′ [r(σj)] .

By similar calculations, (15) yields

Ẽ[r(T − 1)] = ǫ

∞
∑

j=0

(1 − ǫ)j
Ě[r(σj)] ,

which concludes the proof of (17). ⊓⊔

Step 3 Applying (17) with r ≡ 1 yields (7).

Step 4 If r ∈ Λ, then limn→∞ r(n)/R(k) = 0, with R(0) = 1 and R(n) =
∑n−1

k=0 r(k), n ≥ 1. Thus we can define, for r ∈ Λ and δ > 0

Mδ = (1 + δ) sup
n≥0

{

ǫ−1(1 − ǫ)W ∗r,1r(n− 1) − δR(n)/(1 + δ)
}

+
.

Mδ is finite for all δ > 0. This yields

Ẽx,x′,0[R(T )] ≤ (1 + δ)Wr,1(x, x
′) +Mδ .

Applying this bound with (16) yields (6). ⊓⊔
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plications e de convergence de l’algorithme Monte-Carlo EM. PhD thesis,
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