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VARIOUS APPROACHES FOR PREDICTING LAND COVER IN MOUN-TAIN AREASNathalie Villa1,a, Martin Paegelow2, Maria T. Camaho Olmedo3, LaureneCornez4, Frédéri Ferraty1, Louis Ferré1 and Pasal Sarda1.
1 GRIMM, Equipe d'aueil 3686, Université Toulouse Le Mirail, Frane
2 GEODE UMR 5602 CNRS, Université Toulouse Le Mirail, Frane
3 Instituto de desarrollo regional, Universidad de Granada, Spain
4 ONERA, Toulouse, Franea Corresponding author e-mail: villa�univ-tlse2.frKey Words: polyhotomous regression modelling; multilayer pereptron;lassi�ation; predition; omparison.ABSTRACTUsing former maps, geographers intend to study the evolution of the landover in order to have a prospetive approah on the future landsape; pre-ditions of the future land over, by the use of older maps and environmentalvariables, are usually done through the GIS (Geographi Information Sys-tem). We propose here to onfront this lassial geographial approah withstatistial approahes: a linear parametri model (polyhotomous regressionmodelling) and a nonparametri one (multilayer pereptron). These method-ologies have been tested on two real areas on whih the land over is known atvarious dates; this allows us to emphasize the bene�t of these two statistialapproahes ompared to GIS and to disuss the way GIS ould be improvedby the use of statistial models.1. PREDICTING LAND COVERFrom the sketh maps made by geographers or from the analysis of satel-lite images or aerial photographs, we an build land over maps for a givenountry whih an be rather preise: the studied area is then ut into severalsquared pixels whose sides are about 20 meters long and whose land overis known on various dates. The type of land over an be hosen from apre-determined list: oniferous forests, deiduous forests, srubs, . . .Here, we are not interested in making suh maps (for satellite data anal-ysis, see (Cardot et al., 2003)). Our purpose is to ontrut a simulated landover map at a given future date, by the use of land over maps at olderdates and of other environmental variables; on a geographial point of view,1
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prospetive simulations have a great interest to help the loal administra-tions to develop these mountain areas. The idea is then to ompare di�erentapproahes in order to onfront their ability to be generalized to variousmountain areas.For a given pixel, determined by its spatial oordinates, latitude (i) andlongitude (j), the value of the land over on date t, ci,j(t), is a ategorialrandom variable depending on several variables:
• the land over of this pixel on previous dates: ci,j(t− 1), . . . , ci,j(t−T )(time serie of length T );
• the land overs of the neighbouring pixels on previous dates: Vi,j(t −

1), . . . , Vi,j(t − T ), where Vi,j(t − τ) is a set of values of land over ondate t− τ for the pixels in a neighbourhood of the pixel (i, j) (vetorialtime serie);
• some environmental variables: for example, the elevation, the aspet,the proximity of roads and villages, . . . : Y 1

i,j, . . . , Y
p
i,j.We fae here a problem of lassi�ation in whih the preditors are bothqualitative and quantitative and are also highly dependent (spatial time pro-ess). To solve this question, we propose to use and to ompare two well-known statistial approahes with the empirial geographi method (namelythe GIS, Geographi Information System). The �rst of these methods is ageneralized linear model in whih we estimate the parameters of the model bymaximizing a log-likelihood type riterion. The seond one uses a supervisedmultilayer pereptron. By onfronting these various approahes, we expetto give ideas in order to improve the GIS approah.A omparison of these two approahes was done on two little areas: the�Garrotxes� (�Pyrénées Orientales�, south west of Frane) and the �Alta Alpu-jarra Granaderia� (Sierra Nevada, Spain) where several surveys of the landover were done at various dates. We onfronted the various senarii on-struted with the real maps.In the following, we desribe the data more preisely (setion 2) andpresent the two approahes (setion 3). Then we present how we appliedthese methodologies on these data sets (setion 4) and �nally, we omparethe results obtained by analyzing the advantages and the limits of the models(setion 5).2. DESCRIPTION OF THE DATA SETS2



The areas under study stand in the moutains �Pyrénées� for the Garrotxesand Sierra Nevada �Alta Alpujarra�. A big drift from the land has led to thedesertion of the land under ultivation and the reovery of the �elds by srubsand forests. There is almost none human ation on these areas. The aridityof the limate explains a muh slower dynami in the spanish area than inthe Garrotxes: we ount 3 times less pixels hanging in the Alta Alpujarrathan in the Garrotxes. On the ontrary, the frenh area is onsidered, atleast on a geographial point of view, as a dynami area and it is then moredi�ult to predit the land over.We are given quantitative and qualitative informations through mapsdivided into pixels: about 241 000 pixels for the Frenh area and 560 000 forthe Spanish one (whih is muh bigger). For eah pixel, we know:
• a ategorial variable whih is the land over at di�erent dates: 3 dates(1980, 1990 and 2000) were avalaible for the Garrotxes and 4 dates(1957, 1974, 1987 and 2001) for the Alta Alpujarra. As the land overevolution is very slow in the Sierra Nevada (less than 25% of the pix-els had hanged their value between 1957 and 2001), these dates wereonsidered as equidistant, aording to geographers opinion. This at-egorial variable was taken from a list of several hoies (8 for theGarrotxes and 9 for the Alta Alpujarra) whih are of lassial use ingeography. These data were used to make maps of the studied area(see Figure 1); [Figure 1 about here.℄
• several environmental variables; some of them are of numeri type (theelevation, the slope, the aspet, the distane of roads and villages,. . . )and others are of ategorial type (forest and pasture management:governmental or not ? ground geologial type, . . . ). The environmen-tal variables were not the same for the Garrotxes and the Alta Alpu-jarra (see Figure 2 for examples of environmental variables); all theseenvironmental variables kept the same value at all dates.[Figure 2 about here.℄3. PRESENTATION OF THE TWO APPROACHES3



Geographers usually estimate the land over evolution by an empirialmethod whih allows to introdue some expert knowledge. The so-alledGIS (Geographi Information System) approah is time expensive and ne-essitates preise knowledge on the geographi onstraints of the area understudy. Roughly speaking, the method onsists in two steps: at �rst oneomputes time transition probabilities for eah land over type whereas, ina seond step, one uses spatial onstraints (introdued by an expert) for�smoothing� the maps obtained at the �rst step (see (Paegelow et al., 2004)or (Paegelow and Camaho Olmedo, 2005) for further details on GIS forthese data sets). In order to propose automati alternatives to the GIS,whih an take in the same model the spatio-temporal nature of the prob-lem, two approahes have been adapted to estimate the evolution of the landover: the �rst one, polyhotomous regression modelling, is a generalizedlinear approah based on the maximum log-likelihood method. The seondone, multilayer pereptron, is a popular method whih has reently provedits great e�ieny to solve various types of problems.The idea is to onfront a parametri linear model with a non parametrione to provide a olletion of automati statistial methods for geographers.They both have onurrent advantages that have to be taken into aountwhen hoosing one of them: the polyhotomous regression modelling is fasterto train than multilayer pereptrons, espeially in high dimensional spaesand does not su�er from the existene of loal minima. On the ontrary, mul-tilayer pereptrons an provide nonlinear solutions and are then more �exiblethan the linear modelling; moreover, both methods are easy to implementeven for non statistiians through the pre-made softwares (for example, �Neu-ral Network� Toolbox for neural network with Matlab).3.1. THE MODELLet us now desribe the statistial setting more formally. We note Xi,j(t)the vetor of variables that ould explain the value of the land over for agiven pixel (i, j) on date t. We suppose that the time dependene is of order1; then, Xi,j(t) ontains:
• for the time series: the value of the land over for the pixel (i, j) atthe previous time t− 1;
• for the spatial aspet: the frequeny of eah type of land over in theneighbourhood of pixel (i, j) on the previous date. Then, the shapeand the size of the neighbourhood had to be hosen. For the shape, we4



had many hoies: the simpler one was a square neighbourhood or astar-shaped neighbourhood around the pixel (i, j); the most sophisti-ated ould use the slope to better take into aount the morphologialin�uenes of the land. For the size of the neighbourhood, we had to�nd at whih distane a pixel ould in�uene the land use of pixel (i, j).Moreover, for the multilayer pereptrons, in order to respet the spa-tial aspet of the problem, we weighted the in�uene of a pixel by adereasing funtion of its distane to the pixel (i, j) (see Figure 3).[Figure 3 about here.℄
• environmental variables (slope, elevation, . . . ).Let us repeat that ci,j(t) is the land over for a given pixel on date t.We note C1, . . . , CK the di�erent types of land over. Then, for every k =

1, . . . , K, we try to estimate the probability P (ci,j(t) = Ck|Xi,j(t)) that thepixel (i, j) has a land over equal to Ck given the vetor Xi,j(t); thus, themodel is of the following form :
P (ci,j(t) = Ck|Xi,j(t)) = fk(Xi,j(t)). (1)One a model was hosen through fk, these probabilities were estimated bythe way of a multi-layer pereptron or a generalized linear model and wepredited the type of land over, ci,j(t), by the rule of maximum:argmaxk=1,...,KP (ci,j(t) = Ck|Xi,j(t)).In both approahes, we estimated fk thanks to a training sample. To thatend, we have olleted the values of the preditors and of the land overfor many pixels on various dates (see next setion for more details); theobservations are denoted by (X(1), c(1)), . . . , (X(N), c(N)).The time and spatial aspets are taking into aount together both bythe polyhotomous regression modelling and by the multilayer pereptronand the land over predition is performed in a single estimation proedure.This is not the ase for the usual GIS approah whih is performed in twosteps: it �rst estimates the land over probability by modelling a time serieand it then introdues a spaial smoothing with environmental onstraints.3.2. POLYCHOTOMOUS REGRESSION MODELLING5



When we wish to predit a ategorial response given a random vetor, auseful model is the multiple logisti regression (or polyhotomous regression)model (Hosmer and Lemeshow, 1989). A smooth version of this kind ofmethod an be found in (Kooperberg et al., 1997). Appliations of thesestatistial tehniques to several situations suh as in mediine or for phonemereognition an be found in these two works. Their good behaviour both ontheoretial and pratial grounds have been emphasized. In our ase, wherethe preditors are both ategorial and salar, we then have the derived modelbelow.Let us note, for k = 1, . . . , K

θ (Ck|Xi,j(t)) = log
P (ci,j(t) = Ck|Xi,j(t))

P (ci,j(t) = CK |Xi,j(t))
.Then, we get the following expression

P (ci,j(t) = Ck|Xi,j(t)) =
exp θ (Ck|Xi,j(t))∑K

k′=1 exp θ (Ck′|Xi,j(t))
. (2)Now, to estimate these onditional probabilities, we use the parametri ap-proah to the polyhotomous regression problem, that is the linear model

θ (Ck|Xi,j(t)) = αk +
∑

c∈Vi,j(t−1)

K∑

l=1

βkl11[c=Cl] +

p∑

r=1

γkrY
r
i,j, (3)where we reall that Vi,j(t − 1) are the values of the land over inthe neighbourhood of the pixel (i, j) on the previous date t − 1and (Y r

i,j)r are the values of the environment variables. Let us all
δ = (α1, . . . , αK−1, β1,1, . . . , β1,K , β2,1,

. . . , β2,K , . . . , βK−1,1, . . . , βK−1,K, γ1,1, . . . , γ1,K , . . . , γK−1,1, . . . , γK−1,p), theparameters of the model to be estimated. We have to notie that sine
θ (CK |Xi,j(t)) = 0, we have αK = 0, βK,l = 0 for all l = 1, . . . , K, and
γK,r = 0 for all r = 1, . . . , p. We now have to estimate the vetor ofparameters δ. For that end, we use a penalized likelihood estimator whih isperformed on the training sample. Let us write the penalized log-likelihoodfuntion for model (3). It is given by

lε(δ) = l(δ) − ε

N∑

n=1

K∑

k=1

u2
nk, (4)6



where the log-likelihood funtion is
l(δ) = log

(
N∏

n=1

Pδ

(
c(n)|X(n)

)
)
. (5)In this expression, Pδ(c

(n)|X(n)) is the value of the probability given by (2)and (3) for the observations (X(n), c(n)) and the value δ of the parameter.In expression (5), ε is a penalization parameter and, for k = 1, . . . , K,
unk = θδ(Ck|X

(n)) −
1

K

K∑

k′=1

θδ(Ck′ |X(n)). Our penalized likelihood estimator
δ̂ε satis�es:

δ̂ε = argmaxδ∈ RM lε(δ),where M = K2 + (K − 1) ∗ p − 1 denotes the number of parameters to beestimated.As pointed out by (Kooperberg et al., 1997) in the ontext of smoothpolyhotomous regression, it is possible that, without the penalty term, themaximization of the log-likelihood funtion l(δ) leads to in�nite oe�ients
βk,l. In our model it may be the ase, for example, when, for �xed k, the valueof the preditor is equal to zero for all (i, j). Atually, this �pathologial�ase annot really ours in pratie but for lasses k with a few number ofmembers, the value of the preditor is low and then a numerial unstabilityhappens when maximizing the log-likelihood. Then, the form of the penaltybased on the di�erene between the value θδ(Ck|X

(n)) for lass k and themean over all the lasses has the aim of preventing this unstability by foring
θδ(Ck|X

(n)) to be not too far from the mean. On another side, for reasonablevalues of ǫ, we an expet that the penalty term does not a�et so muhthe estimation of parameters while it guarantees numerial stability. Finally,numerial maximization of the penalized log-likelihood funtion is ahievedby a Newton-Raphson algorithm.3.3. MULTILAYER PERCEPTRONNeural networks have a great adaptability to any statistial problemsand espeially to overome the di�ulties of non linear problems even if thepreditors are highly orrelated; thus it is not surprising to �nd them usedin the hronologial series predition ((Bishop, 1995), (Lai and Wong, 2001)and (Parlitz and Merkwirth, 2000)). The main interest of neural networks is7



their ability to approximate any funtion with the desired preision (universalapproximation): see, for instane, (Hornik, 1991).Here we propose to estimate, in model (1), the funtion fk in the form ofa multilayer pereptron with one hidden layer (see Figure 4), ψ, whih is afuntion from R
q to R that an be written, for all x in R

q, as
ψw(x) =

q2∑

i=1

w
(2)
i g

(
〈x, w

(1)
i 〉 + w

(1)
i,0

)
,where q2 in N is the number of neurons on the hidden layer, (w

(1)
i )i=1,...,q2(respetively (w

(2)
i )i=1,...,q2, (w

(1)
i,0 )i=1,...,q2) are in R

q (resp. R) and are alledweights of the �rst layer (resp. weights of the seond layer, bias) and where
g, the ativation funtion, is a sigmoïd; for example, g(x) = 1

1+e−x .[Figure 4 about here.℄Then, the output of the multilayer pereptron is a smooth funtion (hereit is inde�nitly ontinuous and derivable) of its input. This property ensuresthat the neural network took into aount the spatial aspet of the data set,sine two neighbouring pixels have �lose� values for their preditor variables.To determine the optimal value for weights w = ((w
(1)
i )i, (w

(2)
i )i, (w

(1)
i,0 )i),we minimized, as it is usual, the quadrati error on the training sample: forall k = 1, . . . , K, we hose

wk
opt = argminw∈R

q2(q+2)

N∑

n=1

[
c
(n)
k − ψk

w(X(n))
]2
, (6)where c(n) and the ategorial data in X(n) are written on a disjuntive form.This an be performed by lassial numerial methods of the �rst or theseond order (suh as gradient desent or onjugate gradients, . . . ) butfaes loal minima problems. We explain in setion 4 how we overomethis di�ulty. Finally, (White, 1989) gives many results that ensure theonvergene of the optimal empirial parameters to the optimal theoretialparameters.4. PRACTICAL APPLICATION TO THE DATA SETSIn order to ompare the two approahes, we applied the same methodol-ogy: we �rst determined the optimal parameters for eah approah (training8



step, see below) and then, we used the �rst maps to predit the last one andompared the errors to real map (omparison step, see setion 5).As usual in statistial methods, there are two stages in the training step:the estimation step and the validation step.
• The estimation step onsists in estimating the parameters of the models(either for the polyhotomous regression or the neural network);
• The validation step allows us to hoose, for both methodologies, thebest neighbourhood, for polyhotomous regression, the penalizationparameter and, for neural network, the number of neurons on the hid-den layer. Conerning the neighbourhood, we only onsidered squareshapes so hoosing a neighbourhood is equivalent, in our proedure, todetermine its size.For the Sierra Nevada, we saw that large areas are onstant, thus weonly used the pixels for whih one neighbour, at least, has a di�erent landover. These pixels are alled �frontier pixels�; the others were onsidered asonstant (see Figure 5). For the generalized linear model, we used the wholefrontier pixels of the 1957/1974 maps for the estimation set and the whole1974/1987 maps for the validation set. We then onstruted the estimated2001 map from the 1987 one. For the multilayer pereptron, we reduedthe training set size in order not to have huge omputational times whenminimizing the loss funtion. Then, estimation and validation data sets werehosen randomly in the frontier pixels of the 1957/1974 and 1974/1987 maps.[Figure 5 about here.℄For the Garrotxes data set, due to the fat that we only had got 3 mapsand muh less pixels, we had to use the 1980/1990 maps for the estimationstep (only their frontier pixels for the MLP) and the whole 1990/2000 onesfor the validation step. This led to a biased estimate when onstruting the2000 map from the 1990 map but, as our purpose is to ompare two modelsand not to make signi�ant the error rate, we do not onsider this bias asimportant.4.1. POLYCHOTOMOUS REGRESSION
• The estimation step produes the estimated parameter vetor δ̂ε of theparameters δε of model (3) for given neighbourhood and penalization9



parameter ε. This step was repeated for various values onerning bothneighbourhood and penalization parameter.
• Validation step: One given an estimated parameter vetor
δ̂ε = (α̂1, . . . , α̂K−1, β̂1,1, . . . , β̂1,K , β̂2,1, . . . , β̂2,K , . . . , β̂K−1,1, . . . , β̂K−1,K,

γ̂1,1, . . . , γ̂1,p, . . . , γ̂K−1,1, . . . , γ̂K−1,p), the quantities
P̂ (ci,j(t) = Ck|Xi,j(t)) =

exp θ̂ (Ck|Xi,j(t))∑K

k′=1 exp θ̂ (Ck′|Xi,j(t))
,were alulated, for all k = 1, . . . , K, with

θ̂ (Ck|Xi,j(t)) = α̂k +
∑

c∈Vi,j(t)

K∑

l=1

β̂kl11[c=Cl] +

p∑

r=1

γ̂krY
r
i,j.At eah pixel (i, j) for the predited map on date t, we a�eted themost probable vegetation type namely the Ck whih maximizes

{
P̂ (ci,j(t) = Ck|Xi,j(t))

}

k=1,...,K
.Programs were made using R programm (see (R Development CoreTeam, 2005)) and are avalaible on request.4.2. MULTILAYER PERCEPTRONWe used a neural network with one hidden layer having q2 neurons (where

q2 is a parameter to be alibrated). The inputs of the neural network were:
• For the time series, the disjuntive form of the value of the pixel;
• For the spatial aspet, the weighted frequeny of eah type of land overin the neighbourhood of the pixel;
• the environmental variables.The output was the estimation of the probabilities (1).The estimation was also made in two stages:10



• The estimation step produes the estimated weights as desribed in (6)for a given number of neurons (q2) and a given neighbourhood. For thisstep, the neural network was trained with an early stopping proedurewhih allows to stop the optimization algorithm when the validationerror (alulated on a part of the data set) is starting to inrease (see(Bishop, 1995)).This step was repeated for various values of both neighbourhood and
q2.

• Validation step: one an estimation of the optimal weights was given,we hose q2 and the size of neighbourhood, as for the previous model.Moreover, in order to esape the loal minima during the training step,we trained the pereptrons many times for eah value of neighbourhoudand of q2 with various training sets; the �best� pereptron was thenhosen aording to the minimization of the validation error amongboth the values of the parameters (size of the neighbourhoud and q2)and the optimization proedure results.Programs were made using Matlab (Neural Networks Toolbox, see (Bealeand Demuth, 1998)) and are avalaible on request.5. COMPARISON AND DISCUSSIONThe validation step led to selet the following parameters (Table 1):[Table 1 about here.℄After the two models were trained, we built the prediting map on date2000 (Garrotxes data set) and 2001 (Alta Alpujarra data set). The perfor-manes of the two models were ompared with a GIS approah.For the Garrotxes data set, the results are summarized in Table 2 and thefrequenies of errors for eah land over type were alulated on the pixelswhih are really of this land over type. We fous on the 6 more frequentland over types, sine the number of agriulture pixels tends to zero. InFigure 6, we an see the three preditive maps given by our approahes andthe GIS approah that an be onfronted with the real map.[Table 2 about here.℄[Figure 6 about here.℄11



For the Alta Alpujarra data set, the results are summarized in Table 3(land over type under 5 % of the area have been omitted). Predited mapsand real maps are ompared in Figure 7.[Table 3 about here.℄[Figure 7 about here.℄First of all, the preditive maps provided by the two statistial methodsare oherent, smooth and lose to reality. This an also be shown through thegood error rates (about 25 % - 27 % for the Garrotxes data set and 9 % - 12% for the Alta Alpujarra) whih are learly a good performane onsideringthe poverty of the data (we only had got 3 or 4 dates to train the models).Furthermore, the striking fat is that the �automati� statistial approahesdid as well (Garrotxes data set) or even muh better (Alta Alpujarra) thanthe guided GIS approah. This is an interesting point in order to help im-proving the lassial geographial approah to prediting land over, andbetter understand the environmental hanges in time and spae. Moreover,the �automati� statistial methods were muh faster than the GIS as theydo not use any expert knowledge whih takes a long time to be modelizedand needs to be remade for eah area. On the ontrary, the polyhotomousregression modelling and the multilayer pereptron approahes did not leadon these data sets to signi�ant di�erenes. The �rst method was muh fasterto train and it was then quite attrative to use it. However, we think that, ona general point of view, the greater �exibility of multilayer pereptron ouldbe usefulness to predit land over for other data sets where a parametrimodel ould fail.The main advantage of the automati statistial approahes is in the fatthat they simultaneously take into aount the spatio-temporal aspet of theproblem and also the environmental variables. GIS works in two steps: it �rstpredits the number of pixels for eah land over type by a simple temporalmodel and then takes into aount the spatial aspet and the environmentalvariables to alloate these pixels spatially. This ould partially explain thatGIS had worse performanes for the Alta Alpujarra data set, as the oniferousreforestation used to be important in the 60's and has then be given up. Thisled the GIS to predit, in the 2001 map, muh more oniferous reforestationpixels than in the real map: 18.8 % of the pixels were predited in theoniferous reforestation type against 7.9 % for the multilayer pereptron,9.6 % for the polyhotomous regression modelling and 9.2 % for the real12



map. Then GIS approah had a muh lower error rate on the oniferousreforestation land over type but a bigger one for the other ones.Finally, looking further in the misslassi�ation rates for the various landover types, we an see that the most dynami land over type were harderto train: this is the ase, for instane, for the srubs in the Garrotxes areawhere they tended to grow fast and beame deiduous forests; this is also thease, in the Alta Alpujarra for the fallows and irrigated roplands beauseagriultural lands were tending to be left. These dynamis ould be betterpredited by adding pertinent informations for these kinds of land overtypes (density of the srubs, for example, an help knowing if they an, ornot, beome forests).6. CONCLUSIONFinally, this work shows the great potential of the two statistial modelsin preditive prospetion on geographial data. These models had as goodperformanes as GIS approah and we an hope that a ombination of the twopoints of view (statistis and GIS) an improve the land over preditions:the empirial �rst step of the GIS ould be improved by being replaed byone of these statistial approahes. This issue, that is of big interest forgeographers, is still under study as the GIS approah was performed throughpre-made programs and has then to be totally re-though to that aim.Another aspet that has to be worked on is the form of the data: forexample, we underlined that an information on the density of the srubs isneeded to better understand their evolution. This ould help geographers tobetter understand what is of interest for prediting the land over evolutionfor their future studies.7. ACKNOWLEDGEMENTSThe authors are grateful to the Ministerio de Cenia y Tenologia whosupports this researh (Plan naional de investigaion ienti�a, Desarollo einnovaion tenologia, BIA 2003_01499).The authors are also grateful to the anonymous referees for their de-tailed and onstrutive omments and suggestions whih have substantiallyimproved the manusript.BIBLIOGRAPHY(1) Beale, M., Demuth, H. (1998). Neural network toolbox user's guide.13
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Figure 1: Land over for the Garrotxes (1980 - left) and for the Alta Alpujarra(1957 - right)
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Figure 2: Examples of a numerial variable (elevation for the Garrotxes -left) and a ategorial one (ground geologial type for the Alta Alpujarra -right)
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Figure 4: Multilayer pereptron with one hidden layer
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Figure 5: Frontier pixels (order 4) for the 1957 map (Alta Alpujarra)
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Figure 6: Preditive maps for the various approahes on date 2000 and realmap (bottom right)
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Figure 7: Preditive maps for the various approahes on date 2001 and realmap (bottom right)
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Table 1: Parameters seleted by the validation stepGarrotxes Alta AlpujarraPoly. regressionSize of neighbourhood 9 1
ǫ 10 0.1ML pereptronSize of neighbourhood 7 4
q2 8 30pereptron size 19-8-7 35-30-9

24



Table 2: Misslassi�ation rates for the GarrotxesLand over Frequeny Poly. Regression ML pereptron GIStypes in the area error rate error rate error rateConiferous forests 40.9 % 11.9 % 10.6 % 11.4 %Deiduous forests 11.7 % 51.7 % 45.8 % 55.3 %Srubs 15.1 % 57.1 % 54.5 % 51.9 %Broom lands 21.6 % 14.4 % 16.2 % 17.1 %Grass pastures 5.7 % 59.2 % 59.4 % 54.4 %Grasslands 4.8 % 25.6 % 19.3 % 30.4 %Overall 27.2 % 25.7 % 27.2 %
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Table 3: Misslassi�ation rates for the Alta AlpujarraLand over Frequeny Poly. Regression ML pereptron GIStypes in the area error rate error rate error rateDeiduous forests 10.9 % 3.5 % 2.6 % 14.3 %Srubs 33.0 % 3.1 % 1.4 % 15.2 %Pasture 20.8 % 0.6 % 0 % 12.5 %Coniferous refor. 9.23 % 3.5 % 16.3 % 1.9%Fallows 18.8 % 32.5 % 41.4 % 46.8%Irrigated ropland 5.8 % 8.9 % 6.8 % 38.9%Overall 9.0 % 11.28 % 21.1 %
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