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omparison.ABSTRACTUsing former maps, geographers intend to study the evolution of the land
over in order to have a prospe
tive approa
h on the future lands
ape; pre-di
tions of the future land 
over, by the use of older maps and environmentalvariables, are usually done through the GIS (Geographi
 Information Sys-tem). We propose here to 
onfront this 
lassi
al geographi
al approa
h withstatisti
al approa
hes: a linear parametri
 model (poly
hotomous regressionmodelling) and a nonparametri
 one (multilayer per
eptron). These method-ologies have been tested on two real areas on whi
h the land 
over is known atvarious dates; this allows us to emphasize the bene�t of these two statisti
alapproa
hes 
ompared to GIS and to dis
uss the way GIS 
ould be improvedby the use of statisti
al models.1. PREDICTING LAND COVERFrom the sket
h maps made by geographers or from the analysis of satel-lite images or aerial photographs, we 
an build land 
over maps for a given
ountry whi
h 
an be rather pre
ise: the studied area is then 
ut into severalsquared pixels whose sides are about 20 meters long and whose land 
overis known on various dates. The type of land 
over 
an be 
hosen from apre-determined list: 
oniferous forests, de
iduous forests, s
rubs, . . .Here, we are not interested in making su
h maps (for satellite data anal-ysis, see (Cardot et al., 2003)). Our purpose is to 
ontru
t a simulated land
over map at a given future date, by the use of land 
over maps at olderdates and of other environmental variables; on a geographi
al point of view,1
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prospe
tive simulations have a great interest to help the lo
al administra-tions to develop these mountain areas. The idea is then to 
ompare di�erentapproa
hes in order to 
onfront their ability to be generalized to variousmountain areas.For a given pixel, determined by its spatial 
oordinates, latitude (i) andlongitude (j), the value of the land 
over on date t, ci,j(t), is a 
ategori
alrandom variable depending on several variables:
• the land 
over of this pixel on previous dates: ci,j(t− 1), . . . , ci,j(t−T )(time serie of length T );
• the land 
overs of the neighbouring pixels on previous dates: Vi,j(t −

1), . . . , Vi,j(t − T ), where Vi,j(t − τ) is a set of values of land 
over ondate t− τ for the pixels in a neighbourhood of the pixel (i, j) (ve
torialtime serie);
• some environmental variables: for example, the elevation, the aspe
t,the proximity of roads and villages, . . . : Y 1

i,j, . . . , Y
p
i,j.We fa
e here a problem of 
lassi�
ation in whi
h the predi
tors are bothqualitative and quantitative and are also highly dependent (spatial time pro-
ess). To solve this question, we propose to use and to 
ompare two well-known statisti
al approa
hes with the empiri
al geographi
 method (namelythe GIS, Geographi
 Information System). The �rst of these methods is ageneralized linear model in whi
h we estimate the parameters of the model bymaximizing a log-likelihood type 
riterion. The se
ond one uses a supervisedmultilayer per
eptron. By 
onfronting these various approa
hes, we expe
tto give ideas in order to improve the GIS approa
h.A 
omparison of these two approa
hes was done on two little areas: the�Garrotxes� (�Pyrénées Orientales�, south west of Fran
e) and the �Alta Alpu-jarra Granaderia� (Sierra Nevada, Spain) where several surveys of the land
over were done at various dates. We 
onfronted the various s
enarii 
on-stru
ted with the real maps.In the following, we des
ribe the data more pre
isely (se
tion 2) andpresent the two approa
hes (se
tion 3). Then we present how we appliedthese methodologies on these data sets (se
tion 4) and �nally, we 
omparethe results obtained by analyzing the advantages and the limits of the models(se
tion 5).2. DESCRIPTION OF THE DATA SETS2



The areas under study stand in the moutains �Pyrénées� for the Garrotxesand Sierra Nevada �Alta Alpujarra�. A big drift from the land has led to thedesertion of the land under 
ultivation and the re
overy of the �elds by s
rubsand forests. There is almost none human a
tion on these areas. The aridityof the 
limate explains a mu
h slower dynami
 in the spanish area than inthe Garrotxes: we 
ount 3 times less pixels 
hanging in the Alta Alpujarrathan in the Garrotxes. On the 
ontrary, the fren
h area is 
onsidered, atleast on a geographi
al point of view, as a dynami
 area and it is then moredi�
ult to predi
t the land 
over.We are given quantitative and qualitative informations through mapsdivided into pixels: about 241 000 pixels for the Fren
h area and 560 000 forthe Spanish one (whi
h is mu
h bigger). For ea
h pixel, we know:
• a 
ategori
al variable whi
h is the land 
over at di�erent dates: 3 dates(1980, 1990 and 2000) were avalaible for the Garrotxes and 4 dates(1957, 1974, 1987 and 2001) for the Alta Alpujarra. As the land 
overevolution is very slow in the Sierra Nevada (less than 25% of the pix-els had 
hanged their value between 1957 and 2001), these dates were
onsidered as equidistant, a

ording to geographers opinion. This 
at-egori
al variable was taken from a list of several 
hoi
es (8 for theGarrotxes and 9 for the Alta Alpujarra) whi
h are of 
lassi
al use ingeography. These data were used to make maps of the studied area(see Figure 1); [Figure 1 about here.℄
• several environmental variables; some of them are of numeri
 type (theelevation, the slope, the aspe
t, the distan
e of roads and villages,. . . )and others are of 
ategori
al type (forest and pasture management:governmental or not ? ground geologi
al type, . . . ). The environmen-tal variables were not the same for the Garrotxes and the Alta Alpu-jarra (see Figure 2 for examples of environmental variables); all theseenvironmental variables kept the same value at all dates.[Figure 2 about here.℄3. PRESENTATION OF THE TWO APPROACHES3



Geographers usually estimate the land 
over evolution by an empiri
almethod whi
h allows to introdu
e some expert knowledge. The so-
alledGIS (Geographi
 Information System) approa
h is time expensive and ne-
essitates pre
ise knowledge on the geographi
 
onstraints of the area understudy. Roughly speaking, the method 
onsists in two steps: at �rst one
omputes time transition probabilities for ea
h land 
over type whereas, ina se
ond step, one uses spatial 
onstraints (introdu
ed by an expert) for�smoothing� the maps obtained at the �rst step (see (Paegelow et al., 2004)or (Paegelow and Cama
ho Olmedo, 2005) for further details on GIS forthese data sets). In order to propose automati
 alternatives to the GIS,whi
h 
an take in the same model the spatio-temporal nature of the prob-lem, two approa
hes have been adapted to estimate the evolution of the land
over: the �rst one, poly
hotomous regression modelling, is a generalizedlinear approa
h based on the maximum log-likelihood method. The se
ondone, multilayer per
eptron, is a popular method whi
h has re
ently provedits great e�
ien
y to solve various types of problems.The idea is to 
onfront a parametri
 linear model with a non parametri
one to provide a 
olle
tion of automati
 statisti
al methods for geographers.They both have 
on
urrent advantages that have to be taken into a

ountwhen 
hoosing one of them: the poly
hotomous regression modelling is fasterto train than multilayer per
eptrons, espe
ially in high dimensional spa
esand does not su�er from the existen
e of lo
al minima. On the 
ontrary, mul-tilayer per
eptrons 
an provide nonlinear solutions and are then more �exiblethan the linear modelling; moreover, both methods are easy to implementeven for non statisti
ians through the pre-made softwares (for example, �Neu-ral Network� Toolbox for neural network with Matlab).3.1. THE MODELLet us now des
ribe the statisti
al setting more formally. We note Xi,j(t)the ve
tor of variables that 
ould explain the value of the land 
over for agiven pixel (i, j) on date t. We suppose that the time dependen
e is of order1; then, Xi,j(t) 
ontains:
• for the time series: the value of the land 
over for the pixel (i, j) atthe previous time t− 1;
• for the spatial aspe
t: the frequen
y of ea
h type of land 
over in theneighbourhood of pixel (i, j) on the previous date. Then, the shapeand the size of the neighbourhood had to be 
hosen. For the shape, we4



had many 
hoi
es: the simpler one was a square neighbourhood or astar-shaped neighbourhood around the pixel (i, j); the most sophisti-
ated 
ould use the slope to better take into a

ount the morphologi
alin�uen
es of the land. For the size of the neighbourhood, we had to�nd at whi
h distan
e a pixel 
ould in�uen
e the land use of pixel (i, j).Moreover, for the multilayer per
eptrons, in order to respe
t the spa-tial aspe
t of the problem, we weighted the in�uen
e of a pixel by ade
reasing fun
tion of its distan
e to the pixel (i, j) (see Figure 3).[Figure 3 about here.℄
• environmental variables (slope, elevation, . . . ).Let us repeat that ci,j(t) is the land 
over for a given pixel on date t.We note C1, . . . , CK the di�erent types of land 
over. Then, for every k =

1, . . . , K, we try to estimate the probability P (ci,j(t) = Ck|Xi,j(t)) that thepixel (i, j) has a land 
over equal to Ck given the ve
tor Xi,j(t); thus, themodel is of the following form :
P (ci,j(t) = Ck|Xi,j(t)) = fk(Xi,j(t)). (1)On
e a model was 
hosen through fk, these probabilities were estimated bythe way of a multi-layer per
eptron or a generalized linear model and wepredi
ted the type of land 
over, ci,j(t), by the rule of maximum:argmaxk=1,...,KP (ci,j(t) = Ck|Xi,j(t)).In both approa
hes, we estimated fk thanks to a training sample. To thatend, we have 
olle
ted the values of the predi
tors and of the land 
overfor many pixels on various dates (see next se
tion for more details); theobservations are denoted by (X(1), c(1)), . . . , (X(N), c(N)).The time and spatial aspe
ts are taking into a

ount together both bythe poly
hotomous regression modelling and by the multilayer per
eptronand the land 
over predi
tion is performed in a single estimation pro
edure.This is not the 
ase for the usual GIS approa
h whi
h is performed in twosteps: it �rst estimates the land 
over probability by modelling a time serieand it then introdu
es a spa
ial smoothing with environmental 
onstraints.3.2. POLYCHOTOMOUS REGRESSION MODELLING5



When we wish to predi
t a 
ategori
al response given a random ve
tor, auseful model is the multiple logisti
 regression (or poly
hotomous regression)model (Hosmer and Lemeshow, 1989). A smooth version of this kind ofmethod 
an be found in (Kooperberg et al., 1997). Appli
ations of thesestatisti
al te
hniques to several situations su
h as in medi
ine or for phonemere
ognition 
an be found in these two works. Their good behaviour both ontheoreti
al and pra
ti
al grounds have been emphasized. In our 
ase, wherethe predi
tors are both 
ategori
al and s
alar, we then have the derived modelbelow.Let us note, for k = 1, . . . , K

θ (Ck|Xi,j(t)) = log
P (ci,j(t) = Ck|Xi,j(t))

P (ci,j(t) = CK |Xi,j(t))
.Then, we get the following expression

P (ci,j(t) = Ck|Xi,j(t)) =
exp θ (Ck|Xi,j(t))∑K

k′=1 exp θ (Ck′|Xi,j(t))
. (2)Now, to estimate these 
onditional probabilities, we use the parametri
 ap-proa
h to the poly
hotomous regression problem, that is the linear model

θ (Ck|Xi,j(t)) = αk +
∑

c∈Vi,j(t−1)

K∑

l=1

βkl11[c=Cl] +

p∑

r=1

γkrY
r
i,j, (3)where we re
all that Vi,j(t − 1) are the values of the land 
over inthe neighbourhood of the pixel (i, j) on the previous date t − 1and (Y r

i,j)r are the values of the environment variables. Let us 
all
δ = (α1, . . . , αK−1, β1,1, . . . , β1,K , β2,1,

. . . , β2,K , . . . , βK−1,1, . . . , βK−1,K, γ1,1, . . . , γ1,K , . . . , γK−1,1, . . . , γK−1,p), theparameters of the model to be estimated. We have to noti
e that sin
e
θ (CK |Xi,j(t)) = 0, we have αK = 0, βK,l = 0 for all l = 1, . . . , K, and
γK,r = 0 for all r = 1, . . . , p. We now have to estimate the ve
tor ofparameters δ. For that end, we use a penalized likelihood estimator whi
h isperformed on the training sample. Let us write the penalized log-likelihoodfun
tion for model (3). It is given by

lε(δ) = l(δ) − ε

N∑

n=1

K∑

k=1

u2
nk, (4)6



where the log-likelihood fun
tion is
l(δ) = log

(
N∏

n=1

Pδ

(
c(n)|X(n)

)
)
. (5)In this expression, Pδ(c

(n)|X(n)) is the value of the probability given by (2)and (3) for the observations (X(n), c(n)) and the value δ of the parameter.In expression (5), ε is a penalization parameter and, for k = 1, . . . , K,
unk = θδ(Ck|X

(n)) −
1

K

K∑

k′=1

θδ(Ck′ |X(n)). Our penalized likelihood estimator
δ̂ε satis�es:

δ̂ε = argmaxδ∈ RM lε(δ),where M = K2 + (K − 1) ∗ p − 1 denotes the number of parameters to beestimated.As pointed out by (Kooperberg et al., 1997) in the 
ontext of smoothpoly
hotomous regression, it is possible that, without the penalty term, themaximization of the log-likelihood fun
tion l(δ) leads to in�nite 
oe�
ients
βk,l. In our model it may be the 
ase, for example, when, for �xed k, the valueof the predi
tor is equal to zero for all (i, j). A
tually, this �pathologi
al�
ase 
annot really o

urs in pra
ti
e but for 
lasses k with a few number ofmembers, the value of the predi
tor is low and then a numeri
al unstabilityhappens when maximizing the log-likelihood. Then, the form of the penaltybased on the di�eren
e between the value θδ(Ck|X

(n)) for 
lass k and themean over all the 
lasses has the aim of preventing this unstability by for
ing
θδ(Ck|X

(n)) to be not too far from the mean. On another side, for reasonablevalues of ǫ, we 
an expe
t that the penalty term does not a�e
t so mu
hthe estimation of parameters while it guarantees numeri
al stability. Finally,numeri
al maximization of the penalized log-likelihood fun
tion is a
hievedby a Newton-Raphson algorithm.3.3. MULTILAYER PERCEPTRONNeural networks have a great adaptability to any statisti
al problemsand espe
ially to over
ome the di�
ulties of non linear problems even if thepredi
tors are highly 
orrelated; thus it is not surprising to �nd them usedin the 
hronologi
al series predi
tion ((Bishop, 1995), (Lai and Wong, 2001)and (Parlitz and Merkwirth, 2000)). The main interest of neural networks is7



their ability to approximate any fun
tion with the desired pre
ision (universalapproximation): see, for instan
e, (Hornik, 1991).Here we propose to estimate, in model (1), the fun
tion fk in the form ofa multilayer per
eptron with one hidden layer (see Figure 4), ψ, whi
h is afun
tion from R
q to R that 
an be written, for all x in R

q, as
ψw(x) =

q2∑

i=1

w
(2)
i g

(
〈x, w

(1)
i 〉 + w

(1)
i,0

)
,where q2 in N is the number of neurons on the hidden layer, (w

(1)
i )i=1,...,q2(respe
tively (w

(2)
i )i=1,...,q2, (w

(1)
i,0 )i=1,...,q2) are in R

q (resp. R) and are 
alledweights of the �rst layer (resp. weights of the se
ond layer, bias) and where
g, the a
tivation fun
tion, is a sigmoïd; for example, g(x) = 1

1+e−x .[Figure 4 about here.℄Then, the output of the multilayer per
eptron is a smooth fun
tion (hereit is inde�nitly 
ontinuous and derivable) of its input. This property ensuresthat the neural network took into a

ount the spatial aspe
t of the data set,sin
e two neighbouring pixels have �
lose� values for their predi
tor variables.To determine the optimal value for weights w = ((w
(1)
i )i, (w

(2)
i )i, (w

(1)
i,0 )i),we minimized, as it is usual, the quadrati
 error on the training sample: forall k = 1, . . . , K, we 
hose

wk
opt = argminw∈R

q2(q+2)

N∑

n=1

[
c
(n)
k − ψk

w(X(n))
]2
, (6)where c(n) and the 
ategori
al data in X(n) are written on a disjun
tive form.This 
an be performed by 
lassi
al numeri
al methods of the �rst or these
ond order (su
h as gradient des
ent or 
onjugate gradients, . . . ) butfa
es lo
al minima problems. We explain in se
tion 4 how we over
omethis di�
ulty. Finally, (White, 1989) gives many results that ensure the
onvergen
e of the optimal empiri
al parameters to the optimal theoreti
alparameters.4. PRACTICAL APPLICATION TO THE DATA SETSIn order to 
ompare the two approa
hes, we applied the same methodol-ogy: we �rst determined the optimal parameters for ea
h approa
h (training8



step, see below) and then, we used the �rst maps to predi
t the last one and
ompared the errors to real map (
omparison step, see se
tion 5).As usual in statisti
al methods, there are two stages in the training step:the estimation step and the validation step.
• The estimation step 
onsists in estimating the parameters of the models(either for the poly
hotomous regression or the neural network);
• The validation step allows us to 
hoose, for both methodologies, thebest neighbourhood, for poly
hotomous regression, the penalizationparameter and, for neural network, the number of neurons on the hid-den layer. Con
erning the neighbourhood, we only 
onsidered squareshapes so 
hoosing a neighbourhood is equivalent, in our pro
edure, todetermine its size.For the Sierra Nevada, we saw that large areas are 
onstant, thus weonly used the pixels for whi
h one neighbour, at least, has a di�erent land
over. These pixels are 
alled �frontier pixels�; the others were 
onsidered as
onstant (see Figure 5). For the generalized linear model, we used the wholefrontier pixels of the 1957/1974 maps for the estimation set and the whole1974/1987 maps for the validation set. We then 
onstru
ted the estimated2001 map from the 1987 one. For the multilayer per
eptron, we redu
edthe training set size in order not to have huge 
omputational times whenminimizing the loss fun
tion. Then, estimation and validation data sets were
hosen randomly in the frontier pixels of the 1957/1974 and 1974/1987 maps.[Figure 5 about here.℄For the Garrotxes data set, due to the fa
t that we only had got 3 mapsand mu
h less pixels, we had to use the 1980/1990 maps for the estimationstep (only their frontier pixels for the MLP) and the whole 1990/2000 onesfor the validation step. This led to a biased estimate when 
onstru
ting the2000 map from the 1990 map but, as our purpose is to 
ompare two modelsand not to make signi�
ant the error rate, we do not 
onsider this bias asimportant.4.1. POLYCHOTOMOUS REGRESSION
• The estimation step produ
es the estimated parameter ve
tor δ̂ε of theparameters δε of model (3) for given neighbourhood and penalization9



parameter ε. This step was repeated for various values 
on
erning bothneighbourhood and penalization parameter.
• Validation step: On
e given an estimated parameter ve
tor
δ̂ε = (α̂1, . . . , α̂K−1, β̂1,1, . . . , β̂1,K , β̂2,1, . . . , β̂2,K , . . . , β̂K−1,1, . . . , β̂K−1,K,

γ̂1,1, . . . , γ̂1,p, . . . , γ̂K−1,1, . . . , γ̂K−1,p), the quantities
P̂ (ci,j(t) = Ck|Xi,j(t)) =

exp θ̂ (Ck|Xi,j(t))∑K

k′=1 exp θ̂ (Ck′|Xi,j(t))
,were 
al
ulated, for all k = 1, . . . , K, with

θ̂ (Ck|Xi,j(t)) = α̂k +
∑

c∈Vi,j(t)

K∑

l=1

β̂kl11[c=Cl] +

p∑

r=1

γ̂krY
r
i,j.At ea
h pixel (i, j) for the predi
ted map on date t, we a�e
ted themost probable vegetation type namely the Ck whi
h maximizes

{
P̂ (ci,j(t) = Ck|Xi,j(t))

}

k=1,...,K
.Programs were made using R programm (see (R Development CoreTeam, 2005)) and are avalaible on request.4.2. MULTILAYER PERCEPTRONWe used a neural network with one hidden layer having q2 neurons (where

q2 is a parameter to be 
alibrated). The inputs of the neural network were:
• For the time series, the disjun
tive form of the value of the pixel;
• For the spatial aspe
t, the weighted frequen
y of ea
h type of land 
overin the neighbourhood of the pixel;
• the environmental variables.The output was the estimation of the probabilities (1).The estimation was also made in two stages:10



• The estimation step produ
es the estimated weights as des
ribed in (6)for a given number of neurons (q2) and a given neighbourhood. For thisstep, the neural network was trained with an early stopping pro
edurewhi
h allows to stop the optimization algorithm when the validationerror (
al
ulated on a part of the data set) is starting to in
rease (see(Bishop, 1995)).This step was repeated for various values of both neighbourhood and
q2.

• Validation step: on
e an estimation of the optimal weights was given,we 
hose q2 and the size of neighbourhood, as for the previous model.Moreover, in order to es
ape the lo
al minima during the training step,we trained the per
eptrons many times for ea
h value of neighbourhoudand of q2 with various training sets; the �best� per
eptron was then
hosen a

ording to the minimization of the validation error amongboth the values of the parameters (size of the neighbourhoud and q2)and the optimization pro
edure results.Programs were made using Matlab (Neural Networks Toolbox, see (Bealeand Demuth, 1998)) and are avalaible on request.5. COMPARISON AND DISCUSSIONThe validation step led to sele
t the following parameters (Table 1):[Table 1 about here.℄After the two models were trained, we built the predi
ting map on date2000 (Garrotxes data set) and 2001 (Alta Alpujarra data set). The perfor-man
es of the two models were 
ompared with a GIS approa
h.For the Garrotxes data set, the results are summarized in Table 2 and thefrequen
ies of errors for ea
h land 
over type were 
al
ulated on the pixelswhi
h are really of this land 
over type. We fo
us on the 6 more frequentland 
over types, sin
e the number of agri
ulture pixels tends to zero. InFigure 6, we 
an see the three predi
tive maps given by our approa
hes andthe GIS approa
h that 
an be 
onfronted with the real map.[Table 2 about here.℄[Figure 6 about here.℄11



For the Alta Alpujarra data set, the results are summarized in Table 3(land 
over type under 5 % of the area have been omitted). Predi
ted mapsand real maps are 
ompared in Figure 7.[Table 3 about here.℄[Figure 7 about here.℄First of all, the predi
tive maps provided by the two statisti
al methodsare 
oherent, smooth and 
lose to reality. This 
an also be shown through thegood error rates (about 25 % - 27 % for the Garrotxes data set and 9 % - 12% for the Alta Alpujarra) whi
h are 
learly a good performan
e 
onsideringthe poverty of the data (we only had got 3 or 4 dates to train the models).Furthermore, the striking fa
t is that the �automati
� statisti
al approa
hesdid as well (Garrotxes data set) or even mu
h better (Alta Alpujarra) thanthe guided GIS approa
h. This is an interesting point in order to help im-proving the 
lassi
al geographi
al approa
h to predi
ting land 
over, andbetter understand the environmental 
hanges in time and spa
e. Moreover,the �automati
� statisti
al methods were mu
h faster than the GIS as theydo not use any expert knowledge whi
h takes a long time to be modelizedand needs to be remade for ea
h area. On the 
ontrary, the poly
hotomousregression modelling and the multilayer per
eptron approa
hes did not leadon these data sets to signi�
ant di�eren
es. The �rst method was mu
h fasterto train and it was then quite attra
tive to use it. However, we think that, ona general point of view, the greater �exibility of multilayer per
eptron 
ouldbe usefulness to predi
t land 
over for other data sets where a parametri
model 
ould fail.The main advantage of the automati
 statisti
al approa
hes is in the fa
tthat they simultaneously take into a

ount the spatio-temporal aspe
t of theproblem and also the environmental variables. GIS works in two steps: it �rstpredi
ts the number of pixels for ea
h land 
over type by a simple temporalmodel and then takes into a

ount the spatial aspe
t and the environmentalvariables to allo
ate these pixels spatially. This 
ould partially explain thatGIS had worse performan
es for the Alta Alpujarra data set, as the 
oniferousreforestation used to be important in the 60's and has then be given up. Thisled the GIS to predi
t, in the 2001 map, mu
h more 
oniferous reforestationpixels than in the real map: 18.8 % of the pixels were predi
ted in the
oniferous reforestation type against 7.9 % for the multilayer per
eptron,9.6 % for the poly
hotomous regression modelling and 9.2 % for the real12



map. Then GIS approa
h had a mu
h lower error rate on the 
oniferousreforestation land 
over type but a bigger one for the other ones.Finally, looking further in the miss
lassi�
ation rates for the various land
over types, we 
an see that the most dynami
 land 
over type were harderto train: this is the 
ase, for instan
e, for the s
rubs in the Garrotxes areawhere they tended to grow fast and be
ame de
iduous forests; this is also the
ase, in the Alta Alpujarra for the fallows and irrigated 
roplands be
auseagri
ultural lands were tending to be left. These dynami
s 
ould be betterpredi
ted by adding pertinent informations for these kinds of land 
overtypes (density of the s
rubs, for example, 
an help knowing if they 
an, ornot, be
ome forests).6. CONCLUSIONFinally, this work shows the great potential of the two statisti
al modelsin predi
tive prospe
tion on geographi
al data. These models had as goodperforman
es as GIS approa
h and we 
an hope that a 
ombination of the twopoints of view (statisti
s and GIS) 
an improve the land 
over predi
tions:the empiri
al �rst step of the GIS 
ould be improved by being repla
ed byone of these statisti
al approa
hes. This issue, that is of big interest forgeographers, is still under study as the GIS approa
h was performed throughpre-made programs and has then to be totally re-though to that aim.Another aspe
t that has to be worked on is the form of the data: forexample, we underlined that an information on the density of the s
rubs isneeded to better understand their evolution. This 
ould help geographers tobetter understand what is of interest for predi
ting the land 
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Figure 1: Land 
over for the Garrotxes (1980 - left) and for the Alta Alpujarra(1957 - right)

16



Figure 2: Examples of a numeri
al variable (elevation for the Garrotxes -left) and a 
ategori
al one (ground geologi
al type for the Alta Alpujarra -right)

17



Frequen
yweighted by e−d Pixel (i, j)

Size of theneighbourhood(here, 3)
d

Figure 3: An example of neighbourhood

18



X
∑

w(1) w(2)

Neuron 1
∑

+

∑
+

Neuron q2

w
(1)
1,0

w
(1)
q2,0

OUTPUT
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eptron with one hidden layer

19



Figure 5: Frontier pixels (order 4) for the 1957 map (Alta Alpujarra)

20



Figure 6: Predi
tive maps for the various approa
hes on date 2000 and realmap (bottom right)
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Figure 7: Predi
tive maps for the various approa
hes on date 2001 and realmap (bottom right)
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Table 1: Parameters sele
ted by the validation stepGarrotxes Alta AlpujarraPoly. regressionSize of neighbourhood 9 1
ǫ 10 0.1ML per
eptronSize of neighbourhood 7 4
q2 8 30per
eptron size 19-8-7 35-30-9
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Table 2: Miss
lassi�
ation rates for the GarrotxesLand 
over Frequen
y Poly. Regression ML per
eptron GIStypes in the area error rate error rate error rateConiferous forests 40.9 % 11.9 % 10.6 % 11.4 %De
iduous forests 11.7 % 51.7 % 45.8 % 55.3 %S
rubs 15.1 % 57.1 % 54.5 % 51.9 %Broom lands 21.6 % 14.4 % 16.2 % 17.1 %Grass pastures 5.7 % 59.2 % 59.4 % 54.4 %Grasslands 4.8 % 25.6 % 19.3 % 30.4 %Overall 27.2 % 25.7 % 27.2 %
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Table 3: Miss
lassi�
ation rates for the Alta AlpujarraLand 
over Frequen
y Poly. Regression ML per
eptron GIStypes in the area error rate error rate error rateDe
iduous forests 10.9 % 3.5 % 2.6 % 14.3 %S
rubs 33.0 % 3.1 % 1.4 % 15.2 %Pasture 20.8 % 0.6 % 0 % 12.5 %Coniferous refor. 9.23 % 3.5 % 16.3 % 1.9%Fallows 18.8 % 32.5 % 41.4 % 46.8%Irrigated 
ropland 5.8 % 8.9 % 6.8 % 38.9%Overall 9.0 % 11.28 % 21.1 %
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