Improvements on removing non-optimal support points in D-optimum design algorithms

Radoslav Harman $a,1$ and Luc Pronzato $b,*,2$

^a*Department of Applied Mathematics and Statistics Faculty of Mathematics, Physics & Informatics Comenius University, Mlynsk´a Dolina, 84248 Bratislava, Slovakia*

^b*Laboratoire I3S, CNRS/UNSA, Bˆat. Euclide, Les Algorithmes, 2000 route des Lucioles, BP 121, 06903 Sophia-Antipolis Cedex, France*

Abstract

We improve the inequality used in (Pronzato, 2003) to remove points from the design space during the search for a D-optimum design. Let ξ be any design on a compact space $\mathcal{X} \subset \mathbb{R}^m$ with a nonsingular information matrix, and let $m + \epsilon$ be the maximum of the variance function $d(\xi, \mathbf{x})$ over all $\mathbf{x} \in \mathcal{X}$. We prove that any support point x_* of a D-optimum design on X must satisfy the inequality $d(\xi, \mathbf{x}_*) \geq m(1 + \epsilon/2 - \sqrt{\epsilon(4 + \epsilon - 4/m)}/2)$. We show that this new lower bound on $d(\xi, \mathbf{x}_*)$ is, in a sense, the best possible, and how it can be used to accelerate algorithms for D-optimum design.

Key words: D-optimum design, design algorithm, support points *PACS:* 62K05, 90C46

author for correspondence

Email addresses: harman@fmph.uniba.sk (Radoslav Harman),

pronzato@i3s.unice.fr (Luc Pronzato).
¹ The work of the first author was suppo

The work of the first author was supported by the VEGA grant No. $1/0264/03$ of the Slovak Agency.

² The work of the second author was partially supported by the IST Programme of the European Community, under the PASCAL Network of Excellence, IST-2002- 506778. This publication only reflects the authors view.

1 Introduction

Let $\mathcal{X} \subseteq \mathbb{R}^m$ be a compact design space and let Ξ be the set of all designs (i.e., finitely supported probability measures) on X. For any $\xi \in \Xi$, let

$$
\mathbf{M}(\xi) = \int\limits_{\mathcal{X}} \mathbf{x} \mathbf{x}^{\top} \ \xi(\mathbf{dx})
$$

denote the information matrix. Suppose that there exists a design with nonsingular information matrix and let Ξ^+ be the set of such designs. Let ξ^* denote a D-optimum design, that is, a measure in Ξ that maximizes det $\mathbf{M}(\xi)$, see, e.g., [\(Fedorov](#page-6-0), [1972](#page-6-0)). Note that a D-optimum design always exists and that the D-optimum information matrix $\mathbf{M}_{*} = \mathbf{M}(\xi^{*})$ is unique. For any $\xi \in \Xi^{+}$ denote $d(\xi, \cdot): \mathcal{X} \to [0, \infty)$ the variance function defined by

$$
d(\xi, \mathbf{x}) = \mathbf{x}^\top \mathbf{M}^{-1}(\xi) \mathbf{x}.
$$

The celebrated Kiefer-Wolfowitz Equivalence Theorem (1960) writes as follows.

Theorem 1 *The following three statements are equivalent:*

 $(i) \xi^*$ is *D*-optimum; (*ii*) max_{x∈X} $d(\xi^*, \mathbf{x}) = m$; (*iii*) ξ^* *minimizes* $\max_{\mathbf{x} \in \mathcal{X}} d(\xi, \mathbf{x}), \xi \in \Xi^+$.

Notice that

$$
\int_{\mathcal{X}} d(\xi^*, \mathbf{x}) \ \xi^*(d\mathbf{x}) = \int_{\mathcal{X}} \mathbf{x}^\top \mathbf{M}_*^{-1} \mathbf{x} \ \xi^*(d\mathbf{x}) = \text{trace}(\mathbf{M}_* \mathbf{M}_*^{-1}) = m \,.
$$

Hence, (ii) of Theorem [1](#page-1-0) implies that for any support point \mathbf{x}_{*} of the design ξ^* (i.e., for a point satisfying $\xi^*(\mathbf{x}_*) > 0$), we have

$$
d(\xi^*, \mathbf{x}_*) = m. \tag{1}
$$

In the next section we show that the equality [\(1\)](#page-1-1) can be used to prove that

$$
\forall \xi \in \Xi^+, \ d(\xi, \mathbf{x}_*) \ge m \lambda_1^*(\xi)
$$

where λ_1^* depends on ξ only via the maximum of $d(\xi, \cdot)$ over the design space X . Hence, we can test candidate support points by using any finite number of design measures $\xi \in \Xi^+$, e.g., those that are generated by a design algorithm on its way towards the optimum: any point that does not pass the test defined by ξ^k of iteration k need not be considered for further investigations and can thus be removed from the design space.

2 A necessary condition for candidate support points

For ξ a design in Ξ^+ denote $\mathbf{M} = \mathbf{M}(\xi)$,

$$
\mathbf{H} = \mathbf{M}^{-1/2} \mathbf{M}_{*} \mathbf{M}^{-1/2}
$$

and $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_m$ the eigenvalues of **H**. Notice that $\lambda_1 > 0$ and that the eigenvalues depend on the design ξ as well as on the D-optimum information matrix M_{*} . Let x_{*} be a support point of a D-optimum design and let $y_* = H^{-1/2}M^{-1/2}x_*$. The equality [\(1\)](#page-1-1) can be written in the form $\mathbf{y}_{*}^{\top} \mathbf{y}_{*} = m$ which implies:

$$
d(\xi, \mathbf{x}_{*}) = \mathbf{x}_{*}^{\top} \mathbf{M}^{-1} \mathbf{x}_{*} = \mathbf{y}_{*}^{\top} \mathbf{H} \mathbf{y}_{*} \ge \lambda_{1} \mathbf{y}_{*}^{\top} \mathbf{y}_{*} = m \lambda_{1}.
$$
 (2)

To be able to use the inequality [\(2\)](#page-2-0), we need to derive a lower bound λ_1^* on λ_1 that does not depend on the unknown matrix \mathbf{M}_{\ast} .

Theorem [1-](#page-1-0)(ii) implies

$$
\sum_{i=1}^{m} \lambda_i^{-1} = \text{trace}(\mathbf{H}^{-1})
$$

= trace $(\mathbf{M}_*^{-1}\mathbf{M}) = \int_{\mathcal{X}} \mathbf{x}^{\top} \mathbf{M}_*^{-1} \mathbf{x} \xi(d\mathbf{x}) = \int_{\mathcal{X}} d(\xi^*, \mathbf{x}) \xi(d\mathbf{x}) \leq m$.

Also,

$$
\sum_{i=1}^{m} \lambda_i = \text{trace}(\mathbf{H})
$$

= trace $(\mathbf{M}_* \mathbf{M}^{-1}) = \int_{\mathcal{X}} \mathbf{x}^\top \mathbf{M}^{-1} \mathbf{x} \xi^*(d\mathbf{x}) \le \max_{\mathbf{x} \in \mathcal{X}} \mathbf{x}^\top \mathbf{M}^{-1} \mathbf{x} = m + \epsilon,$

where we used the notation

$$
\epsilon = \epsilon(\xi) = \max_{\mathbf{x} \in \mathcal{X}} \mathbf{x}^{\top} \mathbf{M}^{-1} \mathbf{x} - m \ge 0.
$$
 (3)

For $m = 1$ we directly obtain the lower bound $\lambda_1 \geq \lambda_1^* = 1$. For $m > 1$, the Lagrangian for the minimisation of λ_1 subject to $\sum_{i=1}^m \lambda_i^{-1} \le m$ and $\sum_{i=1}^m \lambda_i \le$ $m + \epsilon$ is given by

$$
\mathcal{L}(\lambda, \mu_1, \mu_2) = \lambda_1 + \mu_1 \left(\sum_{i=1}^m \lambda_i^{-1} - m \right) + \mu_2 \left(\sum_{i=1}^m \lambda_i - m - \epsilon \right)
$$

with $\lambda = (\lambda_1, ..., \lambda_m)^\top, \mu_1, \mu_2 \geq 0$. The stationarity of $\mathcal{L}(\lambda, \mu_1, \mu_2)$ with respect to the λ_i 's and the Kuhn-Tucker conditions

$$
\mu_1 \left(\sum_{i=1}^m \lambda_i^{-1} - m \right) = 0, \ \mu_2 \left(\sum_{i=1}^m \lambda_i - m - \epsilon \right) = 0
$$

give $\lambda_i = L$ for $i = 2, ..., m$, with λ_1 and L satisfying

$$
\lambda_1^{-1} + (m-1)L^{-1} = m \n\lambda_1 + (m-1)L = m + \epsilon.
$$

The solution is thus

$$
\lambda_1^* = 1 + \frac{\epsilon}{2} - \frac{\sqrt{\epsilon(4 + \epsilon - 4/m)}}{2} \le 1\tag{4}
$$

and $\lambda_i^* = L^* = (m-1)/(m-1/\lambda_1^*) \ge 1$, $i = 2, ..., m$. Notice that the bound [\(4\)](#page-3-0) gives $\lambda_1^* = 1$ when $m = 1$ and can thus be used for any dimension $m \ge 1$. By substituting λ_1^* for λ_1 in [\(2\)](#page-2-0) we obtain the following result.

Theorem 2 *For any design* $\xi \in \Xi^+$ *, any point* $\mathbf{x}_* \in \mathcal{X}$ *such that*

$$
d(\xi, \mathbf{x}_*) < h_m(\epsilon) = m \left[1 + \frac{\epsilon}{2} - \frac{\sqrt{\epsilon(4 + \epsilon - 4/m)}}{2} \right] \tag{5}
$$

where $\epsilon = \max_{\mathbf{x} \in \mathcal{X}} d(\xi, \mathbf{x}) - m$, cannot be a support point of a D-optimum *design measure.*

The inequality in [\(Pronzato, 2003\)](#page-6-1) uses

$$
\tilde{h}_m(\epsilon) = m \left[1 + \frac{\epsilon}{2} - \frac{\sqrt{\epsilon(4 + \epsilon)}}{2} \right].
$$
\n(6)

Notice, that $m \ge h_m(\epsilon) > h_m(\epsilon)$ for all integer $m \ge 1$ and all $\epsilon > 0$, and that $\lim_{\epsilon \to \infty} h_m(\epsilon) = 1$ while $\lim_{\epsilon \to \infty} \tilde{h}_m(\epsilon) = 0$. The new bound is thus always stronger, especially for large values of ϵ , i.e. when the design ξ is far from being optimum. Although in practice the improvement over [\(6\)](#page-3-1) can be marginal, see the example below, the important result here is that the bound [\(5\)](#page-3-2) cannot be improved. Indeed, when $m = 1$, $h_1(\epsilon) = 1$ for any $\epsilon > 0$ which is clearly the best possible bound. When $m \geq 2$, $h_m(\epsilon)$ is the tightest lower bound on the variance function $d(\xi, \mathbf{x}_*)$ at a D-optimal support point \mathbf{x}_* that depends only on m and ϵ , in the sense of the following theorem.

Theorem 3 For any integer $m > 2$ and any $\epsilon, \delta > 0$ there exist a compact *design space* $X \subset \mathbb{R}^m$, *a design* ξ *on* X *and a point* $\mathbf{x}_* \in \mathcal{X}$ *supporting a* D-optimum design on X such that $\epsilon = \max_{\mathbf{x} \in \mathcal{X}} d(\xi, \mathbf{x}) - m$ and

$$
d(\xi, \mathbf{x}_*) < h_m(\epsilon) + \delta.
$$

Proof. Denote $h = h_m(\epsilon)$ and $k = 2^{m-1}$. Let $\mathbf{x}_1, ..., \mathbf{x}_k$ correspond to the k vectors of \mathbb{R}^m of the form

$$
\left(\sqrt{\frac{1}{h}}, \pm \sqrt{\frac{h-1}{h(m-1)}}, \ldots, \pm \sqrt{\frac{h-1}{h(m-1)}}\right)^{\top}
$$

and let $\mathbf{y}_1,\ldots,\mathbf{y}_k$ correspond to the k vectors $\left(\sqrt{1/m},\pm\sqrt{1/m},\ldots,\pm\sqrt{1/m}\right)^\top$. Take $\mathbf{x}_{*} = (\sqrt{b}, 0, \ldots, 0)^{\top} \in \mathbb{R}^{m}$ with $1 < b < \min\{(\epsilon + m)/h, (h + \delta)/h\},\}$ X as the finite set $\mathcal{X} = {\mathbf{x}_1, ..., \mathbf{x}_k, \mathbf{y}_1, ..., \mathbf{y}_k, \mathbf{x_*}}$ and let ξ be the uniform probability measure on $x_1, ..., x_k$. Note that $M(\xi)$ is a diagonal matrix with diagonal elements $(1/h,(h-1)/[h(m-1)],\ldots,(h-1)/[h(m-1)])$. One can easily verify that

$$
\max_{\mathbf{x}\in\mathcal{X}} \mathbf{x}^{\top} \mathbf{M}^{-1}(\xi)\mathbf{x} - m = \epsilon \text{ and } d(\xi, \mathbf{x}_{*}) = \mathbf{x}_{*}^{\top} \mathbf{M}^{-1}(\xi)\mathbf{x}_{*} = b h < h_{m}(\epsilon) + \delta.
$$

The uniform probability measure η on $\mathbf{y}_1, ..., \mathbf{y}_k$ is D-optimum on $\mathcal{X}/\{\mathbf{x}_*\}$, as can be directly verified by checking (ii) of the Equivalence Theorem [1.](#page-1-0) On the other hand, η is not D-optimum on \mathcal{X} since $\mathbf{x}_*^{\top} \mathbf{M}^{-1}(\eta) \mathbf{x}_* = b \, m > m$, which implies that \mathbf{x}_* must support a D-optimum design on \mathcal{X} .

Example: We consider a series of problems defined by the construction of the minimum covering ellipse for an initial set of 1000 random points in the plane, i.i.d. $\mathcal{N}(0, \mathbf{I}_2)$. These problems correspond to D-optimum design problems for randomly generated $\mathcal{X} \subset \mathbb{R}^3$, see [Titterington \(1975](#page-6-2), [1978](#page-6-3)). The following recursion can thus be used:

$$
w_i^{k+1} = w_i^k \frac{d(\xi^k, \mathbf{x}_i)}{m}, \ i = 1, \dots, q(k), \tag{7}
$$

where $k \geq 0$, $w_i^k = \xi^k(\mathbf{x}_i)$ is the weight given by the discrete design ξ^k to the point x_i and $q(k)$ is the cardinality of X at iteration k. In the original algorithm, $q(k) = q(0)$ for all k and, initialized at a ξ^0 that gives a positive weight at each point of \mathcal{X} , the algorithm converges monotonically to the op-timum, see [\(Torsney](#page-6-4), [1983\)](#page-6-4) and [\(Titterington](#page-6-5), [1976](#page-6-5)). The tests (5) and (6) can be used to decrease $q(k)$: at iteration k, any design point x_i satisfying $d(\xi^k, \mathbf{x}_j) < h_m[\epsilon(\xi^k)]$, see [\(3,](#page-2-1) [5\)](#page-3-2), or $d(\xi^k, \mathbf{x}_j) < \tilde{h}_m[\epsilon(\xi^k)]$, see [\(3,](#page-2-1) [6\)](#page-3-1), can be removed from \mathcal{X} . The total weight of the points that are cancelled is then reallocated to the \mathbf{x}_i 's that stay in \mathcal{X} (e.g., proportionally to w_i^k).

Figure [1](#page-5-0) presents a typical evolution of $q(k)$ as a function of log(k) for ξ^0 uniform on $\mathcal X$ and shows the superiority of the test [\(5\)](#page-3-2) over [\(6\)](#page-3-1). The improvement is especially important in the first iterations, when the design ξ^k is far from the optimum. Define $k^*(\delta)$ as the number of iterations required to reach a given precision δ ,

$$
k^*(\delta) = \min \left\{ k \ge 0 : \epsilon(\xi^k) < \delta \right\},\,
$$

with $\epsilon(\xi^k)$ defined by [\(3\)](#page-2-1). Notice that from the concavity of log det $\mathbf{M}(\xi)$ we have

$$
\log \det \mathbf{M}(\xi^*) - \log \det \mathbf{M}(\xi^{k^*(\delta)}) \leq \frac{\partial \log \det \mathbf{M}[(1-\alpha)\xi^{k^*(\delta)} + \alpha \xi^*]}{\partial \alpha}|_{\alpha=0}
$$

=
$$
\int_{\mathcal{X}} d(\xi^{k^*(\delta)}, \mathbf{x}) \xi^*(d\mathbf{x}) - m < \delta.
$$

Table [1](#page-6-6) shows the influence on the algorithm [\(7\)](#page-4-0) of the cancellation of points based on the tests [\(5\)](#page-3-2) and [\(6\)](#page-3-1), in terms of $k^*(\delta)$, of the corresponding computing time $T(\delta)$, the number of support points $n(\delta)$ of $\xi^{k^*(\delta)}$ and the first iteration k_{10} when ξ^k has 10 support points or less, with $\delta = 10^{-3}$. The results are averaged over 1000 independent problems. The values of $k^*(\delta)$ and k_{10} are rounded to the nearest larger integer, the computing time for the algorithm with the cancellation of points based on [\(5\)](#page-3-2) is taken as reference and set to 1 (the algorithm without cancellation was at least 4.5 times slower in all the 1000 repetitions). Although cancelling points has little influence on the number of iterations $k^*(\delta)$, is renders the iterations simpler: on average the introduction of the test [\(5\)](#page-3-2) in the algorithm [\(7\)](#page-4-0) makes it about 30 times faster.

Fig. 1. $q(k)$ as a function of $log(k)$: cancellation based on [\(5\)](#page-3-2) in solid line, on [\(6\)](#page-3-1) in dashed line.

The influence of the cancellation on the performance of the algorithm can be further improved as follows. Let $(k_j)_j$ denote the subsequence corresponding

Table 1

Influence of the tests (5) and (6) on the average performance of the algorithm (7) for the minimum covering ellipse problem (1000 repetitions, $\delta = 10^{-3}$).

to the iterations where some points are removed from X. We have $j \leq q(0)$, the cardinality of the initial \mathcal{X} , and the convergence of the algorithm [\(7\)](#page-4-0) is therefore maintained whatever the heuristic rule used at the iterations k_j for updating the weights of the points that stay in $\mathcal X$ (provided these weights remain strictly positive). The following one has been found particularly efficient on a series of examples: for all $t \in T_j$, the set of indices corresponding to the points that stay in \mathcal{X} at iteration k_j , replace $w_t^{k_j}$ by

$$
w_t^{\prime k_j} = \frac{z_t}{\sum_{s \in T_j} z_s} \text{ where } z_t = \begin{cases} Aw_t^{k_j} & \text{if } d(\xi^{k_j}, \mathbf{x}_t) \ge m \\ w_t^{k_j} & \text{otherwise} \end{cases}
$$

for some $A \geq 1$. A final remark is that by including the test [\(5\)](#page-3-2) in the algorithm [\(7\)](#page-4-0) one can in general quickly identify potential support points for an optimum design. When the number n of these points is small enough, switching to a more standard convex-programming algorithm for the optimization of the n associated weights might then form a very efficient strategy.

References

- Fedorov, V., 1972. Theory of Optimal Experiments. Academic Press, New York.
- Kiefer, J., Wolfowitz, J., 1960. The equivalence of two extremum problems. Canadian Journal of Mathematics 12, 363–366.
- Pronzato, L., 2003. Removing non-optimal support points in D-optimum design algorithms. Statistics & Probability Letters 63, 223–228.
- Titterington, D., 1975. Optimal design: some geometrical espects of Doptimality. Biometrika 62 (2), 313–320.
- Titterington, D., 1976. Algorithms for computing D-optimal designs on a finite design space. In: Proc. of the 1976 Conference on Information Science and Systems. Dept. of Electronic Engineering, John Hopkins University, Baltimore, pp. 213–216.
- Titterington, D., 1978. Estimation of correlation coefficients by ellipsoidal trimming. Journal of Royal Statistical Society C27 (3), 227–234.
- Torsney, B., 1983. A moment inequality and monotonicity of an algorithm.

In: Kortanek, K., Fiacco, A. (Eds.), Proc. Int. Symp. on Semi-infinite Programming and Applications. Springer, Heidelberg, pp. 249–260.