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Abstract : The purpose of this paper is to study the problem of estimating a com-

pactly supported function from noisy observations of its moments in an ill-posed

inverse problem framework. We provide a statistical approach to the famous

Hausdorff classical moment problem. We prove a lower bound on the rate of con-

vergence of the mean integrated squared error and provide an estimator which

attains minimax rate over the corresponding smoothness classes.
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1. Introduction

The classical moment problem can be stated as follows: it consists in getting

some information about a distribution µ from the knowledge of its moments
∫

xkdµ(x). This problem has been largely investigated in many mathematical

topics, among others, in operator theory, mathematical physics, inverse spectral

theory, probability theory, inverse problems, numerical analysis but also in a

wide variety of settings in physics and engineering such as quantum spin models,

speech processing, radio astronomy (see for instance Kay and Marple (1981),

Lang and McClellan (1983) . . . ). We may cite the classical and pioneer books in

the field (see Akhiezer (1965), Shohat and Tamarkin (1943)) which put emphasis

on the existence aspect of the solution and its uniqueness. According to the

support of the distribution of interest, one may refer to one of the three types of

classical moment problems: the Hamburger moment problem whose support of

µ is the whole real line, the Stieljes problem on [0,+∞) and finally the Hausdorff

problem on a bounded interval. In this paper, we shall focus on the last issue

under the inverse problem angle.

http://arxiv.org/abs/0705.1235v3
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The Hausdorff moment problem which dates back to 1921 (see Hausdorff

(1921)) occupies a central place in the field of inverse problems and has been an

object of great interest in literature since then. For instance, the particular case

when only a finite number of moments are known which is called the Truncated

Hausdorff moment problem, has recently aroused much attention (see Talenti

(1987), Fasino and Inglese (1996), Inglese (1995), Tagliani (2002)). Another

interest and aspect of the Hausdorff moment problem lies in its very close link

to the inversion of the Laplace transform when this latter is given at equidistant

points ( see for instance Brianzi and Frontini (1991), Dung, Huy, Quan and Trong

(2006), Tagliani (2001), Tagliani and Velazquez (2003)). In fact, by a simple

change of variable, the problem of Laplace transform inversion is equivalent to

the Hausdorff moment problem. More recently, Ang, Gorenflo, Le and Trong

(2002) have presented the Hausdorff moment problem under the angle of ill posed

problems, in a sense that solutions do not depend continuously on the given data.

Nonetheless, until now, as far as we know, the statistical approach which consists

in assuming that the noise is stochastic has been very little put forward and rarely

raised.

We consider in this paper a statistical point of view of the Hausdorff moment

problem. We aim at reconstructing an unknown function from noisy measure-

ments of its moments on a symmetric bounded interval in a statistical inverse

problem framework. In reality, it is barely impossible to measure moments with

having any corruption. Without loss of generality we may and will suppose

that [−a, a] = [−1, 1]. In practise, observations of moments appear especially

in quantum physics (see for instance Ash and Mc Donald (2003) and Mead and

Papanicolaou (1983)), image analysis (see Teague (1980)), engineering mechanics

(see Athanassoulis and Gavriliadis (2002)) and all the references therein). We

shall give now some concrete examples of the application of the problem of mo-

ments, in which either one can have access directly to moments to reconstruct

the unknown function at stake or the moment problem appears in the line of

reasoning.

Examples. 1. In quantum physics, a big issue aims at reconstructing a positive

density of states in harmonic solids from its moments on a finite interval. It is

explained how to measure these moments (p 2410 and 2411 in Mead and Papan-
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icolaou (1983)) and (p 3078 and 3079 in Gaspard and Cyrot-Lackmann (1973)).

2. In the field of quantum gravity, the transition probabilities for a Markov

chain related to the causal set approach to modeling discrete theories of quan-

tum gravity satisfy a moment problem (see Ash and McDonald (2003)). One has

to measure those probabilities.

3. In the context of non classical moment problem, we may cite the following

example (see Ang, Nhan and Thanh (1999)). It deals with the determination

of the shape of an object in the interior of the Earth by gravimetric methods.

The density of that object differs from the density of the surrounding medium.

Assuming a flat earth model, the problem consists in finding a curve x → σ(x)

in the half plane 0 ≤ σ(x) < H, 0 ≤ x ≤ 1, σ(x) satisfying a non linear integral

equation of the first kind of the form

1

2π

∫ 1

0

H − σ(ξ)

(x − ξ)2 + (H − σ(ξ))2
dξ = f(x),

where f(x) is a given function. The nonlinear integral equation can be approxi-

mated by the following linear integral equation in ϕ:

∫ 1

0

ϕ(ξ)

(M + x + ξ)2
dξ = 2πf(−M − x),

with ϕ(x) = H−σ(x), M is large enough and x ≥ 0. By taking x = 1, 2, . . . , n, . . . ,

we get the following equivalent moment problem:

∫ 1

0

ϕ(ξ)

(M + n + ξ)2
dξ = µn,

where µn = 2πf(−M − n), n = 1, 2, . . .

In the first examples cited above, the authors aim at estimating an unknown

density from measurements of its moments. The following paper presents the

case of the reconstruction of an unknown function which could be in particular

a density of probability, when one has its moments corrupted with some white

noise. This approach constitutes one among other ill-posed inverse problems

point of view.
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Estimation in statistics using moments has already been put forward (see

Mnatsakanov and Ryumgaart (2005)), but the approach there was based on em-

pirical moments and empirical processes, the results were expressed in terms of

weak convergence whereas our paper is built upon an ill-posed inverse approach

with minimax results.

The estimation procedure we use is based on the expansion of the unknown func-

tion through the basis of Legendre polynomials and an orthogonal series method.

We establish an upper bound and a lower bound on the estimation accuracy of

the procedure showing that it is optimal in a minimax sense. We show that the

achieved rate is only of logarithmic order. This fact has already been under-

lined by Goldenshluger and Spokoiny (2004). In their paper, Goldenshluger and

Spokoiny (2004) tackled the problem of reconstructing a planar convex set from

noisy geometric moments observations. They pointed out that in view of recon-

structing a planar region from noisy measurements of moments, the upper bound

was only in the order of logarithmic rate. The lower bound has not been proved.

In a second part, they consider reconstruction from Legendre moments to get

faster rates of convergence. Legendre moments can be observed in the context

of shapes reconstruction. In our present work, instead of considering a planar

region, we deal with functions belonging to a Sobolev scale and we stay focused

on the classic moments with respect to the monomials xk. Moreover, recently

in the context of long-memory processes obtained by aggregation of independant

parameter AR(1) processes and in view of estimating the density of the under-

lying random parameter, Leipus, Oppenheim, Philippe and Viano (2006) had

to deal with a problem of moments. They obtained very slow logarithmic rate

but without showing that this could be the best possible. In a certain way, our

minimax results provide a piece of answer.

One might question this chronic slow rate which seems inherent to moment

problems. In fact, the underlying problem lies in the non orthogonal nature of

the monomials xk. They actually hamper the convergence rate to be improved

for bringing a small amount of information. This remark is highlighted in our

proof of the upper bound.

This paper is organized as follows: in section 2 we introduce the model and

the estimator of the unknown function and we finally state the two theorems.
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Section 3 contains the proofs. The last section is an appendix in which we prove

some useful inequalities about binomial coefficients.

2. Statement of the problem

2.1 The model. First of all, let us recall an usual statistical framework of

ill-posed inverse problems (see Mathe and Pereverzev (2001)):

Let A : H −→ H be a known linear operator on a Hilbert space H. The problem

is to estimate an unknown function f ∈ H from indirect observations

Y = Af + εξ, (1.1)

where ε is the amplitude of the noise. It is supposed to be a small positive

parameter which tends to 0, ξ is assumed to be a zero-mean Gaussian random

process indexed by H on a probability space (Ω,A,P).

In the Hausdorff moment problem, the operator Ak which determines the way

the observations are indirect is defined by:

Ak(f) =

∫ 1

−1
xkf(x)dx, k ∈ N. (1.2)

Let us now state the Hausdorff moment problem model. From the equation (1.1)

and (1.2), we derive the following sequence of moments observations pertubated

by a stochastic noise:

yk = µk + εξk k = 0, 1, . . . . (1.3)

where ε is the noise level, it is supposed to tend to 0, ξk are assumed to be i.i.d

standard Gaussian random variables and µk are the moments of the unknown

function f given by:

µk =

∫ 1

−1
xkf(x)dx k = 0, 1, . . . .

The assumption that the noise is modelled as i.i.d standard Gaussian random

variables is a natural modeling and has already been used (see Rodriguez and

Seatzu (1993), Brianzi and Frontini (1991), Goldenshluger and Spokoiny (2004)).

It is a standard assumption in statistical inverse problems. Moreover, we may
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consider (1.3) as a first approach of the problem at hand.

The objective is to estimate the unknown function f supported on the bounded

interval [−1, 1] from noisy observations of its moments in the model (1.3) which

can be assimilated to a gaussian white noise model but using a non orthonor-

mal basis and which constitutes an inverse problem setting. The solution of this

problem is unique in the case k = ∞ (see Bertero, De Mol and Pike (1985)), so

that the statistical problem of recovering f from (1.3) is relevant. In the partic-

ular case of estimating a density of probability, the probability measure having

density f is unique (see Feller (1968, Chap.7)).

The use of the Legendre polynomials in the Hausdorff classical moment prob-

lem in order to approximate the unknown measure is a completely standard

and quite natural procedure (see Ang, Gorenflo, Le and Trong (2002), Bertero,

De Mol and Pike (1985), Papoulis (1956), Teague (1980), Goldenshluger and

Spokoiny (2004)) as those polynomials directly result from the Gram-Schmidt

orthonormalization of the family {xk}, k = 0, 1, . . . Consequently, expanding the

function f to be estimated in the basis of Legendre polynomials falls naturally

and fits the problem’s nature.

Denote βn,j the coefficients of the normalized Legendre polynomial of degree n:

Pn(x) =

n
∑

j=0

βn,j xj

By considering the Legendre polynomials, if we multiply both sides of the model

(1.3) by the coefficients βk,j we get the following model (for the proof see Lemma

3. in Appendix):

ỹk = θk + εσkξk (1.4)

where σ2
k =

∑k
j=0 β2

k,j, ỹk =
∑k

j=0 βk,jyj, θk =
∑k

j=0 βk,jµj =
∫ 1
−1 f(x)Pk(x)dx

and ξk are i.i.d standard Gaussian random variables. So the model (1.3) is equiv-

alent to the model (1.4). The model (1.4) will be used for the proof of the lower

bound.

Before going any further, we can make a remark at this stage concerning the

model (1.4) which is an heteroscedastic gaussian sequence space model. Depend-

ing on the asymptotic behavior of the intensity noise σ2
n one may characterize

the nature of the problem’s ill-posedness (see Cavalier, Golubev, Lepski and Tsy-
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bakov (2004)). Here, in our case, σ2
n ≥ 1

44n (see Lemma 5. from Appendix) and

hence tends to infinity exponentially. We may say that we are dealing with a

severely ill-posed problem with log-rates .

We assume that f belongs to the Sobolev space W r
2 defined by:

W r
2 = {f ∈ L2[−1, 1] :

∑

k

k2r|θk|2 < ∞}

where θk =
∫ 1
−1 f(x)Pk(x)dx is the Legendre Fourier coefficient and Pk denotes

the normalized Legendre polynomial of degree k. Note that we consider more

general functions than densities of probability which are included in this smooth-

ness class.

Sobolev spaces associated with various kinds of underlying orthonormal basis

constitute quite standard smoothness assumption classes in classical ill-posed

problems (see for instance Mair and Ruymgaart (1996), Mathe and Pereverzev

(2002), Goldenshluger and Pereverzev (2000)). In the Hausdorff moment prob-

lem, the underlying basis is the Legendre polynomials.

Let us now give some highlights of the Sobolev space W r
2 regarding Legendre

polynomials. Rafal’son (1968) and Tomin (1973) have shown in the more general

case of Jacobi polynomials (and thus in the particular case of Legendre polyno-

mials we are considering here) that Sobolev space W r
2 consists of all functions

f which have their derivatives f ′, f ′′, . . . , f (r−1) being absolutely continuous on

each interval [a, b] ⊂ (−1, 1) (see also Mathe and Pereverzev (2002)).

2.2 The estimation procedure. Let us define now the estimator of f . This

latter is induced by an orthogonal series method through the Legendre polyno-

mials.

Any function in L2[−1, 1] has an expansion:

f(x) =

∞
∑

k=0

θkPk(x) with θk =

∫ 1

−1
f(x)Pk(x)dx.

The problem of estimating f reduces to estimation of the sequence {θk}+∞
k=1 for

Legendre polynomials form a complete orthogonal function system in L2[−1, 1].
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We have

θk =

∫ 1

−1
f(x)Pk(x)dx =

k
∑

j=0

βk,j

∫ 1

−1
f(x)xjdx =

k
∑

j=0

βk,jµj .

This leads us to consider the following estimator of θ:

θ̂k =
k

∑

j=0

βk,jyj

and hence the estimator f̂N of f :

f̂N(x) =
N

∑

k=0

θ̂kPk(x) =
N

∑

k=0

k
∑

j=0

βk,jyjPk(x)

where yj is given by (1.3) and N is an integer to be properly selected later.

The mean integrated square error of the estimator f̂N is:

Ef‖f̂N − f‖2,

where Ef denotes the expectation w.r.t the distribution of the data in the model

(1.3) and for a function g ∈ L2[−1, 1],

‖g‖ =

(
∫ 1

−1
g2(x)dx

)1/2

.

In this paper we shall consider the problem of estimating f using the mean

integrated square risk in the model (1.3).

We state now the two results of the paper. The first theorem establishes an

upper bound.

Theorem 1. For α > 0, define the integer N = ⌊α log (1/ε)⌋. Then we have

sup
f∈Wr

2

Ef‖f̂N − f‖2 ≤ C[log(1/ε)]−2r ,

where C is an absolute positive constant and ⌊·⌋ denotes the floor function.

We recall that the floor function is defined by: ⌊x⌋ = max{n ∈ Z|n ≤ x}.
The second theorem provides a lower bound.
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Theorem 2. We have

inf
f̂

sup
f∈Wr

2

Ef‖f̂ − f‖2 ≥ c[log(1/ε)]−2r ,

where c is a positive constant which depends only on r and the infimum is taken

over all estimators f̂ .

3. Proofs

3.1 Proof of Theorem 1. For the following proof, we consider the genuine

model (1.3). By the usual MISE decomposition which involves a variance term

and a bias term, we get

Ef‖f̂N − f‖2 = Ef

N
∑

k=0

(θ̂k − θk)
2 +

∑

k≥N+1

θ2
k

but

Ef

N
∑

k=0

(θ̂k − θk)
2 = Ef

N
∑

k=0

(

k
∑

j=0

βk,j(yj − µj))
2

= ε2
Ef

N
∑

k=0

(

k
∑

j=0

βk,jξj)
2

and since ξj
iid∼ N(0, 1), it follows that

Ef‖f̂N − f‖2 = ε2
N

∑

k=0

k
∑

j=0

β2
k,j +

∑

k≥N+1

θ2
k

= VN + B2
N

We first deal with the variance term VN . To this end, we have to upper bound the

sum of the squared coefficients of the normalized Legendre polynomial of degree

k. Set σ2
k =

∑k
j=0 β2

k,j. An explicit form of Pk(x) is given by (see Abramowitz

and Stegun (1970)):

Pk(x) =

(

2k + 1

2

)1/2 1

2k

[k/2]
∑

j=0

(−1)k
(

k

j

)(

2k − 2j

k

)

xk−2j,
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where [·] denotes the integer part and
(k
j

)

denotes the binomial coefficient,
(

k
j

)

= k!
(k−j)!j! . This involves

σ2
k =

2k + 1

2

1

4k

[k/2]
∑

j=0

{(

k

j

)(

2k − 2j

k

)}2

≤ 2k + 1

2

1

4k

{(

2k

k

)}2 [k/2]
∑

j=0

{(

k

j

)}2

(3.1)

≤ 2k + 1

2

1

4k

{(

2k

k

)}2

(2k)2, (3.2)

the inequality (3.1) is due to the fact that for 0 ≤ j ≤ [k/2], we have
(2k−2j

k

)

≤
(2k

k

)

. As for (3.2), we have
∑[k/2]

j=0

{(k
j

)}2 ≤
{

∑k
j=0

(k
j

)}2
and it is well known

that
{

∑k
j=0

(k
j

)}2
= (2k)2.

By using now that {
(2k

k

)

}2 ≤ 42k
√

k
(see Lemma 4. from Appendix) we have

σ2
k ≤ 2k + 1

2

42k

√
k

which yields

VN ≤ Cε2N3/242N ,

where C > 0 denotes an absolute positive constant.

Now, it remains to upper bound the bias term B2
N .

B2
N =

∑

k≥N+1

θ2
k

=
∑

k≥N+1

k2r

k2r
θ2
k

≤ N−2r
∞
∑

k=1

k2rθ2
k

Since the function f belongs to the space W r
2 ,

∑

k k2r|θk|2 < ∞, we get

B2
N = O(N−2r)

Finally we have the upper bound for the MISE:

Ef‖f̂N − f‖2 ≤ Cε2N3/242N + C ′N−2r (3.3)
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At last, it remains to choose the optimal N which will minimize the expression

(3.3). This N is obtained by equalizing the upper bounds of the bias and the

variance term, namely:

Cε2N3/242N = C ′N−2r,

as 42N ≫ N2r+3/2, consequently N ≍ log( 1
ε2 ). Once one plugs N ≍ log( 1

ε2 ) in

(3.3), the desired result of the Theorem 1. follows.

3.2 Proof of Theorem 2. From now on, to prove the lower bound and for prac-

tical reasons, we shall consider the model (1.4) which constitutes a heteroscedas-

tic gaussian sequence space model. We recall that the equivalence between the

models (1.3) and (1.4) is proved in Lemma 3. in Appendix.

A successful approach and standard tool to obtain lower bounds for minimax risk

consists in specifying a subproblem namely constructing a subset of functions

based on the observations (1.4). Then we lean on the application of the following

particular version of Fano’s lemma (see Birgé and Massart (2001)) which will

allow us to evaluate the difficulty of the specified subproblem and will give us a

lower bound for the MISE associated to this subproblem.

One crucial point in the Fano’s lemma is the use of the Kullback-Leibler diver-

gence K(P1, P0) between two probability distributions P1 and P0 defined by:

K(P1, P0) =

{

∫

R
log(p1(x)

p0(x))p1(x)dx if P1 ≪ P0

+∞ otherwise

Here’s the version of Fano’s lemma, we are going to exploit:

Lemma 1. Let η be a strictly positive real number, C be a finite set of elements

{f0, . . . , fM} on R with |C| ≥ 6 and {Pj}j∈C a set of probability measures indexed

by C such that :

(i) ‖fi − fj‖ ≥ η > 0, ∀ 0 ≤ i < j ≤ M .

(ii) Pj ≪ P0, ∀ j = 1, . . . ,M, and

K(Pj, P0) ≤ H < log M

then for any estimator f̂ and any nondecreasing function ℓ

sup
f∈C

Ef

[

ℓ(‖f̂ − f‖)
]

≥ ℓ(
η

2
)

[

1 −
(

2

3
∨ H

log M

)]

.
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First of all, we have to construct an appropriate set of functions E . We are going

to define E as a set of functions of the following type

E =

{

fδ ∈ W r
2 : fδ = 1[−1,1](

c0

m(4r+3)/2

2m−1
∑

k=m

δkk
(2r+2)/2Pk),

δ = (δm, . . . , δ2m−1) ∈ ∆ = {0, 1}m

}

We verify that fδ belongs to W r
2 . In this aim, we have to calculate the Legendre-

Fourier coefficients associated with the function fδ:

θδ l =

∫ 1

−1
fδ(x)Pl(x)dx

=

{

c0
m(4r+3)/2 · l(2r+2)/2 · δl if l ∈ [m, 2m − 1]

0 else
(3.4)

hence

+∞
∑

k=0

k2rθ2
δ k =

c2
0

m4r+3

2m−1
∑

k=m

k2rk2r+2δ2
k

≤ c2
0

m4r+3

2m−1
∑

k=m

k4r+2δ2
k

≤ c2
0(2m)4r+2

m4r+3

2m−1
∑

k=m

δ2
k ≤ c2

02
4r+2 < ∞,

since δk ∈ {0, 1}.
We set δ(0) = (0, . . . , 0) and fδ(0) ≡ f0. The Legendre-Fourier coefficients of

f0 are null:

θ0 l = 0 ∀ l ∈ N. (3.5)

We are now going to exhibit the suitable subset of functions C of the Lemma 1.

To this purpose, we only take into consideration a subset of M + 1 functions of

E :

C = {fδ(0) , . . . , fδ(M)}
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where {δ(1), . . . , δ(M)} is a subset of {0, 1}m.

We precise that Pδ is the law of the vector of observations Ỹ = (ỹ1, . . . , ỹ∞) in

the model (1.4) for f = fδ, δ ∈ C.

We are now going to apply Lemma 1. We first check the condition (i),

accordingly, we have to assess the distance ‖fδ(i) − fδ(j)‖2. By the orthogonality

of the system {Pk}k and thanks to Parseval equality we get, for 0 ≤ i < j ≤ M ,

‖fδ(i) − fδ(j)‖2 =
c2
0

m4r+3

2m−1
∑

k=m

k2r+2(δ
(i)
k − δ

(j)
k )2

≥ c2
0

m4r+3
· m2r+2

2m−1
∑

k=m

(δ
(i)
k − δ

(j)
k )2

≥ c2
0

m2r+1

2m−1
∑

k=m

(δ
(i)
k − δ

(j)
k )2

=
c2
0

m2r+1
ρ(δ(i), δ(j)),

where ρ(·, ·) is the Hamming distance. We are going to resort to the Varshamov-

Gilbert bound which is stated in the following lemma to find a lower bound of

the quantity ρ(δ(i), δ(j)):

Lemma 2. (Varshamov-Gilbert bound, 1962). Fix m ≥ 8. Then there exists a

subset {δ(0), . . . , δ(M)} of ∆ such that M ≥ 2m/8 and

ρ(δ(j), δ(k)) ≥ m

8
, ∀ 0 ≤ j < k ≤ M.

Moreover we can always take δ(0) = (0, . . . , 0).

For a proof of this lemma see for instance Tsybakov (2004), p 89.

Hence

‖fδ(i) − fδ(j)‖2 ≥ (c2
0)/(8m

2r) ≡ η2

We are now going to check the condition (ii) in Lemma 1. and evaluate the

Kullback-Leibler divergence. It is well known (see for instance Birgé and Massart

(2001) p 62) that for the Kullback-Leibler divergence in the case of a gaussian

sequence space model we have

K(Pδ, P0) =
1

ε2

∞
∑

l=1

|θδ l − θ0 l|2
σ2

l

. (3.6)
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Hence, by virtue of (3.4), (3.5) and (3.6), the Kullback-Leibler divergence between

the two probability measures P0 and Pδ of the observations in the model (1.4)

associated respectively with functions f = f0 anf f = fδ for all δ ∈ C satisfies

K(Pδ, P0) =
1

ε2

c2
0

m4r+3

2m−1
∑

l=m

l2r+2δ2
l

σ2
l

≤ c2
02

2r+2

ε2

m2r+2

m4r+3

2m−1
∑

l=m

δ2
l

σ2
l

but thanks to Lemma 5. (see Appendix) we have

1

σ2
l

≤ 1

4l−1

which implies

K(Pδ, P0) ≤ c2
02

2r+4

ε2

1

m2r+14m

2m−1
∑

l=m

δ2
l ≤ c2

02
2r+4

ε2

1

m2r+14m
· m ≤ c2

02
2r+4m

ε24m

One chooses m = 1
log 4 log( 1

ε2 ) so that 1/4m = ε2, hence:

K(Pδ, P0) ≤ c2
02

2r+4m

and since m ≤ 8 log M/ log 2 (see Lemma 2)

K(Pδ, P0) ≤
c2
02

2r+7

log 2
log M

Eventually one can choose c0 small enough to have c ≡ c2022r+7

log 2 < 1.

Since now all the conditions of the Lemma 1. are fulfilled, we are in position

to apply its result with the loss function ℓ(x) = x2 and η = (c0)/(2
√

2mr).

Therefore, we derive that whatever the estimator f̂ ,

sup
f∈C

Ef [‖f̂ − f‖2] ≥ c2
0

32m2r

[

1 −
(

2

3
∨ c

log M

)]

≥ c2
0

96m2r
.

but from above we had m = 1
log 4 log( 1

ε2 ) which gives the desired lower bound.
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4. Conclusion

The two theorems of this paper show that in the problem of estimating a

function on a compact interval from noisy moments observations, the best rate of

convergence one can achieve, supposing Sobolev scale smoothness and considering

the mean integrated squared error, is only of logarithmic order. In a future work,

one could try to generalise this result for Lp loss and may obtain faster rate of

convergence if one assumes a more restricted smoothness class involving super

smooth functions. Besides, one may consider an heteroscedastic gaussian noise

instead of a white noise model.

5. Appendix

Lemma 3. The models (1.3) and (1.4) are equivalent.

Proof. We recall the model (1.3):

yj = µj + εξj =

∫ 1

−1
f(x)xjdx + εξj .

We are going now to multiply both sides of (1.3) by the coefficient βjk of the

Legendre polynomial:

(1.3) ⇔ βkjyj = βkj

∫ 1

−1
f(x)xjdx + εβkjξj

⇔
k

∑

j=0

βkjyj =

k
∑

j=0

βkj

∫ 1

−1
f(x)xjdx +

k
∑

j=0

εβkjξj

⇔
k

∑

j=0

βkjyj =

∫ 1

−1
f(x)

k
∑

j=0

βkjx
jdx + ε

k
∑

j=0

βkjξj

⇔
k

∑

j=0

βkjyj =

∫ 1

−1
f(x)Pkdx + ε

k
∑

j=0

βkjξj

Let us set ξ̃k =
∑k

j=0 βkjξj . Since ξj are i.i.d standard Gaussian random vari-

ables, the random variable ξ̃k follows a normal law with zero mean and variance

equal to
∑k

j=0 β2
kj . Hence (1.3) is equivalent to:

ỹk = θk + εσkξk
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where σ2
k =

∑k
j=0 β2

k,j, ỹk =
∑k

j=0 βk,jyj, θk =
∑k

j=0 βk,jµj =
∫ 1
−1 f(x)Pk(x)dx

and ξk are i.i.d standard Gaussian random variables.

Lemma 4. For all n ≥ 1 we have:
(

2n

n

)

≤ 4n

n1/4
(5.1)

Proof. Let us prove (5.1) by recursion on n. The inequality is clearly true for

n = 1.

Suppose (5.1) true for a certain n ≥ 1.
(

2(n + 1)

n + 1

)

=

(

2n

n

)

2(2n + 1)

n + 1
≤ 4n

n1/4

2(2n + 1)

n + 1
,

by recursion hypothesis. It remains to prove that

4n

n1/4

2(2n + 1)

n + 1
≤ 4n+1

(n + 1)1/4
. (5.2)

(5.2) ⇐⇒ 2(2n + 1)

n1/4(n + 1)
≤ 4

(n + 1)1/4

⇐⇒ n + 1

n

(2n + 1

n + 1

)4 ≤ 24

⇐⇒ (n +
1

2
)1/4 ≤ n(n + 1)3,

which is true because we have (n+ 1
2)1/4 ≤ (n+ 1

2)3(n+1) and (n+ 1
2)3 ≤ n(n+1)2

since 1
8 ≤ n2/2 + n/4. This completes the proof.

Lemma 5. For all n ≥ 1, we have:

σ2
n ≥ 4n−1 (5.3)

where σn is defined in (1.4).

Proof. Firstly, let us recall the value of the noise intensity σ2
n:

σ2
n =

2n + 1

2

1

4n

[n/2]
∑

j=0

{(

n

j

)(

2n − 2j

n

)}2

≥ n

4n

(

2n

n

)2

.
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And so, in order to prove (5.3) it remains to prove that
(

2n

n

)

≥ 4n

2
√

n
n ≥ 1.

We again use a recursion on n.

The inequality (5.3) is clear for n = 1. We suppose the property true for a certain

n ≥ 1 and we shall prove it at the rank (n + 1).
(

2(n + 1)

n + 1

)

=

(

2n

n

)

2(2n + 1)

n + 1

≥ 4n

2
√

n

2(2n + 1)

n + 1

>
4n+1

2
√

n + 1
(5.4)

the inequality (5.4) is true because it is equivalent to 4n2 + 4n + 1 > 4n2 + 4n

what we always have.
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