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Abstract.

We consider propagation of optical pulses under the interplay of dispersion and Kerr

non-linearity in optical fibres with impurities distributed at random uniformly on the

fibre. By using a model based on the non-linear Schrödinger equation we clarify how

such inhomogeneities affect different aspects such as the number of solitons present

and the intensity of the signal. We also obtain the mean distance for the signal to

dissipate to a given level.
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1. Introduction

In this article we consider the evolution of a complex electric field u(x, t) in a non-

linear Kerr media which has constant dispersion and losses and, in addition, impurities

at certain points xn, xn < xn+1, which occur randomly on the fibre. We suppose that

these loss elements cause the “input” signal u(x−

n , t) to abruptly decrease to an “output”

value u(x+
n , t) = e−γnu(x−

n , t), where e−γn < 1 measures the dimming ratio and u(x−

n , t),

say, denotes the limit value from the left. Assuming the validity of the self-focusing

non-linear Schrödinger (NLS) equation as a model of ideal transmission [1] we find that

the above situation must be described by a perturbed NLS equation which written in

dimensionless units reads

iux + utt + 2|u|2u = i

[

−Γu+
∑

n

(e−γn − 1)δ(x− xn)u(x
−

n , t)

]

, (1)

where the Dirac-delta terms account precisely for the amplitude decrease at impurities;

further Γ ≥ 0 is the normalized loss coefficient. For the sake of avoiding extra

mathematical difficulties we do not consider a compensated loss mechanism; this will

be the subject of a future publication. We also remark that with minor changes our

results may be applicable to other physically interesting systems such as Bose-Einstein

condensates.

It appears that while the effect of continuous random noise —or white noise—

on NLS solitons has been well studied in the literature (see [2, 3, 4, 5, 6]) far less

is known as regards the effects of sudden, discrete random perturbations. We intend

to clarify how these inhomogeneities —which may be relevant for long-distance fibre-

optic communication systems— affect the evolution of the pulse. We remark that

perturbations involving delta masses also appear related to erbium-doped amplifiers and

dispersion management, see [7, 8, 9]. In such a context, the positions of the amplifiers xn

are deterministic and periodically disposed, xn ≡ nx1, while the strengths are constant

and negative, γn = −Γx1. Kodama and Hasegawa [10] generalize the latter ideas to

a random context but, unlike us, maintain the amplifier interpretation and consider

the distribution of the “intensity” of the signal only in the limit when both ∆n (here

∆n ≡ xn−xn−1 > 0 is the distance between impurities) and γn tend to zero. Thus while

these ideas have some bearing with our work both the physical interpretation and the

mathematical model are quite different.

We will start our analysis of equation (1) by considering that there are no

deterministic losses, Γ = 0, since this case is simpler from a mathematical viewpoint:

We show that upon performing a change of dependent variable the resulting formula

can be piecewise related to the unperturbed NLS equation. Let us recall here that the

classical NLS equation

iΘx +Θtt + 2|Θ|2Θ = 0, Θ(0, t) = ϕ(t), (2)

was first derived by Zakharov [11] as an equation of slowly varying wave packets of

small amplitude. He showed that despite its non-linear character the corresponding
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initial value problem (IVP) can be reduced to a linear problem (the Zakharov-Shabat

spectral problem) by the so called inverse scattering transform (IST) —see [12, 13]

for general background on NLS equation and the IST method. Its interest has been

further underlined by the realization that it also models the evolution of the complex

amplitude of an optical pulse in a non-linear fibre [1]. Applications of NLS equation to

optical communications and photonics are nowadays standard [1, 7, 14, 15]. We devote

section 2 to the study of the non-linear dynamics of the classical solitary waves within

this regime, and we will show how impurities result in the appearance of radiation and

general broadening of the signal. In particular, we find that solitons may be destroyed

by the action of just one impurity.

When Γ 6= 0 equation (1) is no longer solvable in analytic way by IST; however

we find —see section 3— that the evolution of intensity, momentum and position of

the pulse can be described precisely and that, under certain natural assumptions,

their average values decrease exponentially due to the “impurities”: concretely, we

suppose that positions and strengths of impurities are statistically independent between

themselves; we also suppose that in any interval [0, x] impurities are uniformly

distributed (provided its number is given). Nevertheless the frequency and position

of the pulse are not affected.

In section 4 we study the mean distance for the signal’s intensity to attenuate to

a given level due to the impurities. In applications, this level could be a recommended

threshold value for reliability, say. To this end we formulate a linear integral equation

that this distance satisfies and, by means of a Laplace transform, solve it. Results are

discussed.

2. Method of solution and the loss-less case

Here we solve (1) given arbitrary sequences xn and γn with 0 < xn < xn+1 and γn > 0.

We perform the change of variable u(x, t) = ζ(x)υ(x, t) where we require that ζ(x)

depends only on space and has jump discontinuities at xn and that υ(x, t) be continuous.

By substitution we find that these functions must solve the equations

iυx + υtt + ζ2|υ|2υ = 0, (3)

dζ(x)

dx
+ Γζ(x) +

∑

n

(1− e−γn)δ(x− xn)ζ(x
−

n ) = 0. (4)

It follows that ζ(x) is continuous on the intervals (xn, xn+1) wherein it solves equation

(4) with no delta terms; further, it has jump discontinuities at the random points x = xn

at which ζ(x+
n ) = e−γnζ(x−

n ). Hence if N(x) is the number of defects on [0, x] we have

that

ζ(x) = e−S(x), where S(x) ≡ s+ Γx+

N(x)
∑

j=1

γj. (5)

Alternatively, S(x) = s + Γx +
∑n

j=1 γj, if xn ≤ x < xn+1. (By contrast, for erbium-

doped fibre amplifiers S(x) = −Γx−nΓx1 if nx1 ≤ x < (n+1)x1, see [8].) Thus S(x) is
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a piece-wise linear function with initial value s and jumps at the random points x = xn,

i.e., a pure random point process with drift, well known in the physics literature. For

convenience we take s = 0 hereafter, and until section 4. There we will need to consider

a more general situation where the starting value S(0) is free. In figure 1 we plot a

sample of both S(x) and ζ(x) for a particular choice of the parameter set under this

assumption.
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Figure 1. A sample path of ζ(x) (in red) and S(x) (green line) versus distance (in

Km) showing the distance x for the energy to dissipate to half its initial value. We take

a fibre with mean impurities distance < ∆n >= λ−1 = 1 km, a loss rate 0.02dB/Km

and dispersion distance 50 km, i.e., Γ = 0.1 —which accounts for the seemingly linear

behaviour between jumps.

We shall now focus our attention in equation (3). We first consider the simpler case

when the loss vanishes: Γ = 0. It turns out that, even though the resulting equation has

random discontinuous coefficients, it can be piecewise reduced to an integrable equation

whereupon we show how to obtain the evolution of an initial pulse (see [16] for related

considerations). The reasoning in the rest of this section is essentially independent

of the sequences ∆n ≡ xn − xn−1 and γn. Nevertheless we shall suppose that both

are sequences of positive, independent, equally distributed random variables and that

∆n and γm are also independent for all n, m. Note that all these assumptions are

physically well founded as they imply, say, that the knowledge of the position of a given

impurity does not provide any information on the location of the remaining ones. The

further assumption that ∆n is exponentially distributed: Pr
(

∆n ≥ x
)

= e−λx where

λ ≡< ∆n >−1 is a certain parameter, is natural from physical principles. It has several

fruitful consequences as then there follows that the number N(x) of impurities that
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occur on [0, x] has Poisson distribution with parameter λx and that they are uniformly

distributed on the interval. It further implies the memory-less property: the distribution

of impurities on (x, x+∆x] remains unaffected given that none was observed on [0, x].

By contrast, we consider here a general probability density function (PDF) h(y) of γn:

Pr (y < γn ≤ y + dy) = h(y)dy.

For the sake of being specific let us consider the case when the initial data is just

a solitary wave pulse: υ(0, t) = 2η sech (2ηt) e2iξt ≡ ϕ(0)(t) where the real parameters η

and ξ give, up to a constant, the wave’s amplitude and the carrier velocity. † Note that

up to the first impurity υ(0)(x, t) ≡ υ(x, t), 0 ≤ x ≤ x1, solves the IVP

iυ(0)
x + υ

(0)
tt + 2|υ(0)|2υ(0) = 0, υ(0)(0, t) = ϕ(0)(t). (6)

This is the standard IVP for NLS equation and hence the solution for 0 ≤ x ≤ x1 is the

classical soliton

u(x, t) = υ(0)(x, t) = 2η sech (2η(t− 4ξx)) ei[2ξt+4(η2−ξ2)x]. (7)

As commented, we continue this solution to the interval x1 ≤ x ≤ x2 by requiring υ(x, t)

to be continuous at x = x1. This requirement fixes υ(1)(x, t) ≡ υ(x, t), x1 ≤ x ≤ x2, to

satisfy the non-linear partial differential equation

iυ(1)
x + υ

(1)
tt + 2e−2γ1 |υ(1)|2υ(1) = 0, with

υ(1)(x1, t) = 2η sech (2η(t− 4ξx1)) e
i[2ξt+4(η2−ξ2)x1].

Remarkably this equation can be reduced again to NLS: by using both temporal and

translational invariance of NLS equation one can prove that

eγ1u(x, t) = υ(1)(x, t) = e4i(η
2+ξ2)x1+γ1Θ(x− x1, t− 4ξx1),

where Θ(·, ·) is the solution to the NLS equation (2), with data at x = 0 given by

Θ(0, t) = e−γ1ϕ(0)(t). Notice that, unlike υ(x, t), u(x, t) is not continuous at x = x1.

The determination of the specific form of the solution requires solving a linear

spectral problem. The procedure is awkward but fortunately the solution’s main features

may to a large extent be determined avoiding these complexities. We note that if γ1 6= 0

the solution that evolves from data Θ(0, t) = e−γ1ϕ(0)(t) is no longer a soliton but a

complicated pulse that may contain radiation, in addition to the soliton. The former

component has a much weaker rate of decay than the later; concretely, it decays as the

corresponding solution for the linearized Schrödinger equation (i.e. as t−1/2, see [12]).

Further, if γ1 & 1.41 the arriving soliton at x = x1 —cf. equation (7)— is destroyed

by the action of the fist impurity after x1. ‡ Hence the resulting configuration for

x > x1 consists solely of radiation. To be specific, suppose that the jump PDF h(·)

has exponential distribution with mean 1/σ. Then, after the first impurity the soliton

disappears with probability bounded below by Pr(γ1 ≥ y) = e−σy, where y = 1.41.

† We adopt the convention and terminology of standard NLS theory wherein t is space and x a temporal

variable, a situation opposite to that that occurs in Optics.
‡ This stems from the fact that the condition Ξ2I0 (2Ξ) < 1 on the initial data guarantees that no

solitons will be formed upon evolution [12, 17]. Here I0(·) denotes the modified Bessel function of zero

order and Ξ ≡
∫

∞

−∞
|Θ(0, t)|dt = πe−γ1 .
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Finally, we mention that by using similar ideas one can extend the solution to

x > xn by solving (3) with data υ(n−1)(x−

n , t), where as before υ(n)(x, t) denotes the

general solution υ(x, t) restricted on xn−1 ≤ x ≤ xn. Translation invariance allows

one to reduce this to NLS equation with new data which involves a contraction factor

e−(γ1+...+γn). Eventually, this dimming of the initial signal results in a disappearance

of the starting solitons into radiation, an indication that, as a result of impurities,

broadening of the signal takes place. We skip the mathematical details.

3. General case with deterministic loss and impurities

When Γ > 0 equation (3) can be mapped into the so called dispersion-managed

NLS equation, which, unfortunately, is not solvable in analytic way, neither by using

IST nor by any other method. It is then remarkable that the evolution of the main

physically observable functionals can be discerned in an exact way. Consider the

following quantities

M(x) ≡

∫

∞

−∞

|u(x, t)|2 dt,

P (x) ≡ i

∫

∞

−∞

ū(x, t)ut(x, t) dt, and

Q(x) ≡

∫

∞

−∞

t|u(x, t)|2 dt,

where M(x) and P (x) are the (accumulated) intensity and momentum of the signal

at a position x, while Q(x)/M(x) ≡ T (x) is the pulse position. The functional

P (x)/M(x) ≡ Ω(x) is interpreted as the pulse-centre frequency. The singular nature

of the delta terms prevent us from determining the relevant evolution by manipulating

equation (1). Nevertheless, one can rely again in the decomposition u(x, t) = ζ(t)υ(x, t)

and use equation (3). Then, proper manipulation of the latter expressions yields that

M(x) = M(0)e−2S(x),

P (x) = P (0)e−2S(x), and

Q(x) = [Q(0)− 2P (0)x] e−2S(x).

Thus the effect of the presence of impurities results in the addition of a multiplicative

random factor e−2S(x) in both intensity and momentum. Note however that Ω(x) = Ω(0)

and T (x) = [T (0)− 2Ω(0)x], and hence that inhomogeneities have no effect whatsoever

on position and frequency, a fact that accords with the physical intuition.

It is therefore of interest to evaluate the mean amplitude’s decrease. We do so

by first assuming that previously n defects have occurred: N(x) = n. Let E denote

statistical averaging and E

(

ζ2(x)|N(x) = n
)

be the mean value of ζ2(x) knowing that

exactly n jumps have occurred on [0, x]. Note that given this information one has

S(x) = Γx+
∑n

j=1 γj: i.e., only the uncertainty regarding the value of the γj’s remains
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but not that associated with the number of summands N(x). In view of the assumed

statistical independence we have that the mean factorizes as

E
(

ζ2(x)
∣

∣N(x) = n
)

= E

(

e−2Γx
n
∏

j=1

e−2γj

)

= e−2Γx
n
∏

j=1

E

(

e−2γj
)

= e−2ΓxQn
2 ,

where Qr ≡ E [exp (− rγj)] =
∫

∞

0
e−ryh(y)dy < 1 is the Laplace Transform of the

jump-size PDF. The mean intensity is obtained by further averaging with respect to the

number of impurities:

E[M(x)] = M0E[ζ
2(x)]

= M0

∞
∑

n=0

(λx)ne−λx

n!
E
(

ζ2(x)
∣

∣N(x) = n
)

= M0e
−[2Γ+λ(1−Q2)]x, (8)

where M(0) ≡ M0 and we used that if ∆j has exponential distribution, i.e., if

Pr(∆j ≥ x) = e−λx for some λ > 0, then N(x), the number of defects on [0, x], is Poisson

distributed: Pr (N(x) = n) = (λx)ne−λx/n!. Hence we obtain that the existence of

defects implies an additional exponential decrease in the field’s intensity and momentum

at a rate 2λ(1−Q2), an effect which might result in the degradation of the bit patterns.

4. Mean half life

A natural related problem of interest is determining the distance x at which M(x)

dissipates from a starting value M0 to a given level M1, i.e., such that M(x) = M1. For

convenience we set M1 ≡ M0e
−2b and hence require S(x) = b. This distance could be

considered as a threshold value below which the signal is no longer reliable (it gives the

mean half life of the signal if M0 = 2M1). In the deterministic case (λ = 0) this distance

follows inverting M1 = M0 exp (− 2Γx) as x = 1
2Γ

log M0

M1

. When inhomogeneities are

present x is a random variable whose mean is not obtained by inverting equation (8) —as

it might have been naively thought. Instead, we reason as follows: call xs, see figure 1,

the (random) distance that takes for the generalized process S(x) with initial value

S(0) = s —cf. equation (5)— to go beyond the level b. It turns out that X(s) ≡ E(xs)

satisfies the linear integral equation

X(s) =
1− e−λ̺

λ
+

λ

Γ

∫ b−s

0

dle
λ
Γ
(s+l−b)

∫ l

0

dyX(y + b− l)h(y), (9)

where ̺ ≡ b−s
Γ

and we recall that h(x) is the density of γn.
∗

∗ We sketch the derivation of this integral equation (see [18] for a similar derivation in a financial

context). With S(0) = s there are three possibilities for the future evolution: If the first jump satisfies

x1 > ̺ then S reaches the level b at x = ̺. If this is not the case and if the jump at x1 satisfies

s + Γx1 + γ1 ≥ b then the process goes past b at x = x1. Otherwise the process still remains within

[0, b) at x = x1 and starts afresh with an initial value S(x1) = s+Γx1 + γ1 < b (hence the process will



On the effect of random inhomogeneities in Kerr-media modelled by NLS equation 8

This equation can be solved in a closed form by Laplace transformation. We

consider again the case corresponding to a jump PDF also exponential with mean

σ−1 ≡< γn >, i.e., h(x) = σe−σx where σ > 0. If κ = λ + σΓ, Laplace transformation

yields the solution to (9) as

X(s) =
σΓ̺

κ
+

λ

κ2

(

1− e−κ̺
)

.

The mean distance for the amplitude to decrease to M1 follows letting s = 0 and

b = 1
2
log M0

M1
as

E(x) ≡ X(0) =
1

2(Γ + λ/σ)
log

M0

M1
+

λ

κ2

[

1−

(

M1

M0

)
κ
2Γ

]

. (10)

If λ = 0 we recover the deterministic limit above: x = 1
2Γ

log M0

M1
. Note how the

incorporation of impurities corrects this formula in a significant way, cf. equation (10).

Another interesting limit is that of vanishing deterministic loss rate, Γ = 0. The mean

attenuation distance can only be accounted to the presence of impurities and reads

E(x) = 1
λ
+ σ

2λ
log M0

M1

. The first term is the mean time for the first jump at x1 to

happen; the logarithmic correction corresponds to the mean time to go beyond the level

b after the first jump. Actually, this rate rules the mean dissipation distance whenever

M0 >> M1 and λ/σ >> Γ. In figure 2 we perform a plot of this function. Note how,

by contrast, the distance implied inverting equation (8), namely

E(M(x)) = M0 exp

[

−2x

(

Γ +
λ

σ + 2

)]

, and therefore (11)

x =

[

2

(

Γ +
λ

σ + 2

)]

−1

log
M0

M1
, (12)

deviates from the correct result, equation (10), and fails to capture the sharp behaviour

occurring for M1 ≈ M0. The error increases as Γ decreases.

5. Conclusions

We have analyzed how the existence of randomly distributed impurities affects the

evolution of an optical pulse in a non-linear Kerr media with constant dispersion and

loss. We suppose that the unperturbed situation is described by NLS equation. When

the deterministic loss vanishes it is shown by changing the dependent variable that

the resulting equation can be piecewise related to the unperturbed NLS equation. The

effect of impurities in the non-linear propagation is pinpointed. In particular we address

the issue of how they affect the initial solitons and the possibility to dissipate them

exit [0, b) at x1 + xs+Γx1+γ1). Upon appropriate rearrangement this reasoning leads to

xs = ̺θ
(

x1 − ̺
)

+ x1θ
(

̺− x1

)

+ xs+Γx1+γ1θ
(

b− s− Γx1 − γ1
)

θ
(

̺− x1

)

.

Averaging this relationship yields with further manipulations equation (9).
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Figure 2. Mean distance in terms of M0/M1 for λ = 2.0, σ = 3.0 while Γ = 0.5 (red

line) and Γ = 0.05 (blue one) as follows from (10). Note how in the latter case X(0)

jumps an amount < ∆n >= 0.5 right after the origin. The green and magenta curves

are the (incorrect) mean distances implied by equation (12) with the above parameters.

into radiation. In the general, non-solvable Γ 6= 0 case we show that while impurities

do not influence the frequency and position of the signal they induce an exponential

decrease of the main physical observables intensity and momentum and hence a general

degradation. We also determine the mean half life or mean distance for the signal to

dissipate to a given threshold value. We find that this distance satisfies a certain integral

equation. Its analysis shows that impurities result in an important decrease in the mean

dissipation distance. To overcome these effects the addition of amplifiers is in order. The

introduction of such a device and the relevant statistical implications will be considered

in a future publication.
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