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Abstract

This paper considers the issue of modeling fractional data observed on [0,1), (0,1] or [0,1].
Mixed continuous-discrete distributions are proposed. The beta distribution is used to
describe the continuous component of the model since its density can have quite different
shapes depending on the values of the two parameters that index the distribution. Prop-
erties of the proposed distributions are examined. Also, estimation based on maximum
likelihood and conditional moments is discussed. Finally, practical applications that em-
ploy real data are presented.

Keywords and Phrases: Beta distribution; inflated beta distribution; fractional data;
maximum likelihood estimation; conditional moments; mixture; proportions.

1 Introduction

Many studies in different areas involve data in the form of fractions, rates or proportions that
are measured continuously in the open interval (0, 1). However, frequently the data contain
zeros and/or ones. In such cases, continuous distributions are not suitable for modeling the
data. In this work, we propose mixed continuous-discrete distributions to model data that are
observed on [0,1), (0,1] or [0,1]. The proposed distributions capture the probability mass at
0, at 1 or both, depending on the case. For data observed on [0, 1) or (0, 1] we use a mixture
of a continuous distribution on (0, 1) and a degenerate distribution that assigns non-negative
probability to 0 or 1, depending on the case. If the response variable is observed on the
closed interval [0, 1] we use a mixture of a continuous distribution on (0, 1) and the Bernoulli
distribution, which gives non-negative probabilities to 0 and 1. These models are special cases
of the class of inflated models. The word inflated suggests that the probability mass of some
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points exceeds what is allowed by the proposed model (Tu, 2002). Some related works include
Aitchison (1955), Feuerverger (1979), Yoo (2004), Heller, Stasinopoulos & Rigby (2006),
Cook, Kieschnick & McCullough (2004) and Lesaffre, Rizopoulus & Tsonaka (2007).

The paper unfolds as follows. Section 2 presents the zero- and one-inflated beta distri-
butions and discusses some of their properties. Estimation based on maximum likelihood
and conditional moments is presented. Section 3 introduces the zero-and-one-inflated beta
distribution, some of its properties and estimation based on maximum likelihood and con-
ditional moments. In Section 4, Monte Carlo simulation studies are carried out to examine
the performance of the proposed estimators. Section 5 contains applications of the proposed
distributions and Tobit models to real data. For all the applications the inflated beta distri-
butions fitted the data better. Section 6 closes the paper with concluding remarks.

2 Zero- and one-inflated beta distributions

The beta distribution is very flexible for modeling data that are measured in a continu-
ous scale on the open interval (0, 1) since its density has quite different shapes depending
on the values of the two parameters that index the distribution; see Johnson, Kotz & Bal-
akrishnan (1995, Chapter 25, Section 1), Kieschnick & McCullough (2003) and Ferrari and
Cribari–Neto (2004). The beta distribution with parameters µ and φ (0 < µ < 1 and φ > 0),
denoted by B(µ, φ), has density function

f(y;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1 − µ)φ)
yµφ−1(1 − y)(1−µ)φ−1, y ∈ (0, 1), (1)

where Γ(·) is the gamma function. If y ∼ B(µ, φ), then E(y) = µ and Var(y) = V(µ)/(φ+ 1),
where V(µ) = µ(1 − µ) denotes the “variance function”. The parameter φ plays the role of a
precision parameter in the sense that, for fixed µ, the larger the value of φ, the smaller the
variance of y. Different values of the parameters generate different shapes of the beta density
(unimodal, ‘U ’, ‘J ’, inverted ‘J ’, uniform).

In practical applications the data may include zeros and/or ones. The beta distribution
is not suitable for modeling the data in these situations. If the data set contains zeros or
ones (but not both) its is natural to model the data using a mixture of two distributions: a
beta distribution and a degenerate distribution in a known value c, where c = 0 or c = 1,
depending on the case. The cumulative distribution function of the mixture distribution is
given by

BIc(y;α, µ, φ) = α1l[c,1](y) + (1 − α)F (y;µ, φ),

where 1lA(y) is an indicator function that equals 1 if y ∈ A and 0 if y /∈ A. Here, F (·;µ, φ)
is the cumulative distribution function of the beta distribution B(µ, φ) and 0 < α < 1 is
the mixture parameter. The corresponding probability density function with respect to the
measure generated by the mixture1 is given by

bic(y;α, µ, φ) =

{
α, if y = c,

(1 − α)f(y;µ, φ), if y ∈ (0, 1),
(2)

1The probability measure P corresponding to BIc(y; ·), defined over the measurable space ((0, 1) ∪ {c}, B)
where B is the class of all Borelian subsets of (0, 1) ∪ {c}, is such that P << λ + δc, with λ representing the
Lebesgue measure and δc is a point mass at c, i.e. δc(A) = 1, if c ∈ A and δc(A) = 0, if c /∈ A, A ∈ B.
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where f(y;µ, φ) is the beta density (1). Note that α is the probability mass at c and represents
the probability of observing 0 (c = 0) or 1 (c = 1).

Definition 2.1. Let y be a random variable that follows the inflated beta distribution (2).

1. If c = 0, distribution (2) is called zero-inflated beta distribution (BEZI) and we write

y ∼ BEZI(α, µ, φ).

2. If c = 1, distribution (2) is called one-inflated beta distribution (BEOI) and we write

y ∼ BEOI(α, µ, φ).

If y ∼ BEZI(α, µ, φ), then α = P (y = 0) and if y ∼ BEOI(α, µ, φ), then α = P (y = 1).
Hence, those distributions allow us to include a mass point at 0 or 1 in the beta distribution
(1).

The rth moment of y and its variance can be written as

E(yr) = αc+ (1 − α)µr, r = 1, 2, . . . ,

Var(y) = (1 − α)
V (µ)

φ+ 1
+ α(1 − α)(c − µ)2,

(3)

where µr = (µφ)(r)/(φ)(r), with a(r) = a(a+ 1) · · · (a+ r− 1), is the rth moment of the beta
distribution (1). Note that E(yr) is the weighted average of the rth moment of the degenerate
distribution at c and the corresponding moment of the beta distribution B(µ, φ) with weights
α and 1 − α, respectively. In particular, E(y) = αc+ (1 − α)µ.

Figure 1 presents BEZI densities for different choices of µ and φ with fixed α. Note that
for all µ and φ the BEZI distribution is asymmetrical because of the probability mass at 0.
Also, the BEZI density may be unimodal and may have ‘J ’, ‘U ’, inverted ‘J ’ and uniform
shapes. In these graphs, the vertical bar with the circle above represents α = P (y = 0).
Similarly, the BEOI distribution is asymmetrical because of the probability mass at 1 and,
for identical choices of the parameters, the BEZI and BEOI distributions have the same
functional shape on the interval (0, 1). However, they differ in the mass point, being at 0 for
the BEZI distribution and at 1 for the BEOI distribution.

Proposition 2.1. The zero- and one-inflated beta distributions are three-parameter exponen-

tial family distributions of full rank.

Proof. Let η = (η1, η2, η3), with η1 = [log(α/(1−α))+B(η2, η3)], η2 = µφ and η3 = (1−µ)φ,
where B(η2, η3) = log(Γ(η2)Γ(η3)/Γ(η2 + η3)). Let T (y) = (t1(y), t2(y), t3(y)), where t1(y) =
1l{c}(y), t2(y) = log y if y ∈ (0, 1) and 0 if y = c and t3(y) = log(1 − y) if y ∈ (0, 1) and 0 if
y = c. Note that density (2) can be written as

exp{η⊤T (y) −B∗(η)}h(y), (4)

where B∗(η) = log{1 + exp[η1 − B(η2, η3)]} + B(η2, η3) is a real-valued function of η and
h(y) = 1/{y(1 − y)} if y ∈ (0, 1) and 1 otherwise is a positive function defined over the
set (0, 1) ∪ {c}. The parameterization η defines a one-to-one transformation which maps
X = {(α, µ, φ) : (α, µ, φ) ∈ (0, 1)× (0, 1)× IR+} onto D = IR+× IR+× IR, i.e., the Jacobian of
the transformation is nonzero for all η ∈ D, an open subset of IR3. Additionally, neither the
t’s nor the η’s satisfy linear constraints and the parameter space contains a three-dimensional
rectangle. Therefore, (4) is the canonical representation of the inflated beta distribution in
the three-parameter exponential family of full rank.
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Figure 1: BEZI densities for different values of µ and φ; α = 0.4.

Let y1, . . . , yn be n independent random variables, where each yt has density (2). A
consequence of Proposition 2.1 is that

∑n
t=1 T (yt) = (T1, T2, T3), with T1 =

∑n
t=1 1l{c}(yt),

T2 =
∑

t:yt∈(0,1) log yt and T3 =
∑

t:yt∈(0,1) log(1 − yt), is a complete (minimal) sufficient
statistic (Lehmann & Casella, 1998, Corollary 1.6.16 and Theorem 1.6.22).

The likelihood function for θ = (α, µ, φ) given the sample (y1, . . . , yn) is

L(θ) =

n∏

t=1

bic(yt;α, µ, φ) = L1(α)L2(µ, φ),

where

L1(α) =

n∏

t=1

α1l{c}(yt)(1 − α)1−1l{c}(yt) = αT1(1 − α)n−T1 ,

L2(µ, φ) =

n∏

t=1

f(yt;µ, φ)1−1l{c}(yt).

The likelihood function L(θ) factorizes in two terms; the first term depends only on α and
the second, only on (µ, φ). Hence, the parameters are separable (Pace & Salvan, 1997, p.
128) and maximum likelihood inference for (µ, φ) can be performed separately from that for
α, as if the value of α were known, and vice-versa.

The log-likelihood function for the inflated beta distribution (2) is given by

ℓ(θ) = log(L(θ)) = ℓ1(α) + ℓ2(µ, φ),
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where
ℓ1(α) = T1 log α+ (n− T1) log(1 − α),

ℓ2(µ, φ) = (n− T1) log

{
Γ(φ)

Γ(µφ)Γ((1 − µ)φ)

}
+ T2(µφ− 1)

+ T3((1 − µ)φ− 1).

The score function obtained by differentiating the log-likelihood function with respect to the
unknown parameters is (Uα(α), Uµ(µ, φ), Uφ(µ, φ)), where Uα(α) = T1/α− (n− T1)/(1− α),
Uµ(µ, φ) = φ{(n − T1)[ψ((1 − µ)φ) − ψ(µφ)] + T2 − T3} and Uφ(µ, φ) = (n − T1)[ψ(φ) −
µψ(µφ)− (1−µ)ψ((1−µ)φ)] +T2µ−T3(1−µ). The maximum likelihood (ML) estimator of
α is α̂ = T1/n and represents the proportion of zeros (c = 0) or ones (c = 1) in the sample.
Since α̂ is a function of a complete sufficient statistic and is an unbiased estimator of α, it
is the uniformly minimum variance unbiased estimator (UMVUE) of α (Lehmann & Casella,
1998, Theorem 2.1.11); its variance is given by Var(α̂) = α(1−α)/n. The maximum likelihood
estimators of µ and φ are obtained from the equations Uµ(µ, φ) = 0 and Uφ(µ, φ) = 0, and
do not have closed form. They can be obtained by numerically maximizing the log-likelihood
function ℓ2(µ, φ) using a nonlinear optimization algorithm, such as a Newton algorithm or a
quasi-Newton algorithm; for details, see Nocedal & Wright (1999). Recently, the BEZI and
BEOI distributions were incorporated into the gamlss.dist package in R (Ospina, 2006).

We can obtain estimators for (µ, φ) based on conditional moments of y given that y ∈
(0, 1), which do not depend on α. Observe that E(y | y ∈ (0, 1)) = µ and Var(y | y ∈
(0, 1)) = µ(1 − µ)/(φ + 1). For T1 < n 2, the solution of the system of equations (y, s2)⊤ =
(µ, µ(1 − µ)/(φ+ 1))⊤, with y =

∑
t:yt∈(0,1) yt/(n − T1) and s2 =

∑
t:yt∈(0,1)(yt−y)2/(n − T1),

gives the following closed-form estimators for µ and φ: µ̃ = y and φ̃ = {µ̃(1 − µ̃)/s2} − 1.
Closed-form estimators of E(yr) and Var(y) can be obtained by replacing α, µ and φ by α̂,
µ̃ and φ̃ in (3).

The Fisher information matrix for the inflated beta distribution (2) is

K(θ) =



καα 0 0
0 κµµ κµφ

0 κφµ κφφ


 , (5)

where καα = 1/{α(1 − α)}, κµµ = (1 − α)φ2{ψ′(µφ) + ψ′((1 − µ)φ)}, κµφ = κφµ = (1 −
α)φ{ψ′(µφ)µ−ψ′((1−µ)φ)(1−µ)} and κφφ = (1−α){µ2ψ′(µφ)+(1−µ)2ψ′((1−µ)φ)−ψ′(φ)}.
Note that K(θ) does not depend on c. Also, α and (µ, φ) are globally orthogonal and
hence the corresponding components of the score vector are uncorrelated. Since the inflated
beta distribution (2) belongs to an exponential family of full rank (see Proposition (2.1)), it

follows that
√
n(θ̂ − θ)

D→ N3(0,K(θ)−1), with K(θ) given in (5) and that α̂ and (µ̂, φ̂) are
asymptotically independent.

If the interest lies in estimating a function of θ, r(θ) say, the delta method (Lehmann
& Casella 1998, § 1.9) can be used to obtain the asymptotic distribution of r(θ̂), the ML

estimator of r(θ). If r(θ) is differentiable, then
√
n(r(θ̂)− r(θ))

D→ N (0, λ(θ)), where λ(θ) =
ṙ(θ)⊤K(θ)−1ṙ(θ) with ṙ(θ) = ∂r(θ)/∂θ. In particular, the maximum likelihood estimator of
E(y) = αc+ (1 − α)µ is α̂c+ (1 − α̂)µ̂ and the variance of its normal limiting distribution is
(c− µ)2καα + (1−α)2κµµ, where καα = 1/καα and κµµ is the (2, 2)-element of K(θ)−1. In a
similar fashion, ML estimation of Var(y) can be performed.

2If T1 = n (all observations equal c) the BEZI and the BEOI distributions are not recommended.
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3 The zero-and-one-inflated beta distribution

The zero- and one-inflated distributions presented in Section 2 are not suitable for modeling
fractional data that contain both zeros and ones. For this situation, we propose a mixture
between a beta distribution and a Bernoulli distribution. Specifically, we assume that the
cumulative distribution function of the random variable y is

BEINF(y;α, γ, µ, φ) = αBer(y; γ) + (1 − α)F (y;µ, φ),

where Ber(·; γ) represents the cumulative distribution function of a Bernoulli random variable
with parameter γ and F (·;µ, φ) is the cumulative distribution function of B(µ, φ). Here,
0 < µ, γ, α < 1 and φ > 0, α being the mixture parameter.

Definition 3.1. Let y be a random variable that assumes values in the closed interval [0, 1].
We say that y has a zero-and-one-inflated beta distribution (BEINF) with parameters α, γ,
µ and φ if its density function with respect to the measure generated by the mixture3 is given

by

beinf(y;α, γ, µ, φ) =





α(1 − γ), if y = 0,

αγ, if y = 1,

(1 − α)f(y;µ, φ), if y ∈ (0, 1),

(6)

with 0 < α, γ, µ < 1 and φ > 0, where f(y;µ, φ) the beta density function (1). We write

y ∼ BEINF(α, γ, µ, φ). Note that, if y ∼ BEINF(α, γ, µ, φ), then P (y = 0) = α(1 − γ) and

P (y = 1) = αγ.

After some algebra, the rth moment of y and its variance can be written as

E(yr) = αγ + (1 − α)µr, r = 1, 2, . . . ,

Var(y) = αV1 + (1 − α)V2 + α(1 − α)(γ − µ)2,
(7)

where µr is the rth moment of the beta distribution (1), V1 = γ(1−γ) and V2 = V (µ)/(φ + 1).
Note that E(yr) is the weighted average of the rth moment of the Bernoulli distribution with
parameter γ and the corresponding moment of the B(µ, φ) distribution with weights α and
1 − α, respectively.

Proposition 3.1. The zero-and-one-inflated beta distribution given in (6) is a four-parameter

exponential family distribution of full rank.

Proof. Let η = (η1, η2, η3, η4) with η1 = [log(α/(1 − α)) − M(η2) + B(η3, η4)], η2 =
log(γ/(1 − γ)), η3 = µφ and η4 = (1 − µ)φ where M(η2) = log(1 + eη2) and B(η3, η4) =
log(Γ(η3)Γ(η4)/Γ(η3 + η4)) and let T (y) = (t1(y), t2(y), t3(y), t4(y)) with t1(y) = 1l{0,1}(y),
t2(y) = y1l{0,1}(y), t3(y) = log(y) if y ∈ (0, 1) and 0 if y ∈ {0, 1} and t4(y) = log(1 − y) if
y ∈ (0, 1) and 0 if y ∈ {0, 1}. Note that the BEINF density function (6) can be written as

exp{η⊤T (y) −B∗(η)}h(y), (8)

3 The probability measure P corresponding to BEINF(y; ·), defined over the measurable space ([0, 1], B)
where B is the class of all Borelian subsets of [0, 1], is such that P << λ + δ0 + δ1, with λ representing the
Lebesgue measure and δc is a point mass at c, i.e. δc(A) = 1, if c ∈ A and 0, if c /∈ A, A ∈ B.
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where B∗(η) = log{1 + exp[η1 +M(η2)−B(η3, η4)]}+B(η3, η4) is a real-valued function of η
and h(y) = 1/{y(1−y)} if y ∈ (0, 1) and 1 if y ∈ {0, 1}. The parameterization η defines a one-
to-one transformation which maps X = {(α, γ, µ, φ) : (α, γ, µ, φ) ∈ (0, 1)×(0, 1)×(0, 1)×IR+}
onto D = {(η1, η2, η3, η4) : (η1, η2, η3, η4) ∈ IR × IR × IR+ × IR+}. Additionally, neither the
t’s nor the η’s satisfy linear constraints and the parameter space contains a four-dimensional
rectangle. Therefore, (8) is the canonical representation of the BEINF distribution in the
four-parameter exponential family of full rank.

Let (y1, . . . , yn) be a random sample of a BEINF distribution. Proposition 3.1 implies
that

∑n
t=1 T (yt) = (T1, T2, T3, T4), with T1 =

∑n
t=1 1l{0,1}(yt), T2 =

∑n
t=1 yt1l{0,1}(yt), T3 =∑

t:yt∈(0,1) log(yt) and T4 =
∑

t:yt∈(0,1) log(1− yt), is a complete (minimal) sufficient statistic.
The likelihood function for θ = (α, γ, µ, φ) given the sample (y1, . . . , yn) is

L(θ) =

n∏

t=1

beinf(yt;α, γ, µ, φ) = L1(α)L2(γ)L3(µ, φ),

with

L1(α) =

n∏

t=1

α1l{0,1}(yt)(1 − α)1−1l{0,1}(yt) = αT1(1 − α)(n−T1),

L2(γ) =
∏

t:yt∈{0,1}

γyt(1 − γ)(1−yt) = γT2(1 − γ)(T1−T2),

L3(µ, φ) =
∏

t:yt∈(0,1)

f(yt;µ, φ).

The likelihood function L(θ) factorizes in three terms, namely L1, L2 and L3; L1 depends only
on α, L2, only on γ and L3, only on (µ, φ). Hence, α, γ and (µ, φ) are separable parameters
and maximum likelihood inference for α, γ and (µ, φ) can be performed independently.

The log-likelihood function can be written as

ℓ(θ) = log(L(θ)) = ℓ1(α) + ℓ2(γ) + ℓ3(µ, φ),

where
ℓ1(α) = T1 logα+ (n− T1) log(1 − α),

ℓ2(γ) = T2 log γ + (T1 − T2) log(1 − γ),

ℓ3(µ, φ) = (n− T1) log
{ Γ(φ)

Γ(µφ)Γ((1 − µ)φ)

}
+ T3(µφ− 1)

+ T4((1 − µ)φ− 1).

By differentiating ℓ1(α) with respect to α, ℓ2(γ) with respect to γ and ℓ3(µ, φ) with respect to
µ and φ we obtain the score vector (Uα(α), Uγ(γ), Uµ(µ, φ), Uφ(µ, φ)), where Uα(α) = T1/α−
(n− T1)/(1 − α), Uγ(γ) = T2/γ − (T1 − T2)/(1 − γ), Uµ(µ, φ) = φ{(n − T1)[ψ((1 − µ)φ) −
ψ(µφ)]+T3−T4} and Uφ(µ, φ) = (n−T1)[ψ(φ)−µψ(µφ)−(1−µ)ψ((1−µ)φ)]+µT3−(1−µ)T4.

It is easy to show that α̂ = T1/n and γ̂ = T2/T1 (0/0 being regarded as 0) are the ML
estimators of α and γ, respectively. Here, α̂ is the proportion of zeros and ones in the sample
and γ̂ is the proportion of zeros among the observations that equal zero or one. Since α̂ is a
function of a complete sufficient statistic and is an unbiased estimator of α, it is the UMVUE
of α; its variance is given by Var(α̂) = α(1−α)/n. The ML estimators of µ and φ are obtained
as the solution of the nonlinear system of equations (Uµ(µ, φ), Uφ(µ, φ)) = 0. In practice,
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ML estimates can be obtained through numerical maximization of the log-likelihood function
ℓ3(µ, φ) using a nonlinear optimization algorithm. Closed-form estimators for µ and φ, µ̃ and
φ̃ say, can be obtained using conditional moments of y given that y ∈ (0, 1), which do not
depend neither on α nor on γ; see Section 2. Likewise, closed-form estimators of E(yr) and
Var(y) can be obtained by replacing α, γ, µ and φ by α̂, γ̂, µ̃ and φ̂ in (7).

The Fisher information matrix for the parameters of the BEINF distribution can be
written as

K(θ) =




καα 0 0 0
0 κγγ 0 0
0 0 κµµ κµφ

0 0 κφµ κφφ


 , (9)

where καα = 1/{α(1 − α)}, κγγ = α/{γ(1 − γ)}, κµµ = (1 − α)φ2{ψ′(µφ) + ψ′((1 − µ)φ)},
κµφ = κφµ = (1 − α)φ{ψ′(µφ)µ − ψ′((1 − µ)φ)(1 − µ)} and κφφ = (1 − α){µ2ψ′(µφ) + (1 −
µ)2ψ′((1 − µ)φ) − ψ′(φ)}. Here, α, γ and (µ, φ) are orthogonal parameters and, hence, the
respective components of the score vector are uncorrelated. Since the zero-and-one inflated
beta distribution (6) belongs to an exponential family of full rank (see Proposition (3.1)), it

follows that
√
n(θ̂ − θ)

D→ N4(0,K(θ)−1), with K(θ) given in (9), and α̂, γ̂ and (µ̂, φ̂) are
asymptotically independent.

The delta method (see Section 2) is useful for obtaining the asymptotic distribution of the
ML estimator of any differentiable function r(θ). For instance, if r(θ) = E(y) = αγ+(1−α)µ,

the variance of the normal limiting distribution of Ê(y) = r(θ̂) is α2κγγ + (1−α)2κµµ + (γ −
µ)2καα. Here, καα = 1/καα, κ

γγ = 1/κγγ and κµµ is the (3, 3)-element of K(θ) given in (9).
There are other parameterizations of the BEINF distribution that can be useful. For

example, let γ = δ1/α and α = δ0 + δ1. In this case, the BEINF density function can be
written as

m
⋆(y; δ0, δ1, µ, φ) =





δ0, if y = 0 ,

δ1, if y = 1 ,

(1 − δ0 − δ1)f(y;µ, φ), if y ∈ (0, 1) ,

(10)

with f(y;µ, φ) representing the beta density (1). Here, the interpretation of the parameters
is more intuitive, since δ0 = P (y = 0), δ1 = P (y = 1) and µ, φ are the parameters of the
beta distribution (1). However, this parameterization induces a restriction in the parameter
space given by 0 < δ0 + δ1 < 1. Fisher’s information matrix for the BEINF distribution in
this parameterization can be written as

K(θ) =




κδ0δ0 κδ0δ1 0 0
κδ1δ0 κδ1δ1 0 0

0 0 κµµ κµφ

0 0 κφµ κφφ


 ,

where θ = (δ0, δ1, µ, φ), κδ0δ0 = (1 − δ1)/δ0(1 − δ0 − δ1), κδ0δ1 = κδ1δ0 = 1/(1 − δ0 − δ1),
κδ1δ1 = (1 − δ0)/δ1(1 − δ0 − δ1), κµµ = (1 − α)φ2{ψ′(µφ) + ψ′((1 − µ)φ)}, κµφ = κφµ = (1 −
α)φ{ψ′(µφ)µ−ψ′((1−µ)φ)(1−µ)} and κφφ = (1−α){µ2ψ′(µφ)+(1−µ)2ψ′((1−µ)φ)−ψ′(φ)}.
Here κδ0δ1 6= 0, thus indicating that δ0 and δ1 are not orthogonal parameters, and their re-
spective components in the score vector are correlated in contrast to the parameterization
of the BEINF distribution given in (6). Recently, the BEINF distribution in this parameter-
ization was incorporated into the gamlss package in R (Stasinopoulos, Rigby & Akantziliotou,
2006).
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4 Simulation results and discussion

We shall use Monte Carlo simulation to evaluate the finite sample performance of estimators
based on maximum likelihood (ML) and conditional moments (CM) for the BEZI and BEINF
distribution. For both distributions, the ML estimator of α is UMVUE. Hence, we do not
show simulation results for the estimation of such parameter. We focus our attention in
estimation of µ, φ, E(y) and Var(y); for the BEINF distribution, the estimation of γ is also
considered. The parameters of the BEZI distribution used in the numerical exercise were
α = 0.2, µ = 0.1, and φ = 2. For the BEINF distribution, α = 0.2, γ = 0.3, µ = 0.1 and φ = 2.
The sample sizes considered were n = 10, 20, 50, 100, 500, 1000 and the number of Monte
Carlo replications was 5, 000. The ML estimates of µ and φ were obtained by maximizing
the log-likelihood function using the BFGS method with analytical derivatives; the BFGS
quasi-Newton method is generally regarded as the best-performing nonlinear optimization
method (Mittelhammer, Judge and Miller, 2000, p. 199). All simulations were performed
using the Ox matrix programming language (Doornik, 2006).

Table 1 presents simulation results for the BEZI distribution. The estimated bias of the
ML estimators of µ, E(y) and Var(y) are close to zero for all the sample sizes considered.
Also, the root mean square errors (

√
MSE) of the ML and CM estimators of µ, E(y) and

Var(y) are similar. However, in small samples, the ML and CM estimators of φ can be
considerably biased, the CM estimator having much more pronounced bias than the ML
estimator. Additionally, the mean and the root mean square error of φ̃ is much larger than
the corresponding figures obtained for φ̂. For instance, for n = 10, the biases and the root
mean square error are, respectively, 3.4 and 10.5 for the ML estimator and 6.5 and 21.2
for the CM estimator. It is noteworthy that, for all the sample sizes, the ML and CM
estimators of φ have positive bias; however the variance of the response variable is only
slightly underestimated.

Table 2 summarizes simulation results for the BEINF distribution. The ML estimator of
γ performs well if the sample size is not too small. The CM and ML estimators of µ are only
slightly biased. On the other hand, for very small samples (eg. n = 10) the biases of the
CM and ML estimators of E(y) and Var(y) are not negligible. We observed however, that
the ML estimator performs better than the CM estimator, both in terms of bias and mean
square error. Again, the CM and ML estimators of φ are quite biased in small samples, the
ML estimator performing better than the CM estimator. For instance, for n = 20 an φ = 2,
the bias and the root mean square error are approximately 1.0 and 2.4 for the ML estimator
and 1.7 and 3.9 for the CM estimator.

In short, for the BEZI and the BEINF distributions the ML estimator of φ is more
efficient than the CM estimator, both estimators being quite biased for very small samples
(eg. n = 10). On the other hand, the ML and CM estimators of the other parameters, and
of E(y) and Var(y), have similar performances, both being almost unbiased if the sample is
not very small.

5 Applications

This section contains three applications of inflated beta distributions to real data. For the
sake of comparison, we also fitted a Tobit model for each data set. Computation for fitting
inflated beta and Tobit models was carried out using the packages gamlss and VGAM in the R

9



Table 1: Simulation results for the BEZI distribution; α = 0.2, µ = 0.1, φ = 2.0, E(y) = 0.08
and Var(y) = 0.0256.

Mean Bias
√

MSE

Par. n CM ML CM ML CM ML

10 0.1009 0.0945 0.0009 −0.0055 0.0637 0.0591

20 0.1005 0.0971 0.0005 −0.0029 0.0432 0.0406

µ 50 0.1004 0.0989 0.0004 −0.0011 0.0276 0.0262

100 0.0999 0.0992 −0.0001 −0.0008 0.0194 0.0186

500 0.0998 0.0996 −0.0002 −0.0004 0.0086 0.0083

1000 0.0997 0.0997 −0.0003 −0.0003 0.0061 0.0058

10 8.5145 5.3980 6.5145 3.3980 21.1880 10.4990

20 3.6960 2.9660 1.6960 0.9660 4.6428 2.8064

φ 50 2.4009 2.2750 0.4009 0.2750 1.1773 0.8370

100 2.1840 2.1371 0.1840 0.1371 0.6793 0.5036

500 2.0340 2.0292 0.0340 0.0292 0.2487 0.1959

1000 2.0150 2.0133 0.0150 0.0133 0.1700 0.1342

10 0.0785 0.0739 −0.0015 −0.0061 0.0503 0.0471

20 0.0802 0.0775 0.0002 −0.0025 0.0354 0.0334

E(y) 50 0.0804 0.0792 0.0004 −0.0008 0.0228 0.0218

100 0.0799 0.0794 −0.0001 −0.0006 0.0161 0.0155

500 0.0798 0.0797 −0.0002 −0.0003 0.0072 0.0069

1000 0.0800 0.0799 0.0000 −0.0001 0.0050 0.0048

10 0.0229 0.0228 −0.0027 −0.0028 0.0229 0.0203

20 0.0244 0.0242 −0.0012 −0.0014 0.0167 0.0153

Var(y) 50 0.0253 0.0252 −0.0003 −0.0004 0.0109 0.0104

100 0.0254 0.0253 −0.0002 −0.0003 0.0078 0.0075

500 0.0255 0.0255 −0.0001 −0.0001 0.0035 0.0034

1000 0.0256 0.0255 −0.0000 −0.0001 0.0024 0.0024

software package (Ihaka & Gentleman, 1996), respectively. In gamlss, we used the BEZI
and the BEINF distributions implemented by Ospina (2006) and Stasinopoulos, Rigby &
Akantziliotou (2006), respectively.

The first application uses a data set of Brazilian indicators of qualified priority services
in 2000. The data were extracted from the Atlas of Brazil Human Development database
available at http://www.pnud.org.br/. We modeled the percentage of qualified nurses in
645 Brazilian municipal districts. The data set has zeros; some municipal districts with
high levels of poverty do not have qualified nurses. The frequency histogram of the data
is presented in Figure 2. It has an inverted ‘J ’ shape, a characteristic easily modeled by
the BEZI distribution. The vertical bar at zero represents the total number of zeros in the
sample. We also considered a left censored Tobit model, by assuming that yt = y∗t , if y∗t > 0,
and yt = 0, if y∗t ≤ 0, where y∗t ∼ N (µ, σ2) are independent random variables. The ML
estimates (standard errors in parentheses) for the parameters of the BEZI distribution are

10
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Table 2: Simulation results for the BEINF distribution; α = 0.2, γ = 0.3, µ = 0.1, φ = 2.0,
E(y) = 0.14 and Var(y) = 0.0724.

Mean Bias
√

MSE

Par. n CM ML CM ML CM ML

10 0.4462 0.1462 0.1348

20 0.3882 0.0882 0.1616

γ 50 0.3102 0.0102 0.1374

100 0.3015 0.0015 0.1047

500 0.2995 −0.0005 0.0466

1000 0.3011 0.0011 0.0323

10 0.1017 0.0955 0.0017 −0.0045 0.0661 0.0607

20 0.1003 0.0969 0.0003 −0.0031 0.0445 0.0418

µ 50 0.1006 0.0992 0.0006 −0.0008 0.0278 0.0265

100 0.0999 0.0993 −0.0001 −0.0007 0.0195 0.0186

500 0.1002 0.1000 0.0002 0.0000 0.0086 0.0083

1000 0.1001 0.0999 0.0001 −0.0001 0.0062 0.0060

10 10.9191 6.6869 8.9191 4.6869 33.3939 19.5225

20 3.7055 2.9909 1.7055 0.9909 3.8645 2.3889

φ 50 2.4123 2.2821 0.4123 0.2821 1.1997 0.8229

100 2.1824 2.1380 0.1824 0.1380 0.6407 0.4891

500 2.0321 2.0210 0.0321 0.0210 0.2424 0.1894

1000 2.0187 2.0115 0.0187 0.0115 0.1726 0.1363

10 0.2002 0.1956 0.0602 0.0556 0.0679 0.0655

20 0.1627 0.1601 0.0227 0.0201 0.0524 0.0512

E(y) 50 0.1423 0.1411 0.0023 0.0011 0.0363 0.0357

100 0.1401 0.1396 0.0001 −0.0004 0.0266 0.0263

500 0.1400 0.1398 0.0000 −0.0002 0.0121 0.0119

1000 0.1402 0.1401 0.0002 0.0001 0.0085 0.0084

10 0.1129 0.1139 0.0405 0.0415 0.0313 0.0306

20 0.0871 0.0873 0.0147 0.0149 0.0297 0.0293

Var(y) 50 0.0727 0.0727 0.0003 0.0003 0.0232 0.0229

100 0.0717 0.0717 −0.0007 −0.0006 0.0177 0.0176

500 0.0721 0.0721 −0.0003 −0.0003 0.0080 0.0080

1000 0.0724 0.0724 0.0000 0.0000 0.0057 0.0056

α̂ = 0.0155 (0.0049), µ̂ = 0.1263 (0.0042), and φ̂ = 4.691 (0.220), and for the Tobit model,
µ̂ = 0.1177 (0.0060) and σ̂ = 0.1433 (0.0040). The plot of the empirical distribution function
of the data along with the estimated cumulative distribution functions (see Figure 2) shows
that only the BEZI distribution fits the data well.

In the next application, we consider 5561 observations of proportions of less than one
year old infants that died by unknown causes in Brazilian municipal districts in 2000. The
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Figure 2: Frequency histogram and estimated cumulative distribution functions for the per-
centage of qualified nurses in Brazilian municipal districts.

data were obtained from the DATASUS database available at www.datasus.gov.br. The
data set contains 3364 zeros and 172 ones; the frequency histogram of the data is presented
in Figure 3. For this data set we used a BEINF distribution under the parameterization
(δ0, δ1, µ, φ). Also, we fitted a doubly censored Tobit model, i.e we assumed that yt = y∗t , if
0 < y∗t < 1, yt = 0, if y∗t ≤ 0 and yt = 1, if y∗t ≥ 1, where y∗t ∼ N (µ, σ2) are independent
random variables. We obtained the following ML estimates: δ̂0 = 0.6055 (0.0066), δ̂1 =
0.0313 (0.0023), µ̂ = 0.2974 (0.0043) and φ̂ = 0.4562 (0.0050) for the BEINF distribution,
and µ̂ = −0.1555 (0.0088) and σ̂ = 0.5420 (0.0085) for the Tobit model. The empirical
distribution and the BEINF and Tobit fitted cumulative distributions are shown in Figure
3. By visual inspection, it becomes clear that only the BEINF distribution is a suitable
theoretical model to the data at hand.

Finally, we modeled the proportion of inhabitants who lived within a 200 km wide coastal
strip in 223 countries in the year 2002. The data are supplied by the Center for International

Earth Science Information Network and are available at http://sedac.ciesin.columbia.
edu/plue/nagd/place. Figure 4 shows that the histogram has a ‘U ’ shape. For these
data we fitted a BEINF distribution under the parameterization (δ0, δ1, µ, φ) and a doubly
censored Tobit model. The ML estimates for the parameters of the BEINF distribution are
δ̂0 = 0.1141 (0.0215), δ̂1 = 0.4064 (0.0332), µ̂ = 0.6189 (0.0279) and φ̂ = 0.6615 (0.0204).
For the Tobit model, we obtained the following estimates: µ̂ = 0.8766 (0.0518) and σ̂ =
0.6975 (0.0368). Figure 4 shows the empirical distribution and the estimated cumulative
distribution curves. Clearly, the Tobit model does not fit the data well. On the other hand,
the empirical distribution and the BEINF estimated cumulative distribution curves are quite
close and we may conclude that the BEINF distribution is suitable to model the data.
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Figure 3: Frequency histogram and estimated cumulative distribution functions for the pro-
portion of less than one year old infants that died by unknown causes in Brazilian municipal
districts in 2000.
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Figure 4: Frequency histogram and estimated cumulative distribution functions; coastal prox-
imity data.
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6 Concluding remarks

The beta distribution is useful to model data that are measured continuously on the open
interval (0, 1). However, data sets that contain zeros and/or ones cannot be modeled using a
beta distribution. A possible solution is to transform the response variable so that it assumes
values on the open unit interval. However, the use of transformations modifies the real nature
of the data and does not allow the direct interpretation of the parameters in terms of the
original response.

In this paper, we propose mixed continuous-discrete distributions to model data that are
observed on [0, 1), (0, 1] or [0, 1]. The proposed distributions are “inflated beta distributions”
in the sense that the probability mass at 0 and/or 1 exceeds what is expected by the beta
distribution. Properties of the inflated beta distributions are given. Also, estimation based
on maximum likelihood and conditional moments is discussed and compared using Monte
Carlo simulation. Overall, we recommend maximum likelihood estimation as the best choice.

An alternative to the inflated beta distributions is to assume that a latent variable on (0, 1)
gives rise to an observed response in [0, 1]. This approach has been suggested by Lesaffre,
Rizopoulos and Tsonaka (2007). They assume that the tth observation is yt = rt/Nt, where
rt ∼ Bin(Ut, Nt) and the Ut’s follow a logit-normal distribution. However, if the Nt’s are
not known, as is the case of the examples presented in Section 5, this model cannot be used.
They also consider the situation where the response is assumed to be a coarsened version
of a latent variable with a logit-normal distribution on (0, 1). In other words, it is assumed
that the logit transformed latent variable has a normal distribution. The model we propose
requires neither transformations nor the inclusion of a latent variable. Tobit models, on the
other hand, do not require transformations but use a latent normal distributed variable. The
assumed normality of the latent variable does not allow the Tobit models to be as flexible as
the inflated beta distributions to model fractional data. Additionally, the interpretation of
the parameters of Tobit models is rather difficult. For instance, the mean of double censored
Tobit responses involves the cumulative distribution function and the probability density
function of a standard normal distribution; see Hoff (2007, Section 4).

Three empirical applications using real data show that the inflated beta distributions are
quite flexible for modeling fractional data on the closed or half-open unit interval. Also, for
our data sets the Tobit models did not work well 4.

We suggest that practitioners interested in modeling the behaviour of variables that as-
sume values in the unit interval consider using a suitable inflated beta distribution whenever
zeros and/or ones appear in the data set.
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