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dLaboratoire Paul-Painlevé, Université Lille-1AbstratWe address the question of designing isotropi analysis funtions on the sphere whihare perfetly limited in the spetral domain and optimally loalized in the spatialdomain. This work is motivated by the need of loalized analysis tools in domainswhere the data is lying on the sphere, e.g. the siene of the Cosmi MirowaveBakground. Our onstrution is derived from the loalized frames introdued byNarowih et al. (2006). The analysis frames are optimized for given appliationsand ompared numerially using various riteria.
IntrodutionLoalized analysis for spherial data has motivated many researhes duringthe past deade. Data de�ned on the sphere are studied in domains as variousas osmology (Hinshaw et al., 2006; Hivon et al., 2002; MEwen et al., 2007),geophysis (Holshneider et al., 2003; Wiezorek and Simons, 2005), mediine,omputer vision. When dealing with data on the whole sphere, spetral analy-sis an be ahieved by Spherial Harmonis Transform (SHT) � the equivalentof the Fourier Series on the irle. But in many pratial situations, data arede�ned or available on a subset of the sphere only. For example, osmologiststry to give sharp estimates of the osmi mirowave bakground (CMB) orits power spetrum but strong foreground emissions superimpose to the CMBmaking the observations unreliable for CMB studies. Moreover, fully observed
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lean non stationary �elds or stationary �elds with additive non-stationarynoise still require spatially loalized tools. In suh situations, the SHT is notadequate, beause of the poor spatial loalization of the basis funtions. In thease of Eulidean spaes, in whih the Fourier Transform su�er from the samelak of loalization, multisale and wavelets theory provide a mathematiallyelegant solution of proven pratial e�ieny.Adaptation to the sphere of the �wavelet� transform (in the broad sense of �l-tering by spatially and spetrally loalized funtions) was introdued a dozenyears ago (Shröder and Sweldens, 1995; Torresani, 1995; Dahlke et al., 1995;Narowih and Ward, 1996; Potts and Tashe, 1995; Freeden and Windheuser,1997). Sine then, Antoine & Vandergheynst (1999) showed that any Continu-ous Wavelet Transform (CWT) on the sphere an be viewed loally as a regularCWT on the Eulidean tangent planes, thanks to the stereographi orrespon-dene between the sphere and the plane (Antoine and Vandergheynst, 1999;Wiaux et al., 2005). One an then �forget� the sphere by projeting it on tan-gent planes, realizing the analysis in these planes, and then apply the inverseprojetion to get bak eventually to the sphere. A disretized version of thisapproah of CWT has been presented by Bogdanova et al. (2005), leading towavelet frames. This approah has already been followed in astrophysis forthe analysis of the Cosmi Mirowave Bakground (CMB) (Vielva et al., 2004;MEwen et al., 2007). However these wavelets are usually de�ned in the spa-tial domain and have in�nite support in the frequeny domain (whih mustbe trunated in pratie).In the present work, we follow and extend the approah of Narowih et al.(2006) and their onstrution of �needlets�. A similar onstrution an befound in Stark et al. (2006). The needlet transform has important hara-teristis. Firstly it is intrinsially spherial. No intermediate tangent plane isneeded to de�ne it. Seondly, it does not depend on the partiular spherialpixelization hosen to desribe the data. Thirdly, although the needlets stillhave an exellent spatial loalization, they have a �nite spetral support ad-justable at will . They are axisymmetri (whih is onvenient when dealingwith statistially isotropi random �elds) and thus the needlet oe�ients areeasily omputed in the Spherial Harmonis (Fourier) domain. Data �ltering isde�ned by multipliation of the Spherial Harmonis oe�ients by well ho-sen window funtions (whih is equivalent to onvolution in spatial domain).Needlets are well de�ned in theory and the statistial properties of their oe�-ients have already been established for isotropi Gaussian �elds (Baldi et al.(2006)). However, the performane of a needlet-based analysis depends on thepartiular shape of the needlet.This paper onsiders spherial �lters whih are generalizations of needlets inthe spirit of dual (non-tight) analysis and reonstrution frames. We fous onthe design issue, namely the optimization of the window funtions (that de�ne2



the isotropi �ltering operations) for some given tasks. We onsider only band-limited needlets. This hoie is motivated by appliations in high-preisionosmology. Indeed, the CMB power spetrum is highly dynami (few peaks andpower-law deay) and good subsequent osmologial parameters estimationrequires high auray in some ritially delimited spetral ranges. One therange is �xed, we optimize the shape of window funtions in two diretions:1) By requesting the best spatial loalization of assoiated needlets, in anenergy-sense (L2) whih is easily solved. This is an appliation of the workof Simons et al. (2006) whih adapted to the sphere the problem solved bySlepian (1978) on the real line, giving rise to the well known prolate spheroidalwave funtions (PSWF). 2) By following statistial onsiderations: given someregion (�mask�) in whih the data is missing or thrown away and assuming thatthe full data is the realization of some Gaussian isotropi random �eld (this isthe usual assumption made on the CMB), we minimize the mean integratedsquare error due to the mask in the needlet analysis outside the mask. Moreriteria and appliations to osmologial siene will be given in a future work.The paper is organised as follows. In Setion 1, we expose the general on-strution of needlets. In Setion 2, we de�ne and optimize the two riteria(geometrial and statistial) whih provide loalized analysis �lters. Their ef-�ieny is illustrated in Setion 3 with numerial simulations following themodel of a masked observation of the CMB. The proofs are postponed toAppendix A.1 Needlets frames1.1 Bakground and notationsDenote S the unit sphere in R3 with generi element ξ = (θ, ϕ) in spherialpolar oordinates: θ ∈ [0, π] is the olatitude and ϕ ∈ [0, 2π[ the longitude.Let H = L2(S) be the spae of omplex-valued square integrable funtionson S under the Lebesgue measure dξ = sin θdθdϕ. Endowed with the innerprodut 〈f, g〉 :=
∫
S
f(ξ)g∗(ξ)dξ, H is a Hilbert spae. Let ‖ · ‖ denote theassoiated norm on H. The usual omplex spherial harmonis on S (whihde�nition is realled in Appendix B) are denoted (Yℓm)ℓ≥0,−ℓ≤m≤ℓ. They forman orthonormal basis of H.In the following, we onsider a �eld X ∈ H. Its random spherial harmon-is oe�ients or multipole moments are denoted aℓm = 〈X, Yℓm〉. H an bedeomposed in harmoni subspaes: H =

⊥⊕
ℓ≥0

Hℓ, where Hℓ is the linear spanof Yℓm, m = −ℓ, · · · , ℓ. The number ℓ is referred to as the multipole number3



or frequeny (understood as a spatial frequeny). Let Πℓ be the orthogonalprojetion on Hℓ. It has an expression involving Legendre polynomials Lℓ (seeAppendix B)
ΠℓX(ξ) =

ℓ∑

m=−ℓ

〈X, Yℓm〉Yℓm(ξ) =
∫

S

X(ξ′)Lℓ(ξ · ξ′)dξ′. (1)where ξ · ξ′ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′) is the usual dot produt on
S.A mapping on S whih depends on the olatitude θ only is said to be axisym-metri. The onvolution of a bounded axisymmetri funtion H(ξ) = h(cos θ)with an arbitrary spherial funtion X is well de�ned through

H ∗X(ξ) =
∫

S

h(ξ · ξ′)X(ξ′)dξ′ (2)The onvolution theorem holds:
H ∗X =

∑

ℓm

hℓaℓmYℓm. (3)where aℓm = 〈X, Yℓm〉 are the multipole moments ofX and hℓ are the Legendreseries oe�ients of h, i.e.h =
∑

ℓ∈N hℓLℓ. Then, an isotropi wavelet analysisan be implemented either in the spatial (i.e. diret) domain using (2) or in theharmoni domain using (3). We hoose the latter, whih aounts to multiplythe harmoni oe�ients of the �eld of interest X by a spetral window (hℓ).For a ountable index set J , let (h(j))j∈J be a family of window funtionsin harmoni domain : h(j) ∈ ℓ∞(N). The orresponding harmoni smoothingoperators on H are
Ψ(j) =

∑

ℓ∈N

h
(j)
ℓ Πℓ. (4)We all exat reonstrution ondition the one ensuring that ∑

j∈J
Ψ(j) = Id. Italso writes ∑

j∈J

h(j) ≡ 1 (5)In the following, j is referred to as the sale, in analogy with the multiresolu-tion analysis terminology. Important examples of windows families having theproperty (5) may be obtained thanks to the B-adi mehanism: let B > 1,
J = {−1} ∪ N, h(−1)

ℓ = δ0(ℓ) and the spetral windows be all related to aontinuous funtion h by
∀j ∈ N, h

(j)
ℓ = h

(
ℓ

Bj

)
. (6)If h is ompatly supported on [ 1

B
, B], then eah window h(j) may overlap withadjaent windows h(j−1) and h(j+1) only. The exat reonstrution ondition4



in this ase is satis�ed as soon as
∀x ∈ [1, B], h(x) + h(B−1x) = 1 (7)This example is illustrated in Figures 1 and 2.
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Fig. 1. First 10 windows satisfying onditions (5) and (6), h being a spline of order7 ompatly supported on [ 1
B , B] with B = 1.7.

(a) Original map
(b) Smoothed maps, sales j = 2, ..., 5

() Smoothed maps, sales j = 6, ..., 9Fig. 2. Input map of a CMB sky (from WMAP), and orresponding smoothed maps(with the spline �lters of Figure 1). 5



1.2 Needlet tight framesReall that a ountable family of funtions {fn} in a Hilbert spae H is aframe with frame bounds C1, C2 if
∀g ∈ H , C1‖g‖2

H ≤
∑

n

|〈g, fn〉H|2 ≤ C2‖g‖2
H .It is a tight frame if we an hoose C1 = C2. Frames an be thought of redun-dant �bases�, and this redundany an be exploited for robustness issues. Thetightness property is valuable in terms of numerial stability (see Daubehies,1992, Chap.3 and the referenes therein).The onstrution that follows is fromNarowih et al. (2006). The term needletwas oined by Baldi et al. (2006). Let K be a �nite index set and {ξk}k∈K ∈

S|K| a set of quadrature points on the sphere, assoiated with a set {λk}k∈K ∈
R|K| of quadrature weights.De�nition 1.1 (Quadrature) {(ξk, λk)}k∈K is said to provide an exat Gaussquadrature formula at degree ℓmax if

∀X ∈
ℓmax⊕

ℓ=0

Hℓ,
∫

S

X(ξ)dξ =
∑

k∈K

λkX(ξk).This quadrature formula is said positive-weight if λk > 0, k ∈ K.Remark 1.2 We refer to Doroshkevih et al. (2005) for an example of aproper hoie of quadrature points and weights that ful�ls this property (alledGLESP). Other pixelization shemes suh as HEALPix (Górski et al., 2005)ful�l approximately this property with a number of points of order Cℓ2max andquadrature weights of order 1
Cℓ2max

for some positive onstant C.Suppose that the window funtions h(j) are non-negative and with �nite spe-tral support. De�ne
∀ℓ ∈ N, b

(j)
ℓ :=

√
h

(j)
ℓ (8)and d(j) := max{ℓ : h

(j)
ℓ 6= 0} (in the B-adi ase, d(j) = Bj+1). For eah sale

j, we have a pixellization {ξ(j)
k , λ

(j)
k }k∈K(j).De�nition 1.3 (Needlets and Needlet oe�ients) For every j ∈ J andevery index k ∈ K(j) the funtion

ψ
(j)
k (ξ) =

√
λ

(j)
k

d(j)∑

ℓ=0

b
(j)
ℓ Lℓ(ξ · ξ(j)

k ), (9)6



is alled a needlet. For X ∈ H, the inner produts 〈X,ψ(j)
k 〉 are alled needletoe�ients and are denoted β(j)

k .Up to a rotation of the sphere putting ξ
(j)
k on the North pole and to themultipliative term √

λ
(j)
k , all the needlets of a given sale j have exatly thesame shape. In partiular, they are axisymmetri. When ℓ 7→ b

(j)
ℓ is su�ientlysmooth, one gets the intuition from (9) that the needlet ψ(j)

k is loalized around
ξ

(j)
k .The following Proposition state that the harmoni smoothing operation de-�ned by (4) an be seen as the deomposition of H on the needlets familybuilt with (8), and that this family is a tight frame. It is a straightforwardadaptation of Baldi et al. (2006, Proposition 2.3).Proposition 1.4 Let j ∈ J . Assume that {(ξ(j)

k , λ
(j)
k )}k∈K(j) provides an ex-at and positive-weight quadrature formula at degree 2d(j). Then

Ψ(j)X =
∑

k∈K(j)

β
(j)
k ψ

(j)
k .Assume that for any j ∈ J , {(ξ(j)

k , λ
(j)
k )}k∈K(j) provides an exat and positive-weight quadrature formula at degree 2d(j). Under the exat reonstrution on-dition (5),

∀X ∈ H, X =
∑

j∈J

∑

k∈K(j)

β
(j)
k ψ

(j)
k and ‖X‖2 =

∑

j∈J

∑

k∈K(j)

|β(j)
k |2 .

Remark on Terminology The analysis of an input �eld X in the waydesribed above is alled �ltering. This �ltering has two equivalent expressions,in the spatial and in the spetral domains; see the onvolution formula (3).These expressions involves two �dual� mathematial objets : the funtions
h(j) and b(j) of the frequeny ℓ, alled window funtions or spetral windows,and the spherial funtions ψ(j)

k alled needlets, whih are nothing else butthe rotated axisymmetri funtions built from the Legendre transform of b(j)(see De�nition 1.3). We all �lter either of the two above objets, when thedomain (spatial or spetral) is not spei�ed.1.3 Generalized needlet framesWe are onerned with the development of a �exible spetral analysis on thesphere whih remains pratial at high resolution. The foreoming CMB ex-7



periment Plank 1 will provide 50 mega-pixel maps with auray suh thatmultipole moments will be reliable up to ℓ ≃ 4000.For maximum �exibility, we shall onsider onstrutions whih are not nees-sarily dyadi nor B-adi. This is motivated by appliations, as desribed in theIntrodution. Moreover, we will design analysis frames whih will not be nees-sarily tight. Their dual frames will be the orresponding reonstrution frames.This allows �ne tuning of the loalization properties of the deomposition fun-tions but it is also well known that it does not ensure similar properties forthe reonstrution funtions. Nevertheless, for the appliation goals disussedin the introdution, we will design stritly band-limited needlets with support
L(j) := [ℓ

(j)
min, ℓ

(j)
max], ℓ(j)min > 0 if j ≥ 0. Then the subsequent �wavelet design�operations will be performed in the harmoni domain.Sine the needlet oe�ients β(j)

k and β
(j′)
k′ of a Gaussian stationary (i.e.isotropi) �eld are independent if L(j) ∩ L(j′) = ∅, the bands L(j) are ho-sen to overlap as little as possible. Other hoies are possible; for instaneStark et al. (2006) take overlapping spetral windows supported on [0, 2j].The three ingredients for our spherial �multi-resolution� approah are harmoni-spae implementation, dual wavelet frames and spetral window design. In thissubsetion, we brie�y desribe the �rst two elements. In Setion 2, we go intothe theory and pratie of window design.1.3.1 Dual framesProposition 1.4 shows that the needlets of De�nition 1.3 with (8) an be usedin both analysis (or deomposition) and synthesis (or reonstrution). Thisaounts to say that the needlet frame is its own dual frame. We hoose tokeep the De�nition 1.3 of the needlets and assoiated oe�ients but to relaxondition (8). By sari�ing the tightness of the frame, we gain muh freedomin the design of the spetral windows. Also, the preise spae-frequeny pitureprovided by the needlet onstrution is preserved.From any windows family (b(j))j∈J suh that ∀ℓ ∈ N,

∑
j∈J

(
b
(j)
ℓ

)2
> 0, de�nethe synthesis windows b̃(j) by

∀j ∈ J , ∀ℓ ∈ N, b̃
(j)
ℓ =

b
(j)
ℓ

∑
j′∈J

(
b
(j′)
ℓ

)2 (10)and put h(j) := b̃(j)b(j) so that (5) easily follows. We retain De�nition 1.3for the deomposition needlets and needlets oe�ients and further de�ne the
1 see www.rssd.esa.int/Plank/. 8



reonstrution needlets as
ψ̃

(j)
k (ξ) =

√
λ

(j)
k

d(j)∑

ℓ=0

b̃
(j)
ℓ Lℓ(ξ · ξ(j)

k ) . (11)Proposition 1.5 Assume that there exists positive onstants C1, C2 suh that
∀ℓ ∈ N, C1 ≤

∑

j∈J

|b(j)ℓ |2 ≤ C2 . (12)Assume that for any j ∈ J , the set {(ξ(j)
k , λ

(j)
k )}k∈K(j) provides an exat andpositive-weight quadrature formula at degree 2d(j). Then, under the exat re-onstrution ondition (5), the family {ψ(j)

k } is a frame with frame boundsonstant C1 and C2. Its dual frame is the family {ψ̃(j)
k }. In partiular

∀X ∈ H, X
H
=
∑

j∈J

∑

k∈K(j)

β
(j)
k ψ̃

(j)
k and ‖X‖2 =

∑

j∈J

∑

k∈K(j)

β̃
(j)
k β

(j)
k , (13)with β̃(j)

k := 〈X, ψ̃(j)
k 〉.De�ne the analysis, synthesis and smoothing operators at sale j ∈ J by

Φ(j) =
∑

ℓ b
(j)
ℓ Πℓ, Φ̃(j) =

∑
ℓ
b̃
(j)
ℓ Πℓ and Ψ(j) = Φ̃(j)Φ(j), respetively. Then, theexat reonstrution formula ∑Ψ(j) = Id holds true.An example of an analysis/synthesis windows family following this sheme isdisplayed in Figure 3, in whih we took optimally onentrated PSWF (seeSetion 2) funtions for analysis. It illustrates the fat that this hoie doesnot lead to well loalized synthesis needlets (as their spetral shapes are nonsmooth). However, this may not be a shortoming if one is interested in theneedlet oe�ients β(j)

k = 〈X,ψ(j)
k 〉 per se, whih re�et the loal properties ofthe �eld X.1.3.2 Pratial omputation of needlet oe�ientsEvaluation of inner produts 〈X,ψ(j)

k 〉 in the diret spae is pratially unfeasi-ble from a pixelized sphere at high resolutions. The needlet oe�ients β(j)
k arethus omputed via diret and inverse harmoni transforms as a onsequeneof the following Proposition.Proposition 1.6 The needlet oe�ients verify β(j)

k =
√
λ

(j)
k Φ(j)X(ξ

(j)
k ).The omputation of the smoothed �eld Φ(j)X is performed in the harmonidomain by multiplying the multipole oe�ients aℓm of X by the fators b(j)ℓ .9
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MultipoleFig. 3. B-adi analysis (top) and orresponding synthesis (bottom) window funtions(j = 6, . . . , 11 ; B = 1.7).Finally, the needlet oe�ients β(j)
k are retrieved as the values of Φ(j)X at thepoints ξ(j)

k up to a multipliative term. Starting from the �eld X sampled atsome quadrature points, this operation is summed up by the diagram
{X(ξk)}k∈K

SHT−→ {aℓm}ℓm
×−→ {b(j)ℓ aℓm}ℓm

SHT−1

−→
{
(λ

(j)
k )−1/2β

(j)
k

}
k∈K(j)

(14)whereas the synthesis operation is summed up by
{
(λ

(j)
k )−1/2β

(j)
k

}
k∈K(j)

SHT−→ {b(j)ℓ aℓm}ℓm
×−→ {b̃(j)ℓ b

(j)
ℓ aℓm}ℓm

SHT−1

−→ {Ψ(j)X(ξ
(j)
k )}k∈K(j)Standard pixelization pakages, suh as HEALPix, GLESP or SHTOOLS 2ome with optimized implementations of the diret and inverse Spherial Har-moni Transforms. For example, in the HEALPix sheme, pixels are loated onrings of onstant latitude, allowing for fast SHT. This makes the omputationeasy and tratable even at high resolution. The needlet oe�ients at a givensale j an be visualized as a pixelized map. If the quadrature weights {λ(j)

k }are equal, the smoothed maps of Fig. 2, whih are the outputs of the proessing(14), provide a preise and easily interpretable piture of the spae-frequenyanalysis.
2 available at http://www.ipgp.jussieu.fr/∼wiezor/SHTOOLS/SHTOOLS.html10
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Remark 1.7 The quadrature points and weights {(ξ(j)
k , λ

(j)
k )}k∈K(j) use to de-�ne the needlet oe�ients β(j)

k and to sample the smoothed �eld Ψ(j)X may behosen idential to {(ξk, λk)}k∈K used to sample the input �eld X. However,for data ompression and omputational e�ieny, one an onsider alterna-tively to take the minimal K(j) providing an exat positive-weight quadratureformula at a proper degree.2 Design of optimally loalized waveletsIn this setion, we de�ne some riteria to ompare the window pro�les. Someof them are easily optimized, others are only investigated numerially. We�rst give some examples of generi needlet pro�les we an think of (Se-tion 2.1). Then, we restrit ourselves to a single sale j and an assoiatedband L := [ℓmin, ℓmax]. The supersript (j) will be omitted in the notationswhen no onfusion is possible. We present the L2 (Setion 2.2) and statistial(Setion 2.3) riteria, with pratial implementation details on their optimiza-tions.2.1 Examples.Narowih et al. (2006) have derived the following theoretial bound that on-trols the deay of the needlets. In the B-adi ase, if the funtion b :=
√

hde�ning the analysis spetral window is M-times ontinuously di�erentiable,
|ψ(j)

k (ξ)| ≤ C Bj−1

1 +
(
Bj−1 arccos(ξ · ξ(j)

k )
)Mfor some onstant C = C(b). This ondition still allows a wide range of possi-bilities for designing the funtion b. Without restriting ourselves to the B-adiase, we implemented solutions to optimize in pratie, non asymptotially,the shape of windows b(j) regarding some appliations.To illustrate the kind of aspets we are onerned with, we ompare in Figure 4the azimuthal pro�les (in the spatial domain) of various axisymmetri needlets.The needlets are built from window funtions b(j) via relation (9) and ξk =

(0, 0), i.e. they are entered on the North pole, and then are onsidered asfuntions of θ only. This illustration is restrited to the 9th dyadi sale, i.e.frequenies in the band L := [256, 1024]. We shall ompare heuristially �vefamilies of window funtions. Note that the last two are not limited to band
L. 11



(1) Square roots of splines of various orders. For any odd integer M , thereexists a spline funtion h of order M , non-negative, ompatly supportedon [1
2
, 2] and suh that the h(j)

ℓ 's de�ned by (6) verify (5). It remains tode�ne b(j)ℓ =
√
h

(j)
ℓ .(2) Best onentrated Slepian funtions in aps of various radii (f Se-tion 2.2). The window funtion b(j)ℓ is the minimizer of the riterion (20).It is band-limited on L and optimally onentrated in a polar ap Ωθ0 =

{ξ : θ ≤ θ0}), θ0 being a free parameter.(3) Denote G a primitive of the C∞ funtion g : x 7→ e
− 1

1−x2 1(−1,1)(x) andput
b(x) = G(−8x+ 3) −G(−4x+ 3) (15)and b(j)ℓ = b

(
ℓ
2j

). This window funtion is used in Pietrobon et al. (2006).(4) From the B-spline funtion of order 3
B3(x) =

1

12
(|x− 2|3 − 4|x− 1|3 + 6|x|3 − 4|x+ 1|3 + |x+ 2|3), (16)form b(x) = 3

2
(B3(2x) − B3(x)) and de�ne b(j)ℓ = b

(
ℓ
2j

). This windowfuntion is used by Stark et al. (2006).(5) The Mexian hat wavelet on the sphere is the funtion the stereographiprojetion of whih on the Eulidean plane is the usual Mexian hatwavelet. It has the following lose expression depending on some positivesale parameter R
ψR(θ) ∝ (1 − 2R2 tan2(θ/2)) exp{−2R2 tan2(θ/2)}. (17)This wavelet is popular in the astrophysis ommunity (see e.g.González-Nuevo et al.,2006). We have hosen R = 6.10−3 suh that the spetral window is al-most zero for ℓ > 1024.2.2 L

2-onentration and variationsOur �rst attempt to ahieve a good spatial loalization of a needlet is tooptimize a L2-norm based riterion, adapting to the sphere a problem thatis well-known on the real line. In their seminal work in the 1960s and 1970s,Slepian and his ollaborators studied the properties of prolate spheroidal wavefuntions (PSWFs) in the 1D ase of real funtions (see Slepian, 1983, andthe referenes therein). PSWFs may be de�ned as funtions with optimalenergy onentration in the time domain, under some band-limitation on-straint. Equivalently, they are the eigenfuntions of a time-frequeny onen-tration kernel or the solutions of a Sturm-Liouville di�erential equation. Thetime-frequeny onentration of PSWFs is understood in terms of ontinuous12
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ψ(ξ) =

∑

ℓ∈L

bℓLℓ(cos θ). (18)The set of funtions ψ of the form (18) is denoted BL ⊂ H. Given a spherial13



domain Ω, onsider the minimization, among non-zero funtions in BL, of theriterion
CΩ(ψ) =

∫
S\Ω ψ

2(ξ)dξ
∫
S
ψ2(ξ)dξ

= 1 −
∫
Ω ψ

2(ξ)dξ
∫
S
ψ2(ξ)dξ

. (19)This extension to the sphere of Slepian's onentration problem is studied indetails by Simons et al. (2006) in the ase ℓmin = 0. We all PSWF (by abuseof language) and denote ψ⋆
Ω a normalized minimizer for CΩ(ψ).The riterion (19) has a simpli�ed expression when Ω is axisymmetri. Con-sider the polar ap Ωθ0 = {ξ : θ ≤ θ0} and de�ne the oupling matrix

D = (Dℓ,ℓ′)ℓ,ℓ′∈L by
Dℓ,ℓ′ =

8π2

√
(2ℓ+ 1)(2ℓ′ + 1)

∫ 1

cos θ0

Lℓ(z)Lℓ′(z)dz ,and
b̄(ψ) = (

√
2ℓmin + 1

8π2
bℓmin

, . . . ,

√
2ℓmax + 1

8π2
bℓmax).Then

CΩ(ψ) = 1 − b̄tDb̄

‖b̄‖2
(20)and the minimization of (19) beomes an eigenvalue problem. The solution ofthis minimization depends on the opening θ0. In Figure 5 we plot the valueof CΩθ0

against θ0 for ψ⋆
Ω1◦
, ψ⋆

Ω5◦
, ψ⋆

Ω10◦
. The lowest urve is the minimum ofthe riterion for all openings θ0. It is lear that there is no optimal funtionuniformly in θ0: the onentration riterion CΩ0 of eah PSWF ψ⋆

Ωθ1
reahesthe best possible value for θ0 = θ1 only.
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As in the 1-dimensional ase, the spetrum of D exhibits a �step funtion�behaviour: denoting N = tr D (the �Shannon number�), the matrix D hasabout N eigenvalues very lose to 1, and most of the others lose to zero (seeFig.6, and Simons et al. 2006 for details).
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Fig. 6. Eigenvalues of matrix D with θ0 = 50◦ and L = [17, 64]. In this ase, Shannonnumber N = 13.3.When several eigenvalues of D are extremely lose to 1, it is omputation-ally di�ult to �nd the largest one and the assoiated eigenvetor. In thease of Ω a polar ap and ℓmin = 0, one an advantageously solve the lessdegenerated eigenvalue problem assoiated with the Grünbaum di�erentialequation (Grünbaum et al., 1982) whih has the same solutions as (19). Weare not aware of an equivalent theory in the ase ℓmin > 0.With ǫ being of the order the mahine preision, all vetors in Vǫ =
⊕

λ≥1−ǫ
Ker(D−

λId) have well spatially loalized ounterparts, but they are not neessarilypositive (in harmoni domain). This is not aeptable for instane if we wereto use them as windows assoiated to smoothing operator (denoted h in the�rst Setion), and implement this operator using a needlet analysis-synthesissheme, the window of whih has to be de�ned as the square-root of thePSWF's window. To irumvent this, we therefore introdue a modi�ed ou-pling matrix D̃ = D + aHtH where a > 0 is a tuning parameter and H is thetridiagonal seond-order �nite di�erene matrix. Window funtions are nowobtained as minimizers of C̃Ω(ψ) = 1− b̄
t
D̃b̄

‖b̄‖2 instead of CΩ. The additional termfavors non-osillating funtions among the vetors of Vǫ whih are undistin-guishable from their eigenvalues λ. Adding the �smoothing� term is expetednot to alter the spatial loalization of the �lter. In pratie, parameter a isseleted to ensure `omputational uniqueness' of the smallest eigenvalue of
D̃. Solutions obtained by the numerial implementation of the minimizationof C̃Ω are displayed in Figure 7, with various values for the smoothing pa-rameter a. Dashed lines orrespond to the vetor returned numerially as the�best� eigenvetor of D (assoiated to the greatest eigenvalue), and the besteigenvetor of D̃ with parameter a hosen deliberately too small to ensureomputationally uniqueness. Osillating funtions are indeed obtained. As agrows, the riterion selets non osillating windows, two of whih are shown15



Fig. 7. E�et of the smoothing on the spetral and spatial shapes of PSWFs.by the plain lines. The loss measured by the inrease of CΩ is displayed inthe legend of the lower panel and appears extremely small. In our example,the energy outside Ω for the needlet built from C̃ takes the value 2.78.10−15,whereas its minimal possible value is 1.78.10−15.A generalization of the Slepian onentration problem an be to onsider othermeasures of onentration, suh as Lp, p = 1, ...,∞ instead of L2. The riterionde�ned in Eq. (19) beomes then
C(p)

Ω (ψ) = 1 − ‖ψ1Ω‖p
p

‖ψ‖p
p

(21)where ‖f‖p
p =

∫
S
|f(ξ)|pdξ if p ∈ [1,∞) and ‖f‖∞∞ = ess sup

ξ∈S

|f(ξ)| for a spher-ial funtion f . Unlike Slepian riterion CΩ = C(2)
Ω , these alternate riteria do16



not lead to simple eigenvalue problems. They ould be numerially optimizedbut this is beyond the sope of this paper. However we ompare in Setion 3.1this riterion to the original one CΩ.2.3 Statistial riterion for optimal analysis with missing dataInstead of fousing on the �geometrial� shape of the needlet, one may alsooptimize diretly some alternate riterion of pratial interest.In this setion, we onsider the following framework: given an underlying ran-dom �eld X on S to be analysed, a window funtion W on S multiplying the�eld (for example a mask putting the �eld to zero in some regions) and aregion D ⊂ S of interest in whih the analysis is to be done, the aim is toget, in D, needlet oe�ients of WX as lose as possible to the oe�ientsomputed from the unorrupted �eld X.We shall assume statistial properties on the �elds X,W,D and look for opti-mality of the �lters on average.Assumption 2.1 (1) X is a real-valued Gaussian zero mean isotropi squareintegrable random �eld on S, with power spetrum (Cℓ).(2) W and D are deterministi elements of H.Impliitly, X is a measurable mapping from some (X ,X,P) into (H,H), Hbeing the Borel σ-�led of H. Let E denote the expetation operator under P.Reall that under Assumption 2.1, the ovariane funtion on the �eld X iswell de�ned and is given by
E[X(ξ)X(ξ′)] = (4π)−1

∑

ℓ∈N

CℓLℓ(ξ · ξ′) .It follows that E[X(ξ)2] = (4π)−1∑
ℓ∈N(2ℓ + 1)Cℓ. Moreover, the multipolemoments (aℓm) of X are omplex Gaussian random variables. They are en-tered, independent up to the relation aℓm = a∗ℓ,−m and satisfy E(|aℓ0|2) =

1
2
E(|aℓm|2) = Cℓ, m 6= 0.Note that W and D an be indiator funtions (binary masks) or any smoothfuntions on the sphere.A �rst attempt in this diretion is the derivation of an unbiased estimate ofthe spetrum from the multipole moments and the empirial power spetrumof the weighted sky XW de�ned by âℓm =

∫
S
X(ξ)W (ξ)Y ∗

ℓm(ξ)dξ and Ĉℓ =
1

2ℓ+1

∑
m
â2

ℓm respetively. It is well-known (see Peebles, 1973; Hivon et al., 2002,17



see also the ompat proof in Appendix A) that
E(Ĉℓ) =

∑

ℓ′∈N

Mℓℓ′Cℓ′ with Mℓℓ′ =
∑

0≤ℓ′′≤ℓ+ℓ′
αℓℓ′ℓ′′

2ℓ′′ + 1

2ℓ+ 1
CW

ℓ′′ , (22)where the oe�ients αℓℓ′ℓ′′ are de�ned by (B.5). Note that the oupling matrix
M depends on W only through its `power spetrum' CW

ℓ . If M is invertible,then (M−1(Ĉℓ′)) provides an unbiased estimate of (Cℓ).Let now derive a riterion to design a window funtion b whih minimises thee�et of missing data in a needlet analysis proedure. We fous on a single bandsmoothed �eld (i.e. we �x one sale j) and the dependene on j is impliitin the notations. For a olletion of ouple of indies, say (ℓi, mi)i=1,...,I , weuse ∑∗
(ℓi,mi)i=1,··· ,I

as a shorthand notation for the summation on ℓi ∈ N, mi ∈
{−ℓi, · · · , ℓi}, i = 1, . . . , I.Given an analysis spetral window b = (bℓmin

, · · · , bℓmax) and its assoiatedsmoothing operator Φ =
∑

ℓmin≤ℓ≤ℓmax
bℓΠℓ, the smoothed masked �eld is

ΦXW (ξ) =
∑

ℓ∈L

bℓ

∫

S

X(ξ′)W (ξ′)Lℓ(ξ · ξ′)dξ′.Write E[ΦX(ξ)2] = (4π)−1∑
ℓ σ

2
ℓ b

2
ℓ with σ2

ℓ = (2ℓ + 1)Cℓ. Let ǫ denote thenormalized di�erene �eld
ǫ(ξ) =

ΦX(ξ) − Φ(XW )(ξ)

E1/2[ΦX(ξ)2]

=
(∑

σ2
ℓ b

2
ℓ

)−1/2∑∗

(l,m)
bℓāℓmYℓm(ξ) (23)where we have de�ned W̄ = 1 −W , āℓm = 〈XW̄, Yℓm〉.Suppose that ({(ξk}k∈K , {λk)}k∈K) provides an exat Gauss quadrature for-mula at a degree 2ℓmax. De�ne βk and β ′

k the needlet oe�ients of X and
XW , respetively and de�ne

ǫk =
βk − β ′

k√
E(β2

k)
.Those random variables are normalized errors on the needlet oe�ients in-dued by the appliation of the weight funtion W . If both X and XW are in

Hℓmax , we easily hek that E(β2
k) =

√
λk(4π)−1∑

ℓ b
2
ℓσ

2
ℓ and

∀k ∈ K, ǫk = ǫ(ξk) .The dispersion of either the ontinuous �eld ǫ(ξ) or the �nite set {ǫk}k∈Kis taken as a measure of quality for an analysis Φ. This dispersion is not18



measured on the whole sphere, sine the di�erene ǫ must be important in theregions where W is far from 1. In order to selet the regions where ǫ is to beminimized we introdue a funtion D =
∑
dℓmYℓm whih provides a positiveweight funtion in H. In the simplest ase D an be 1D for a region D ofinterest. More generally, D an be designed to give more or less importane tovarious regions of S aording, for instane, to the need for reliability in theneedlet oe�ients.The oe�ients ǫk or their ontinuous version ǫ are used in two ways. The�rst one introdues a �tolerane� threshold α and ounts the number of oef-�ients whih are on average below this threshold. This measure of the e�-ieny of a �lter in the presene of a mask is presented in Baldi et al. 2006;Pietrobon et al. 2006 but its optimization was not onsidered. The seond oneonsiders the integrated square error of ǫ, weighted by the funtion D. It leadsto a quadrati quadrati whih is readily optimized.The �rst riterion, writes, for a binary funtion D,

Eb(α) =

∑
k:D(ξk)=1 P(|ǫk| < α)

♯{k : D(ξk) = 1} , (24)that is, the mean fration of needlet oe�ients orrupted by less than anormalized error α ≥ 0. For an arbitrary funtion D, a possible generalizationof (24) is
Eb(α) =

∑
k∈K D(ξk)P(|ǫk| ≤ α)

∑
k∈K D(ξk)

.In Subsetion 3.2, we ompare di�erent windows using this riterion and areal mask.Alternately, onsider now the mean integrated square error (MISE)
R(b) = E

∫

S

D(ξ)‖ǫ(ξ)‖2dξ (25)and de�ne the optimal shape for the window b as
b⋆ = arg min

‖b‖=1
R(b). (26)Straightforward algebra leads to a lose form expression of R(b) dependingon b, on the weight funtions W and D, and on the power spetrum (Cℓ)ℓ∈N.Let w̄ℓm, dℓm denote the multipole oe�ients of the weight funtions W̄ ,D,respetively and



ℓ ℓ′ ℓ′′

m m′ m′′


 :=

∫

S

Yℓm(ξ)Yℓ′m′(ξ)Y ∗
ℓ′′m′′(ξ)dξ(see (B.2) for an expression as a funtion of the Wigner-3j oe�ients).19



Proposition 2.2 Under Assumption 2.1
R(b) =

b′Qb

b′
σbwhere σ = diag((σ2

ℓ )) and Q is the matrix with entries
Qℓℓ′ =

∑

m,m′

∑∗

(ℓ1,m1)
Cℓ1

∑∗

(ℓi,mi)i=2,3,4
w̄ℓ2m2w̄

∗
ℓ3m3

dℓ4m4



ℓ1 ℓ2 ℓ

m1 m2 m






ℓ1 ℓ3 ℓ′

m1 m3 m
′




∗

ℓ ℓ4 ℓ′

m m4 m
′


 . (27)If both W and D are axisymmetri the ten-tuple summations above redue toa �ve-tuple one

Qℓℓ′ =
∑

m

∑

ℓ1,ℓ2,ℓ3,ℓ4

Cℓ1w̄ℓ20w̄ℓ30dℓ4,0



ℓ1 ℓ2 ℓ

m 0 m






ℓ1 ℓ3 ℓ

′

m 0 m






ℓ ℓ4 ℓ

′

m 0 m




=
∑

m

Aℓℓ′mDℓℓ′m .

In the next setion we shall give some illustrative examples of optimal spetralwindows h⋆ in the partiular axisymmetri ase.Remark 2.3 As in the Slepian's problem, the design of an optimal �lter re-dues to an eigenvalue problem. In partiular, if σℓ > 0 for any ℓ ∈ L, write
b†ℓ = σℓbℓ. Let b†⋆ be an eigenvetor assoiated with the lowest eigenvalue of
Q†, Q†

ℓℓ′ = (σℓσℓ′)
−1Qℓℓ′. Then b⋆ := σb̃†⋆/‖σb̃†⋆‖ is a solution of (26).Remark 2.4 For those sums to be tratable, one has to assume that D, W ,

Cℓ have �nite support in the frequeny domain, i.e. that the windows D and
W are smooth (or apodized) and Cℓ = 0 for large enough ℓ.Remark 2.5 The matrix Q being a seond-order moment for the random �eld
X, it an also be approximated by a moment estimator using Monte-Carloexperiments. This remark is of important pratial interest as we are mostlyonerned with non zonal masks. 20



3 Examples, numerial results3.1 Comparison of �lters for various riteriaIn Setion 2, we onsidered several riteria measuring the loalization prop-erties of �lters, and derived expliit or omputational optimization for someof them. In Table 1, we ompare the sores reahed by the �lters displayedin Figure 4. The olumns indexed by L2-θ list the values CΩθ
(ψ) de�ned inEq. (19). More generally, the olumns indexed by Lp-θ orrespond to the val-ues Cp

Ωθ
(ψ) de�ned in Eq. (21). A olumn lists the values of 1 −E(α) de�nedin Eq. (24), applied with the mask Kp0 of Fig. 8 and a tolerane parameter

α = 10% (see next subsetion for more details). A last olumn gives, by way ofillustration only, the value of the �unertainty produt� ∆ξ(ψ)×∆L(ψ), where
∆ξ(ψ) =

√
1 − ‖ ∫

S
ξψ(ξ)2dξ‖2

∫
S
ξψ(ξ)2dξ

and ∆L(ψ) =
∑

ℓ≥0

ℓ(ℓ+ 1)b2ℓ . (28)Narowih and Ward (1996) proved that ∆ξ(ψ) × ∆L(ψ) ≥ 1.The PSWFs perform the best not only for the L2 riterion whih they optimize,but also in most ases for the riteria where the L2 norm is replaed by Lp ones,
p = 1 and p = ∞, with the same opening angles θ0. Although the Kp0 maskhas many small ut areas all over the sphere, most of the 11 �lters presentedhere allow to retain more than 60% of the outside-mask oe�ients βk if a
10% error due to the presene of the mask is aepted. The performane w.r.t.this riterion goes up to 85% for the PSWF optimally onentrated in a apof 1◦. However, the hoie of arbitrary value of α has a major impat on theranking of the �lters. This point is investigated in the next subsetion.3.2 Robustness of needlets oe�ientsIn this Subsetion, we illustrate the performanes of various window funtionsusing the riterion (24). We have run N = 30 Monte-Carlo experiments toestimate the numerator of Eb(α). The random �elds X are drawn using the
(Cℓ)-spetrum of the best-�tting model for the CMB estimated by the WMAPteam (Hinshaw et al., 2006). The mask W was hosen as Kp0, displayed inFigure 8, whih masks the galati plane and many point soures. The bandis L = [256, 1024].Figure 9 ompares the inreasing funtions Eb(·) orresponding to various�lters b. There is no �uniformly best� (i.e. highest in the �gure) needlet: someallow to retain more oe�ients when the onstraint imposed on the error is21



L2-0.5◦ L2-1◦ L2-1.5◦ L2-5◦ L1-0.5◦ L1-1◦ L1-1.5◦ L1-5◦ L∞-0.5◦ L∞-1◦ L∞-1.5◦ L∞-5◦ 1-E(0.1) ∆ξ∆LSpline, order 3 2.2e-02 5.2e-03 7.4e-04 9.8e-07 4.2e-01 2.2e-01 1.0e-01 1.5e-02 5.0e-02 1.9e-02 5.1e-03 6.4e-05 2.6e-01 2.7Spline, order 7 4.0e-02 1.3e-02 2.0e-03 4.8e-08 5.0e-01 2.9e-01 1.3e-01 1.7e-03 6.0e-02 2.7e-02 7.1e-03 1.2e-05 3.3e-01 3.1Spline, order 15 6.1e-02 2.5e-02 4.9e-03 4.0e-07 5.9e-01 4.0e-01 2.2e-01 2.3e-03 6.9e-02 3.3e-02 9.8e-03 7.0e-05 4.1e-01 3.7Spline, order 21 7.2e-02 3.1e-02 7.1e-03 7.7e-06 6.2e-01 4.5e-01 2.7e-01 1.0e-02 7.3e-02 3.7e-02 1.1e-02 2.7e-04 4.6e-01 4.1Prolate, ap 0.5◦ 1.2e-02 6.0e-03 3.4e-03 9.5e-04 8.5e-01 8.2e-01 8.0e-01 7.2e-01 5.1e-02 1.0e-02 5.6e-03 1.0e-03 6.5e-01 9.8Prolate, ap 1◦ 6.7e-02 4.3e-05 5.8e-06 1.7e-06 3.8e-01 1.3e-01 1.2e-01 1.1e-01 1.1e-01 2.0e-03 2.0e-04 5.0e-05 1.5e-01 3.1Prolate, ap 1.5◦ 1.2e-01 1.5e-03 3.4e-07 1.2e-08 4.3e-01 5.3e-02 1.0e-02 8.8e-03 1.3e-01 1.7e-02 1.4e-04 4.5e-06 1.7e-01 3.6Prolate, ap 5◦ 1.1e-01 6.7e-03 6.5e-04 5.7e-14 5.0e-01 1.8e-01 6.8e-02 1.1e-06 1.2e-01 2.2e-02 5.9e-03 2.6e-08 2.4e-01 3.6Exponential 1.8e-02 3.2e-03 1.0e-03 1.0e-05 4.4e-01 2.6e-01 1.9e-01 4.8e-02 4.4e-02 1.4e-02 5.7e-03 1.9e-04 2.7e-01 2.7B-Spline 1.1e-02 1.3e-03 3.9e-04 1.3e-05 4.8e-01 3.3e-01 2.7e-01 1.5e-01 3.1e-02 6.8e-03 2.5e-03 1.5e-04 2.1e-01 1.2Mexian hat 6.4e-01 1.1e-02 8.5e-07 7.3e-12 7.9e-01 8.8e-02 7.1e-04 1.6e-04 4.7e-01 7.9e-02 4.5e-04 1.4e-07 4.9e-01 3.0Table 1. Comparison of the eleven �lters of Fig. 4, the nine �rst of whih are band-limited in L=[256,1024℄.

22



Fig. 8. Kp0 mask.loose enough, but their e�ieny dereases faster as α goes to zero. Inspete.g. the PSWF family.
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Fig. 9. Proportion Eb(α) of oe�ients unontaminated at tolerane level α.3.3 Some MISE-optimal �lters for axisymmetri weight funtionsWe present here the results of the optimization (26) in the ase of axisymmetriweight funtions W . For simpliity, the reonstrution weight funtion D istaken equal to W . We stik to the CMB spetrum of previous subsetion.Figure 10 displays some of the masksW used in the experiments. The apodiza-tion in simply a osine-arh juntion between 0 and 1, on a 2-degrees angular23



(a) (b)
() (d)Fig. 10. Four di�erent apodized masks. The degree of apodization, measured as thewidth of the osine-arh 0-1 juntion is, 2 degrees.range. This means that the data is available on the dark regions, and that its

L = [ℓmin, ℓmax]-band-limited part has to be reovered in this area too.On Figure 11 we have plotted the optimal �lter in the R(b)-sense for themasks of Figure 10 together with di�erent PSWFs. The riterion aptures thesymmetry of the mask (a) (the shape of the matrix Q is a �hekerboard�),and the optimal �lter is thus zero on all even (here) or all odd multipoles. Theassoiated axisymmetri needlet ψ is symmetri w.r.t. the equatorial plane,and thus is well onentrated around both the North and the South poles.Suh solutions are very sensitive to the modi�ations of the masks.We onduted a small Monte-Carlo study to on�rm the bene�t of our ap-proah. We have ompared our best �lters b⋆ to PSWFs with di�erent open-ing. On Figure 12, we show the box-plots of the distribution of the statisti
R(h) for all those �lters. Stars are plotted at the position of the estimatedvalue of ER(b) and the horizontal line is this value for b⋆. The right vertialsale is for the relative error (in perent) with respet to ER(b⋆).Fig. 12(a) illustrates the strong bene�t of a �lter that aptures the geometry ofthe mask. The relative improvement with respet to the best PSWF is of order20%. It should be noted however that the shape of this optimal �lter (desribedabove) may lead to a misleading spae-frequeny piture. In some other ases,as shown in Figure 12(b), the relative improvement from the best PSWF tothe best �lter at all is very slight (a few perents). Here, the most favorablefeature of our approah is that there is no tuning parameters (opening of thePSWF for instane, or the order of the splines window funtions if they aretaken as alternatives) to be found before the analysis.24
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4 ConlusionA �exible way of analysing a �eld on the sphere in a spae-frequeny mannerhas been presented. It is based on the needlet onstrution of Narowih et al.(2006). The proposed analysis funtions form a frame in the spae a square-integrable funtions on the sphere. Deompositions are essentially operatingin the Spherial Harmonis domain, leading to fast implementations. Variousriteria are used to design good spetral windows. This optimization an leadto deisive improvement in high preision appliations suh as modern osmol-ogy (CMB spetral estimation, omponent separation, et.), where loalizedanalysis is ruial.
AknowledgementsWe wish to thank Jaques Delabrouille for fruitful disussions motivating thiswork for CMB analysis. Numerial work was onduted using HEALPix (Górski et al.,2005).
A ProofsProof of Propositions 1.4 and 1.5 Propositions 1.4 is a partiular aseof Proposition 1.5. Indeed (5)-(8) imply (12) with C1 = C2 = 1. Togetherwith (10) we get β̃(j)

k = β
(j)
k and ψ̃

(j)
k = ψ

(j)
k . Prove now Proposition 1.5.Firstly, using suessively (1) and the quadrature assumption (remind that26
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The assertions (13) are a onsequene of the dual frame property (see e.g.Daubehies, 1992).Proof of Proposition 1.6 From De�nition 1.3 of ψk and Eq (1)
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Proof of Eq. (22)
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If W is axisymmetri,
E[āℓmā
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B Legendre polynomials, spherial harmonis and related usefulformulaeUsually, Pℓ(z) denotes the Legendre polynomial of order ℓ, normalized by
Pℓ(1) = 1. For our purposes, it is more onvenient to use a di�erent normal-ization
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where Pℓm(x) = (−1)m(1 − x2)m/2 d
m

dxmPℓ(x).The following equations relate the integral of the produt of three omplexspherial harmonis over the total solid angle or three Legendre polynomialswith the Wigner-3j oe�ients (for a de�nition in terms of Clebsh-Gordanoe�ients, see Varshalovih et al. (1988), pp235�).
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