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Linear Predition of Long-Memory Proesses:Asymptoti Results on Mean-squared ErrorsFanny Godet∗Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629Université de Nantes 2 rue de la Houssinière - BP 92208 F-44322 Nantes Cedex 3February 1, 2008AbstratWe present two approahes for linear predition of long-memory time series. The �rst ap-proah onsists in trunating the Wiener-Kolmogorov preditor by restriting the observationsto the last k terms, whih are the only available values in pratie. We derive the asymptotibehaviour of the mean-squared error as k tends to +∞. By ontrast, the seond approah isnon-parametri. An AR(k) model is �tted to the long-memory time series and we study theerror that arises in this misspei�ed model.Keywords: long-memory, linear model, autoregressive proess, foreast errorARMA (autoregressive moving-average) proesses are often alled short-memory proesses be-ause their ovarianes deay rapidly (i.e. exponentially). On the other hand, a long-memory proessis haraterised by the following feature: the autoovariane funtion σ deays more slowly i.e. itis not absolutely summable. They are so-named beause of the strong assoiation between observa-tions widely separated in time. The long-memory time series models have attrated muh attentionlately and there is now a growing realisation that time series possessing long-memory harateristisarise in subjet areas as diverse as Eonomis, Geophysis, Hydrology or teleom tra� (see, e.g.,[Mandelbrot and Wallis, 1969℄ and [Granger and Joyeux, 1980℄). Although there exists substantialliterature on the predition of short-memory proesses(see [Bhansali, 1978℄ for the univariate aseor [Lewis and Reinsel, 1985℄ for the multivariate ase), there are fewer results for long-memory timeseries. In this paper, we onsider the question of the predition of the latter.More preisely, we ompare two predition methods for long-memory proess. Our goal is a linearpreditor of Xk+h based on observed time points whih is optimal in the sense that it minimizes themean-squared error. The paper is organized as follows. First we introdue our model and our mainassumptions. Then, in setion 2, we study the best linear preditor i.e. the Wiener-Kolmogorovpreditor proposed by [Whittle, 1963℄ and by [Bhansali and Kokoszka, 2001℄ for long-memory timeseries. In pratie, only the last k values of the proess are available. Therefore we need to trunatethe in�nite series in the de�nition of the preditor and to derive the asymptoti behaviour of themean-squared error as k tends to +∞.
∗fanny.godet�math.univ-nantes.frI would like to thank Anne Philippe, my PhD advisor, who monitored my work.1
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In Setion 3 we disuss the asymptoti properties of the foreast error if we �t a misspei�edAR(k) model to a long-memory time series. This approah has been proposed by [Ray, 1993℄ forfrational noise series F(d). His simulations show that high-order AR-models predit frationalintegrated noise very well.Finally in Setion 4 we ompare the two previous methods for h-step predition. We give someasymptoti properties of the mean-squared error of the linear least-squares preditor as h tends to
+∞ in the partiular ase of long-memory proesses. Then we study our k-th order preditors orderas k tends to +∞.1 ModelLet (Xn)n∈Z be a disrete-time (weakly) stationary proess in L2 with mean 0 and σ its autoovari-ane funtion. We assume that the proess (Xn)n∈Z is a long-memory proess i.e.:

∞∑

k=−∞

|σ(k)| = ∞.The proess (Xn)n∈Z admits an in�nite moving average representation as follows:
Xn =

∞∑

j=0

bjεn−j (1)where (εn)n∈Z is a white-noise series onsisting of unorrelated random variables, eah with meanzero and variane σ2
ε and (bj)j∈N are square-summable. We shall further assume that (Xn)n∈Zadmits an in�nite autoregressive representation:

εn =
∞∑

j=0

ajXn−j , (2)where the (aj)j∈N are absolutely summable. We assume also that (aj)j∈N and (bj)j∈N, ourringrespetively in (2) and (1), satisfy the following onditions for all δ > 0:
|aj | ≤ C1j

−d−1+δ (3)
|bj| ≤ C2j

d−1+δ . (4)where C1 and C2 are onstants and d is a parameter verifying d ∈]0, 1/2[. For example, a FARIMAproess (Xn)n∈Z is the stationary solution to the di�erene equations:
φ(B)(1 − B)dXn = θ(B)εnwhere (εn)n∈Z is a white noise series, B is the bakward shift operator and φ and θ are polynomialswith no zeroes on the unit disk. Its oe�ients verify

|aj | ∼
+∞

C1j
−d−1

|bj | ∼
+∞

C2j
d−12



and thus (3) and (4) hold. When φ = θ = 1, the proess (Xn)n∈Z is alled frationally integratednoise and denoted F(d). More generally, (aj)j∈N and (bj)j∈N verify onditions (3) and (4) if:
|aj | ∼

+∞
L(j)j−d−1

|bj | ∼
+∞

L′(j)jd−1where L and L′ are slowly varying funtions. A positive funtion L is a slowly varying funtionin the sense of [Zygmund, 1968℄ if, for any δ > 0, x 7→ x−δL(x) is dereasing and x 7→ xδL(x) isinreasing.The ondition (4) implies that the autoovariane funtion σ of the proess (Xn)n∈Z veri�es:
∀δ > 0,∃C3 ∈ R, |σ(j)| ≤ C3j

2d−1+δ . (5)Notie that it su�es to prove (5) for δ near 0 in order to verify (5) for δ > 0 arbitrarily hosen. Sowe prove (5) for δ < 1−2d
2 :

σ(k) =

+∞∑

j=0

bjbj+k

|σ(k)| ≤

+∞∑

j=1

|bjbj+k| + |b0bk|

≤ C2
2

+∞∑

j=1

jd−1+δ(k + j)d−1+δ + |b0bk|

≤ C2
2

∫ +∞

0
jd−1+δ(k + j)d−1+δdj + |b0bk|

≤ C2
2k2d−1+2δ

∫ +∞

0
jd−1+δ(1 + j)d−1+δdj + C2k

d−1+δ

≤ C3k
2d−1+2δMore aurately, [Inoue, 1997℄ has proved than if:

bj ∼ L (j) jd−1then
σ(j) ∼ j2d−1 [L (j)]2 β(1 − 2d, d)where L is a slowly varying funtion and β is the beta funtion. The onverse is not true, wemust have more assumptions about the series (bj)j∈N in order to get an asymptoti equivalent for

(σ(j))j∈N (see [Inoue, 2000℄).2 Wiener-Kolmogorov Next Step Predition Theory2.1 Wiener-Kolmogorov PreditorThe aim of this part is to ompute the best linear one-step preditor (with minimum mean-squaredistane from the true random variable) knowing all the past {Xk+1−j, j 6 1}. Our preditor is3



therefore an in�nite linear ombination of the in�nite past:
X̃k(1) =

∞∑

j=0

λ(j)Xk−jwhere (λ(j))j∈N are hosen to ensure that the mean squared predition error:
E
[(

X̃k(1) − Xk+1

)2]is as small as possible. Following [Whittle, 1963℄, and in view of the moving average representationof (Xn)n∈Z, we may rewrite our preditor X̃k(1) as:
X̃k(1) =

∞∑

j=0

φ(j)εk−j .where (φ(j))j∈N depends only on (λ(j))j∈N and (ǫn)n∈Z and (aj)j∈N are de�ned in (2). From thein�nite moving average representation of (Xn)n∈Z given below in (1), we an rewrite the mean-squared predition error as:
E
[(

X̃k(1) − Xk+1

)2]
= E






∞∑

j=0

φ(j)εk−j −
∞∑

j=0

b(j)εk+1−j




2


= E




εk+1 −

∞∑

j=0

(φ(j) − b(j + 1)) εk−j




2


=


1 +

∞∑

j=0

(
bj+1 − φ(j)

)2

σ2

εsine the random variables (εn)n∈Z are unorrelated with variane σ2
ε . The smallest mean-squaredpredition error is obtained when setting φ(j) = bj+1 for j ≥ 0.The smallest predition error of (Xn)n∈Z is σ2

ε within the lass of linear preditors. Furthermore,if
A(z) =

+∞∑

j=0

ajz
j,denotes the harateristi polynomial of the (a(j))j∈Z and

B(z) =
+∞∑

j=0

bjz
j ,that of the (a(j))j∈Z, then in view of the identity, A(z) = B(z)−1, |z| ≤ 1, we may write:

X̃k(1) = −

∞∑

j=1

ajXk+1−j. (6)4



2.2 Mean Squared Predition Error when the Preditor is TrunatedIn pratie, we only know a �nite subset of the past, the one whih we have observed. So thepreditor should only depend on the observations. Assume that we only know the set {X1, . . . ,Xk}and that we replae the unknown values by 0, then we have the following new preditor:
X̃ ′

k(1) = −

k∑

j=1

ajXk+1−j. (7)It is equivalent to say that we have trunated the in�nite series (6) to k terms. The followingproposition provides us the asymptoti properties of the mean squared predition error as a funtionof k.Proposition 2.2.1. Let (Xn)n∈Z be a linear stationary proess de�ned by (1), (2) and verifyingonditions (3) and (4). We an approximate the mean-squared predition error of X̃ ′
k(1) by:

∀δ > 0, E
([

Xk+1 − X̃ ′
k(1)

]2)
= σ2

ε + O(k−1+δ).Furthermore, this rate of onvergene O(k−1) is optimal sine for frationally integrated noise, wehave the following asymptoti equivalent:
E
([

Xk+1 − X̃ ′
k(1)

]2)
= σ2

ε + Ck−1 + o
(
k−1

)
.Note that the predition error is the sum of σ2

ε , the error of Wiener-Kolmogorov model and theerror due to the trunation to k terms whih is bounded by O(k−1+δ) for all δ > 0.Proof.
Xk+1 − X̃ ′

k(1) = Xk+1 − X̃k(1) + X̃k(1) − X̃ ′
k(1)

= Xk+1 −

+∞∑

j=0

bj+1εk−j −

+∞∑

j=k+1

ajXk+1−j

= εk+1 −

+∞∑

j=k+1

ajXk+1−j . (8)The two parts of the sum (8) are orthogonal for the inner produt assoiated with the mean squarenorm. Consequently:
E
([

Xk+1 − X̃ ′
k(1)

]2)
= σ2

ε +
∞∑

j=k+1

∞∑

l=k+1

ajalσ(l − j).For the seond term of the sum we have:
∣∣∣∣

+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j)

∣∣∣∣ =

∣∣∣∣2
+∞∑

j=k+1

aj

+∞∑

l=j+1

alσ(l − j) +

+∞∑

j=k+1

a2
jσ(0)

∣∣∣∣

≤ 2
+∞∑

j=k+1

|aj | |aj+1| |σ(1)| +
+∞∑

j=k+1

a2
jσ(0)

+2

+∞∑

j=k+1

|aj |

+∞∑

l=j+2

|al||σ(l − j)|5



from the triangle inequality, it follows that:
∣∣∣∣

+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j)

∣∣∣∣

≤ C2
1C3


2

+∞∑

j=k+1

j−d−1+δ(j + 1)−d−1+δ +

+∞∑

j=k+1

(
j−d−1+δ

)2


 (9)

+ 2C2
1C3

+∞∑

j=k+1

j−d−1+δ
+∞∑

l=j+2

l−d−1+δ|l − j|2d−1+δ (10)for all δ > 0 from inequalities (3) and (5). Assume now that δ < 1/2 − d. For the terms (9),sine j 7→ j−d−1+δ(j + 1)−d−1+δ is a positive and dereasing funtion on R
+, we have the followingapproximations:

2C2
1C3

+∞∑

j=k+1

j−d−1+δ(j + 1)−d−1+δ ∼ 2C2
1C3

∫ +∞

k
j−d−1+δ(j + 1)−d−1+δdj

∼
2C2

1C3

1 + 2d − 2δ
k−2d−1+2δSine the funtion j 7→

(
j−d−1+δ

)2 is also positive and dereasing, we an establish in a similar waythat:
C2

1C3

+∞∑

j=k+1

(
j−d−1+δ

)2
∼ C2

1C3

∫ +∞

k

(
j−d−1+δ

)2
dj

∼
C2

1C3

1 + 2d − 2δ
k−2d−1+2δ.For the in�nite double series (10), we will similarly ompare the series with an integral. In thenext Lemma, we establish the neessary result for this omparison:Lemma 2.2.1. Let g the funtion (l, j) 7→ j−d−1+δ l−d−1+δ |l−j|2d−1+δ. Let m and n be two positiveintegers. We assume that δ < 1− 2d and m ≥ δ−d−1

δ+2d−1 for all δ ∈
]
0, δ−d−1

δ+2d−1

[. We will all An,m thesquare [n, n + 1] × [m,m + 1]. If n ≥ m + 1 then
∫

An,m

g(l, j) dj dl ≥ g(n + 1,m).Assume now that δ < 1− 2d without loss of generality. Thanks to the previous Lemma and theasymptoti equivalents of (9), there exists K ∈ N suh that if k > K:
∣∣∣∣

+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j)

∣∣∣∣ ≤ C

∫ +∞

k+1
j−d−1+δ

[∫ +∞

j
l−d−1+δ(l − j)2d−1+δdl

]
dj + O

(
k−2d−1+2δ

)By using the substitution jl′ = l in the integral over l we obtain:
∣∣∣∣

+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j)

∣∣∣∣ ≤ C ′

∫ +∞

k+1
j−2+3δ

∫ +∞

1
l−d−1+δ(l − 1)2d−1+δdldj + O

(
k−2d−1

)
.6



Sine if δ < (1 − d)/2 ∫ +∞

1
l−d−1+δ(l − 1)2d−1+δdl < +∞,it follows:

∣∣∣∣
+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j)

∣∣∣∣ ≤ O
(
k−1+3δ

)
+ O

(
k−2d−1

)

≤ O
(
k−1+3δ

)
. (11)If δ > 0, δ < 1 − 2d and δ < (1 − d)/2, we have:

∣∣∣∣
+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j)

∣∣∣∣ = O
(
k−1+3δ

)
.Notie that if the equality is true under the assumptions δ > 0, δ < 1 − 2d and δ < (1 − d)/2, it isalso true for any δ > 0. Therefore we have proven the �rst part of the theorem.We prove now that there exists long-memory proesses whose predition error attains the rate ofonvergene k−1. Assume now that (Xn)n∈Z is frationally integrated noise F(d), whih is thestationary solution of the di�erene equation:

Xn = (1 − B)−dεn (12)with B the usual bakward shift operator, (εn)n∈Z is a white-noise series and d ∈ ]0, 1/2[ (see forexample [Brokwell and Davis, 1991℄). We an ompute the oe�ients and obtain that:
∀j > 0, aj =

Γ(j − d)

Γ(j + 1)Γ(−d)
and ∀j ≥ 0, σ(j) =

(−1)jΓ(1 − 2d)

Γ(j − d + 1)Γ(1 − j − d)
σ2

εthen we have:
∀j > 0, aj < 0 and ∀j ≥ 0, σ(j) > 0and

aj ∼
j−d−1

Γ(−d)
and σ(j) ∼

j2d−1Γ(1 − 2d)

Γ(d)Γ(1 − d)
when j → ∞.In this partiular ase, we an estimate the predition error more preisely:

+∞∑

k+1

+∞∑

k+1

ajalσ(l − j) =

+∞∑

k+1

|aj|

+∞∑

j+1

|al||σ(l − j)| +

+∞∑

k+1

a2
jσ(0)

∼
Γ(1 − 2d)

Γ(−d)2Γ(d)Γ(1 − d)

∫ +∞

k+1
j−2

∫ +∞

1/j+1
l−d−1(l − 1)2d−1dldj + O

(
k−2d−1

)

+∞∑

k+1

+∞∑

k+1

ajalσ(l − j) ∼
Γ(1 − 2d)Γ(2d)

Γ(−d)2Γ(d)Γ(1 + d)
k−1 (13)The asymptoti bound O(k−1) is therefore as small as possible.7



In the spei� ase of frationally integrated noise, we may write the predition error as:
E
([

Xk+1 − X̃ ′
k(1)

]2)
= σ2

ε + C(d)k−1 + o
(
k−1

)and we an express C(d) as a funtion of d:
C(d) =

Γ(1 − 2d)Γ(2d)

Γ(−d)2Γ(d)Γ(1 + d)
. (14)It is easy to prove that C(d) → +∞ as d → 1/2 and we may write the following asymptotiequivalent as d → 1/2:

C(d) ∼
1

(1 − 2d)Γ(−1/2)2Γ(1/2)Γ(3/2)
. (15)As d → 0, C(d) → 0 and we have the following equivalent as d → 0:

C(d) ∼ d2.Figure 2.1: Behaviour of onstant C(d), d ∈ [0, 1/2[, de�ned in (14)
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As the �gure 2.1 suggests and the asymptoti equivalent given in (15) proves, the mean-squarederror tends to +∞ as d → 1/2. By ontrast, the onstant C(d) takes small values for d in a largeinterval of [0, 1/2[. Although the rate of onvergene has a onstant order k−1, the foreast erroris bigger when d → 1/2. This result is not surprising sine the orrelation between the randomvariable, whih we want to predit, and the random variables, whih we take equal to 0, inreaseswhen d → 1/2. 8



Trunating to k terms the series whih de�nes the Wiener-Kolmogorov preditor amounts tousing an AR(k) model for prediting. Therefore in the following setion we look for the AR(k)whih minimizes the foreast error.3 The Autoregressive Models Fitting ApproahIn this setion we develop a generalisation of the �autoregressive model �tting� approah developedby [Ray, 1993℄ in the ase of frationally integrated noise F(d) (de�ned in (12)). We study theasymptoti properties of the foreast mean-squared error when we �t a misspei�ed AR(k) modelto the long-memory time series (Xn)n∈Z.3.1 RationaleLet Φ a kth degree polynomial de�ned by:
Φ(z) = 1 − a1,kz − . . . − ak,kz

k.We assume that Φ has no zeroes on the unit disk. We de�ne the proess (ηn)n∈Z by:
∀n ∈ Z, ηn = Φ(B)Xnwhere B is the bakward shift operator. Note that (ηn)n∈Z is not a white noise series beause (Xn)n∈Zis a long-memory proess and hene does not belong to the lass of autoregressive proesses. Sine

Φ has no root on the unit disk, (Xn)n∈Z admits a moving-average representation as the �tted AR(k)model in terms of (ηn)n∈Z:
Xn =

∞∑

j=0

c(j)ηn−j .If (Xn)n∈Z was an AR(k) assoiated with the polynomial Φ, the best next step linear preditorwould be:
X̂n(1) =

∞∑

j=1

c(i)ηt+1−i

= a1,kXn + . . . + ak,kXn+1−k si n > k.Here (Xn)n∈Z is a long-memory proess whih veri�es the assumptions of Setion 1. Our goal is toderive a losed formula for the polynomial Φ whih minimizes the foreast error and to estimate thiserror.3.2 Mean-Squared ErrorThere exists two approahes in order to de�ne the oe�ients of the kth degree polynomial Φ: thespetral approah and the time approah.In the time approah, we hoose to de�ne the preditor as the projetion mapping on to thelosed span of the subset {Xn, . . . ,Xn+1−k} of the Hilbert spae L2(Ω,F , P) with inner produt9



< X,Y >= E(XY ). Consequently the oe�ients of Φ verify the equations, whih are alled the
kth order Yule-Walker equations:

∀j ∈ J1, kK,

k∑

i=1

ai,kσ(i − j) = σ(j) (16)The mean-squared predition error is:
E
[(

X̂n(1) − Xn+1

)2]
= c(0)2E(η2

n+1) = E(η2
n+1).We may write the moving average representation of (ηn)n∈N in terms of (εn)n∈N:

ηn =
∞∑

j=0

min(j,p)∑

k=0

Φkb(j − k)εn−j

=

∞∑

j=0

t(j)εn−jwith
∀j ∈ N, t(j) =

min(j,p)∑

k=0

Φkb(j − k).Finally we obtain:
E
[(

X̂n(1) − Xn+1

)2]
=

∞∑

j=0

t(j)2σ2
ε .In the spetral approah, minimizing the predition error is equivalent to minimizing a ontrastbetween two spetral densities: ∫ π

−π

f(λ)

g(λ,Φ)
dλwhere f is the spetral density of Xn and g(.,Φ) is the spetral density of the AR(p) proess de�nedby the polynomial Φ (see for example [Yajima, 1993℄),so:

∫ π

−π

f(λ)

g(λ,Φ)
dλ =

∫ π

−π

∣∣∣
∞∑

j=0

b(j)e−ijλ
∣∣∣
2∣∣∣Φ(e−iλ)

∣∣∣
2
dλ

=

∫ π

−π
|

∞∑

j=0

t(j)e−ijλ|2dλ

= 2π
∞∑

j=0

t(j)2.In both approahes we need to minimize ∑∞
j=0 t(j).

10



3.3 Rate of Convergene of the Error by AR(k) Model FittingIn the next theorem we derive an asymptoti expression for the predition error by �tting autore-gressive models to the series:Theorem 3.3.1. Assume that (Xn)n∈Z is a long-memory proess whih veri�es the assumptions ofSetion 1. If 0 < d < 1
2 :

E
[(

X̂k(1) − Xk+1

)2]
− σ2

ε = O(k−1)Proof. Sine �tting an AR(k) model minimizes the foreast error using k observations, the error byusing trunation is bigger. Sine the trunation method involves an error bounded by O
(
k−1

), weobtain:
E
[(

X̂k(1) − Xk+1

)2]
− σ2

ε = O(k−1).Consequently we only need to prove that this rate of onvergene is attained . This is the ase forthe frationally integrated proesses de�ned in (12). We want the error made when �tting an AR(k)model in terms of the Wiener-Kolmogorov trunation error. Note �rst that the variane of the whitenoise series is equal to:
σ2

ε =

∫ π

−π
f(λ)

∣∣∣∣∣∣

+∞∑

j=0

aje
ijλ

∣∣∣∣∣∣

2

dλ.Therefore in the ase of a frationally integrated proess F(d) we need only show that:
∫ π

−π
f(λ)

∣∣∣∣∣∣

+∞∑

j=0

aje
ijλ

∣∣∣∣∣∣

2

dλ −
σ2

ε

2π

∫ π

−π

f(λ)

g(λ,Φk)
dλ ∼ C(k−1).

∫ π

−π
f(λ)

∣∣∣∣∣∣

+∞∑

j=0

aje
ijλ

∣∣∣∣∣∣

2

dλ −
σ2

ε

2π

∫ π

−π

f(λ)

g(λ,Φk)
dλ =

∫ π

−π
f(λ)



∣∣∣∣∣∣

+∞∑

j=0

aje
ijλ

∣∣∣∣∣∣

2

−

∣∣∣∣∣∣

k∑

j=0

aj,ke
ijλ

∣∣∣∣∣∣

2
 dλ

=

+∞∑

j=0

+∞∑

l=0

(ajal − aj,kal,k) σ(j − l)we set aj,k = 0 if j > k.
+∞∑

j=0

+∞∑

l=0

(ajal − aj,kal,k) σ(j − l) (17)
=

+∞∑

j=0

+∞∑

l=0

(ajal − aj,kal)σ(j − l) +

+∞∑

j=0

+∞∑

l=0

(aj,kal − aj,kal,k)σ(j − l)

=

+∞∑

j=0

(aj − aj,k)

+∞∑

l=0

alσ(l − j) +

k∑

j=0

aj,k

+∞∑

l=0

(al − al,k)σ(j − l) (18)
11



We �rst study the �rst term of the sum (18). For any j > 0 , we have ∑+∞
l=0 alσ(l − j) = 0:

εn =

∞∑

j=0

alXn−l

Xn−jεn =
∞∑

l=0

alXn−lXn−j

E (Xn−jεn) =
∞∑

l=0

alσ(l − j)

E

(
∞∑

l=0

blεn−j−lεn

)
=

∞∑

l=0

alσ(l − j)and we onlude that ∑+∞
l=0 alσ(l − j) = 0 beause (εn)n∈Z is an unorrelated white noise. We anthus rewrite the �rst term of (18) like:

+∞∑

j=0

(aj − aj,k)

+∞∑

l=0

alσ(l − j) = (a0 − a0,k)

+∞∑

l=0

alσ(l)

= 0sine a0 = a0,k = 1 aording to de�nition. Next we study the seond term of the sum (18):
k∑

j=0

aj,k

+∞∑

l=0

(al − al,k)σ(j − l).And we obtain that:
k∑

j=0

aj,k

+∞∑

l=0

(al − al,k)σ(j − l) =
k∑

j=1

(aj,k − aj)
k∑

l=1

(al − al,k)σ(j − l)

+
k∑

j=1

(aj,k − aj)
+∞∑

l=k+1

alσ(j − l) (19)
+

k∑

j=0

aj

k∑

l=1

(al − al,k)σ(j − l) (20)
+

k∑

j=0

aj

+∞∑

l=k+1

alσ(j − l)Similarly we rewrite the term (19) using the Yule-Walker equations:
k∑

j=1

(aj,k − aj)

+∞∑

l=k+1

alσ(j − l) = −

k∑

j=1

(aj,k − aj)

k∑

l=0

alσ(j − l)

12



We then remark that this is equal to (20). Hene it follows that:
k∑

j=0

aj,k

+∞∑

l=0

(al − al,k)σ(j − l) =
k∑

j=1

(aj,k − aj)
k∑

l=1

(al − al,k)σ(j − l)

+2
k∑

j=1

(aj,k − aj)
+∞∑

l=k+1

alσ(j − l)

+
k∑

j=0

aj

+∞∑

l=k+1

alσ(j − l) (21)On a similar way we an rewrite the third term of the sum (21) using Fubini Theorem:
k∑

j=0

aj

+∞∑

l=k+1

alσ(j − l) = −
+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(j − l).This third term is therefore equal to the foreast error in the method of predition by trunation.In order to ompare the predition error by trunating the Wiener-Kolmogorov preditor and by�tting an autoregressive model to a frationally integrated proess F(d), we need the sign of all theomponents of the sum (21). For a frationally integrated noise, we know the expliit formula for
aj and σ(j):

∀j > 0, aj =
Γ(j − d)

Γ(j + 1)Γ(−d)
< 0 and ∀j ≥ 0, σ(j) =

(−1)jΓ(1 − 2d)

Γ(j − d + 1)Γ(1 − j − d)
σ2

ε > 0.In order to get the sign of aj,k − aj we use the expliit formula given in [Brokwell and Davis, 1988℄and we easily obtain that aj,k − aj is negative for all j ∈ J1, kK.
aj − aj,k =

Γ(j − d)

Γ(j + 1)Γ(−d)
−

Γ(k + 1)Γ(j − d)Γ(k − d − j + 1)

Γ(k − j + 1)Γ(j + 1)Γ(−d)Γ(k − d + 1)

= −aj

(
−1 +

Γ(k + 1)Γ(k − d − j + 1)

Γ(k − j + 1)Γ(k − d + 1)

)

= −aj

(
k...(k − j + 1)

(k − d)...(k − d − j + 1)
− 1

)

> 0sine ∀j ∈ N
∗ aj < 0. To give an asymptoti equivalent for the predition error, we use the sumgiven in (21). We have the sign of the three terms: the �rst is negative, the seond is positive and thelast is negative. Moreover the third is equal to the foreast error by trunation and we have provedthat this asymptoti equivalent has order O(k−1). The predition error by �tting an autoregressivemodel onverges faster to 0 than the error by trunation only if the seond term is equivalent to

Ck−1, with C onstant. Consequently, we searh for a bound for aj −aj,k given the expliit formula
13



for these oe�ients (see for example [Brokwell and Davis, 1988℄):
aj − aj,k =

Γ(j − d)

Γ(j + 1)Γ(−d)
−

Γ(k + 1)Γ(j − d)Γ(k − d − j + 1)

Γ(k − j + 1)Γ(j + 1)Γ(−d)Γ(k − d + 1)

= −aj

(
−1 +

Γ(k + 1)Γ(k − d − j + 1)

Γ(k − j + 1)Γ(k − d + 1)

)

= −aj

(
k...(k − j + 1)

(k − d)...(k − d − j + 1)
− 1

)

= −aj

(
j−1∏

m=0

(
1 − l

k

1 − l+d
k

)
− 1

)

= −aj

(
j−1∏

m=0

(
1 +

d
k

1 − d+l
k

)
− 1

)
.Then we use the following inequality:

∀x ∈ R, 1 + x ≤ exp(x)whih gives us:
aj − aj,k ≤ −aj

(
exp

(
j−1∑

m=0

d
k

1 − d+l
k

)
− 1

)

≤ −aj

(
exp

(
d

j−1∑

m=0

1

k − d − l

)
− 1

)

≤ −aj exp

(
d

j−1∑

m=0

1

k − d − l

)Aording to the previous inequality, we have:
k∑

j=1

(aj − aj,k)

+∞∑

l=k+1

−alσ(j − l) =

k−1∑

j=1

(aj − aj,k)

+∞∑

l=k+1

−alσ(j − l)

+(ak − ak,k)
+∞∑

l=k+1

−alσ(k − l)

≤

k−1∑

j=1

−aj exp

(
d

j−1∑

m=0

1

k − d − m

)
+∞∑

l=k+1

−alσ(j − l)

+(−ak) exp

(
d

k−1∑

m=0

1

k − d − m

)
+∞∑

l=k+1

−alσ(k − l)

≤

k−1∑

j=1

−aj exp

(
d

∫ j

0

1

k − d − m
dm

) +∞∑

l=k+1

−alσ(j − l)

+(−ak)k
3

2
d

+∞∑

l=k+1

−alσ(k − l)14



As the funtion x 7→ 1
k−d−x is inreasing, we use the Integral Test Theorem. The inequality on theseond term follows from:

k−1∑

m=0

1

k − d − m
∼ ln(k)

≤
3

2
ln(k)for k large enough. Therefore there exists K suh that for all k ≥ K:

k∑

j=1

(aj − aj,k)

+∞∑

l=k+1

−alσ(j − l) ≤

k−1∑

j=1

−aj exp

(
d ln

(
k − d

k − d − j

)) +∞∑

l=k+1

−alσ(j − l)

+(−ak)k
3

2
d

+∞∑

l=k+1

−alσ(0)

≤ C(k − d)d
k−1∑

j=1

j−d−1(k − d − j)−d
+∞∑

l=k+1

l−d−1(l − j)2d−1

+Ck−d−1k
3

2
dk−d

≤
C

(k − d)2

∫ 1

1/(k−d)
j−d−1(1 − j)−d

∫ +∞

1
l−d−1(l − 1)2d−1dldj

+Ck− 1

2
d−1

≤ C ′(k − d)−2+d + Ck− 1

2
d−1and so the positive term has a smaller asymptoti order than the foreast error made by trunating.Therefore we have proved that in the partiular ase of F(d) proesses, the two predition errors areequivalent to Ck−1 with C onstant.The two approahes to next-step predition, by trunation to k terms or by �tting an autoregres-sive model AR(k) have onsequently a predition error with the same rate of onvergene k−1. Soit is interesting to study how the seond approah improves the predition. The following quotient:

r(k) :=

∑k
j=1(aj,k − aj)

∑k
l=1(al − al,k)σ(j − l) + 2

∑k
j=1(aj,k − aj)

∑+∞
l=k+1 alσ(j − l)

∑k
j=0 aj

∑+∞
l=k+1 alσ(j − l)

(22)is the ratio of the di�erene between the two predition errors and the predition error by trunatingin the partiular ase of a frationally integrated noise F(d). The �gure 3.1 shows that the preditionby trunation inurs a larger performane loss when d → 1/2. The improvement reahes 50 per entwhen d > 0.3 and k > 20.After obtaining asymptoti equivalent for next step preditor, we will generalize the two methodsof h-step predition and aim to obtain their asymptoti behaviour as k → +∞ but also as h → +∞.4 The h-Step PreditorsSine we assume that the proess (Xn)n∈Z has an autoregressive representation (2) and movingaverage representation (1), the linear least-squares preditor, X̃k+h, of Xk+h based on the in�nite15



Figure 3.1: Ratio r(k), d ∈]0, 1/2[ de�ned in (22)
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past (Xj , j ≤ k) is given by:
X̃k(h) = −

+∞∑

j=1

ajX̃k(h − j) =

+∞∑

j=h

bjεk+h−j(see for example Theorem 5.5.1 of [Brokwell and Davis, 1991℄). The orresponding mean squarederror of predition is:
E

[(
X̃k(h) − Xk+h

)2
]

= σ2
ε

h−1∑

j=0

b2
j .As the predition step h tends to in�nity, The mean-squared predition error onverges to σ2

ε

∑+∞
j=0,whih is the the variane of the proess (Xn)n∈Z. But if the mean-squared predition error is equalto σ(0), we have no more interest in the predition method sine its error is equal to the error ofprediting the future by 0. Remark that the mean-squared error inreases more slowly to σ(0) inthe long-memory ase than in the short-memory ase sine the sequene bj deays more slowly to 0.More preisely in the ase of a long-memory proess, if we assume that:

bj ∼
+∞

jd−1L(j)where L is a slowly varying funtion, we an express the asymptoti behaviour of the preditionerror. As j 7→ L2(j) is also a slowly varying funtion aording to the de�nition of [Zygmund, 1968℄,16



b2
j = j2d−2L2(j) is ultimately dereasing. The rest of the series and the integral are then equivalentand we may write:

σ(0) − E

[(
X̃k(h) − Xk+h

)2
]

= σ2
ε

+∞∑

j=h

b2
j

∼
+∞∑

j=h

j2d−2L2(j)

∼

∫ +∞

h
j2d−2L2(j)djAording to Proposition 1.5.10 of [Bingham et al., 1987℄:

σ(0) − E

[(
X̃k(h) − Xk+h

)2
]

∼

∫ +∞

h
j2d−2L2(j)dj

∼
h→+∞

1

1 − 2d
h2d−1L2(h) (23)In the ase of a long-memory proess with parameter d whih veri�es bj ∼ jd−1L(j), the onvergeneof the mean-squared error to σ(0) is slow as h tends to in�nity. On the ontrary, for a moving averageproess of order q, the sequene σ(0) −E

[(
X̃k(h) − Xk+h

)2
] is onstant and equal to 0 as soon as

h > q. More generally, we an study the ase of an ARMA proess, whih anonial representationis given by:
Φ(Xt) = Θ(εt)where Φ and Θ are two oprime polynomials with oe�ients of degree 0 are equal to 1 and εt is awhite noise. Φ has no root in the unit disk |z| ≤ 1 and Θ has no root in the open disk |z| < 1. bj isbounded by:
|bj | ≤ Cjm−1ρ−jwhere ρ is the smallest absolute value of the roots of Φ and m the multipliity of the orrespondingroot (see for example [Brokwell and Davis, 1991℄ p92). Thus the mean-squared predition error isbounded by:

σ(0) − E

[(
X̃k(h) − Xk+h

)2
]

= σ2
ε

+∞∑

j=h

b2
j

≤ σ2
εC

2
+∞∑

j=h

j2m−2ρ−2j

≤ σ2
εC

2
+∞∑

j=h

j2m−2 exp (−2j log(ρ))

≤ σ2
εC

2

∫ +∞

h
j2m−2 exp (−2j log(ρ)) dj

17



By using the substitution t = 2 log(ρ)j ,
σ(0) − E

[(
X̃k(h) − Xk+h

)2
]

≤ σ2
εC

2 (2 log(ρ))1−2m
∫ +∞

2 log(ρ)h
t2m−2 exp (t) dt

≤ σ2
εC

2 (2 log(ρ))1−2m Γ(2m − 1, 2 log(ρ)h)where Γ(., .) is the inomplete Gamma funtion de�ned in equation 6.5.3 of [Abramowitz and Stegun, 1984℄.We know an equivalent of this funtion:
Γ(2m − 1, 2 log(ρ)h) ∼

h→+∞
(2 log(ρ)h)2m−2 exp (2 log(ρ)h)We onlude that the rate of onvergene is exponential. The mean-squared predition error goesfaster to σ(0) when the prediting proess is ARMA than when the proess is a long-memoryproess.The h-step predition is then more interesting for the long-memory proess than for the short-memory proess, having observed the in�nite past. We onsider the trunating e�et next.4.1 Trunated Wiener-Kolmogorov preditorIn pratie, we only observe a �nite number of samples. We assume now that we only know kobservations (X1, . . . ,Xk). We then de�ne the h-step trunated Wiener-Kolmogorov of order k as:

X̃ ′
k(h) = −

h−1∑

j=1

ajX̃ ′
k(h − j) −

k∑

l=1

ah−1+jXk+1−j (24)We now desribe the asymptoti behaviour of the mean-squared error of the preditor (24). Firstwe write the di�erene between the prediting random variable and its preditor:
X̃ ′

k(h) − Xk+h = −

h−1∑

j=1

ajX̃
′
k(h − j) −

k∑

l=1

ah−1+jXk+1−j − εk+h +

+∞∑

j=1

ajXk+h−j

= −εk+h +

h−1∑

j=1

aj

(
Xk+h−j − X̃ ′

k(h − j)
)

+

k∑

j=1

ah−1+j (Xk+1−j − Xk+1−j)

+

+∞∑

j=k+1

ah−1+jXk+1−j

= −εk+h +
h−1∑

j=1

aj

(
Xk+h−j − X̃ ′

k(h − j)
)

+
+∞∑

j=k+1

ah−1+jXk+1−jWe will use the proess of indution on h to show that
X̃ ′

k(h) − Xk+h = −

h−1∑

l=0


 ∑

j1+j2+...+jh=l

(−1)card({j,j 6=0})aj1aj2 . . . ajh


 εk+h−l

+

+∞∑

j=k+1


 ∑

i1+i2+...+ih=h−1

(−1)card({il ,il 6=0,l>1})aj+i1ai2 . . . aih


Xk+1−j.18



For h = 2, we have for example
X̃ ′

k(2) − Xk+2 = −(a0εk+2 − a1εk+1) +
+∞∑

j=k+1

(−a1aj + aj+1)Xk+1−j .Let A(z) and B(z) denote A(z) = 1 +
∑+∞

j=1 ajz
j and B(z) = 1 +

∑+∞
j=1 bjz

j. Sine we have
A(z) = B(z)−1, we obtain the following onditions on the oe�ients:

b1 = −a1

b2 = −a2 + a2
1

b3 = −a3 + 2a1a2 − a3
1

. . .So we obtain:
X̃ ′

k(h) − Xk+h = −
h−1∑

l=0

blεk+h−l +
+∞∑

j=k+1

h−1∑

m=0

aj+mbh−1−mXk+1−j. (25)Sine the proess (εn)n∈Z is unorrelated and then the two terms of the sum (25) are orthogonal,we an rewrite the mean-squared error:
E

[
X̃ ′

k(h) − Xk+h

]2
=

h−1∑

l=0

b2
l σ

2
ε (26)

+E




+∞∑

j=k+1

(
h−1∑

m=0

aj+h−1−mbm

)
Xk+1−j




2

. (27)The �rst part of the error (26) is due to the predition method and the seond (27) due to thetrunating of the preditor. We now approximate the error term (27) by using (3) and (4). Weobtain the following upper bound:
∀δ > 0,

∣∣∣∣∣

h−1∑

m=0

aj+h−1−mbm

∣∣∣∣∣ ≤
h−1∑

m=1

|aj+h−1−mbm| + |b0aj+h−1|

≤ C1C2

∫ h

0
(j + h − 1 − l)−d−1+δld−1+δdl + C1(j + h)−d−1

≤ C1C2h
−1+2δ

∫ 1

0

(
j

h
+ 1 − l

)−d−1+δ

ld−1+δdl + C1(j + h)−d−1

≤ C1C2h
−1+2δj−d−1+δ

∫ 1

0

(
1

h
+

1 − l

j

)−d−1+δ

ld−1+δdl + C1(j + h)−d−1

≤ C1C2h
d+2δj−d−1+δ

∫ 1

0
ld−1+δdl + C1(j + h)−d−1

∣∣∣∣∣

h∑

m=0

aj+h−mbm

∣∣∣∣∣ ≤ C1C2
hd+2δ

d
j−d−1+δ (28)19



This bound is in fat an asymptoti equivalent for the frationally integrated proess F(d) beause,in that ase, the sequenes aj and bj have a onstant signs. Using Proposition 2.2.1 for the one-steppredition and we have:Proposition 4.1.1. Let (Xn)n∈Z be a linear stationary proess de�ned by (1), (2) and possessingthe features (3) and (4). We an approximate the mean-squared predition error of X̃ ′
k(1) by:

∀δ > 0, E

[
X̃ ′

k(h) − Xk+h

]2
=

h−1∑

l=0

b2
l σ

2
ε + O

(
h2d+δk−1+δ

)
. (29)Having k observations, we searh for the step h for whih the variane of the preditor has forupper bound σ(0). Then the predition error have for asymptoti bound O
(
h2dk−1

). We want tohoose h to have the predition error negligible with respet to the information given by the linearleast-squares preditor given the in�nite past (see (23)) and we obtain:
h2dk−1 = o(h2d−1)and then h = o(k). With the trunated Wiener-Kolmogorov preditor, it is interesting to omputethe h-step preditor if we have k observations h = o(k).4.2 The k-th Order Linear Least-Squares PreditorFor next step preditor, when we �tted an autoregressive proess, we searh the linear least-squarespreditor knowing the �nite past (X1, . . . ,Xk) and the preditor is then the projetion of the randomvariable onto the past. Let X̂k(h) denote the projetion of Xk+h onto the span of (X1, . . . ,Xk).

X̂k(h) veri�es the reurrene relationship
X̂k(h) = −

k∑

j=1

aj,kX̂k(h − j)where X̂k(h − j) is the diret linear least-squares preditor of Xk+h−j based on the �nite past
(X1, . . . ,Xk). By indution, we obtain the preditor as a funtion of (X1, . . . ,Xk): For next steppredition by �tting an autoregressive proess, the best linear least-squares preditor knowing the�nite past is a projetion of the random variable Xk+1 onto the past.

X̂k(h) = −

k∑

j=1

cj,kXk+1−j.Sine X̂k(h) is the projetion of Xk+h onto (X1, . . . ,Xk) in L2, the vetor (cj,k)1≤j≤k minimizes themean-squared error:
E

[
X̂k(h) − Xk+h

]2
=

∫ π

−π
f(λ)

∣∣∣∣∣∣
exp(iλ(h − 1)) +

k∑

j=1

cj,k exp(−iλj)

∣∣∣∣∣∣

2

dλThe vetor (cj,k)1≤j≤k is a solution of the equation:
∇c E

[
X̂k(h) − Xk+h

]2
= 020



where ∇c is the gradient. The vetor (cj,k)1≤j≤k is then equal to:
(cj,k)1≤j≤k = −Σ−1

k (σh−1+j)1≤j≤k. (30)The orresponding mean squared error of predition is given by:
E

[
X̂k(h) − Xk+h

]2
=

∫ π

−π
f(λ)

∣∣∣∣∣∣
exp(iλ(h − 1)) +

k∑

j=1

cj,k exp(−iλj)

∣∣∣∣∣∣

2

dλ

= σ(0) + 2

k∑

j=1

cj,kσ(h − 1 + j) +

k∑

j,l=1

cj,kcl,kσ(j − l)

= σ(0) + 2 t(cj,k)1≤j≤k(σh−1+j)1≤j≤k + t(cj,k)1≤j≤kΣk(cj,k)1≤j≤k

= σ(0) − t(σh−1+j)1≤j≤kΣ
−1
k (σh−1+j)1≤j≤kThe matrix Σ−1

k is symmetri positive de�nite and the predition error of this method is alwayslower than σ(0).As X̂k(h) is the projetion of Xk+h onto (X1, . . . ,Xk), the mean-squared predition error is alsolower than the predition error of the trunated Wiener-Kolmogorov preditor (see �gure 4.1). Themean-squared error of predition due to the projetion onto the span of (X1, . . . ,Xk) tends at leastas fast to zero as the mean-squared due to trunation of the least-squares preditor. For one-steppreditor,we have shown that the two methods an have the same rate of onvergene.
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Figure 4.1: Mean-squared error of X̃k(h) (MMSE), X̃ ′
k(h) (TPMSE) and X̂k(h) (LLSPE) for d = 0.4and k = 80
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