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The Bolztmann echo (BE) is a measure of irreversibility and sensitivity to pertur-
bations for non-isolated systems. Recently, different regimes of this quantity were
described for chaotic systems. There is a perturbative regime where the BE decays
with a rate given by the sum of a term depending on the accuracy with which the
system is time-reversed and a term depending on the coupling between the system
and the environment. In addition, a parameter independent regime, characterised by
the classical Lyapunov exponent, is expected. In this paper we study the behaviour
of the BE in hyperbolic maps that are in contact with different environments. We
analyse the emergence of the different regimes and show that the behaviour of the
decay rate of the BE is strongly dependent on the type of environment.
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1. Introduction

In quantum mechanics there is no “exponential separation” of initial conditions
due to chaotic motion because evolution is – in principle– unitary. Peres (1984)
proposed, as an alternative, to study the stability of quantum motion due to per-
turbations in the Hamiltionian. As a consequence, the Loschmidt Eco (LE) (Peres
1984; Jalabert & Pastawski 2001; Jacquod et al. 2001; see two reviews: Gorin et al.

2006 and Petitjean & Jacquod 2009)

M(t) =
∣

∣

∣
〈ψ0|eiHΣt/~e−iHt/~|ψ0〉

∣

∣

∣

2

(1.1)

was introduced with the purpose of characterising the sensitivity and irreversibility
arising from the chaotic nature of quantum systems. The parameter Σ denotes
perturbation strength. Equation (1.1) has a dual interpretation. On the one hand,
it can be interpreted as how close a state remains to itself evolving under slightly
different Hamiltonians. On the other hand, it measures the sensitivity of a system
to imperfect time inversion, i.e. evolve forward in time under H and then invert
time and evolve backward with HΣ (supposing that the time inversion operation is
not perfect).

† Electronic address: garciama@tandar.cnea.gov.ar
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2 I. Garćıa-Mata, B. Casabone & D. A. Wisniacki

Depending on the nature of the underlying dynamics, the LE can exhibit qualita-
tively different behaviour and it thus can be used to characterise quantum chaotic
systems. Moreover a number of time-reversal experiments have been performed
(Hahn 1950; Rhim et al. 1970; Zhang et al. 1992; Pastawski et al. 2000), and therein
lies the importance of the LE. In addition, the LE (which in quantum information
is known as fidelity) can be efficiently measured in quantum information systems,
i.e. its measurement scales only polynomially with the system size (Emerson et al.

2002).
An important fact to remark is that quantum systems cannot be isolated easily.

Most of the times, there is an environment acting upon the system. This interaction
is most likely unknown and its effects may be uncontrollable. The Boltzmann echo
(BE) was introduced (Petitjean & Jacquod 2006) as a generalisation of the LE
to take into account the fact that quantum systems are not isolated. The idea is
to consider the evolution of a system s with a Hamiltonian Hs which is coupled
to a an environment e whose evolution is given by He. We suppose the evolution
of the environment e is unknown and are therefore uncontrollable, so we trace
out the environment degrees of freedom. Given a separable initial state, such as

ρ0 = ρ
(s)
0 ⊗ ρ

(e)
0 , where we take ρ

(s)
0 = |ψ0〉〈ψ0|, the BE is defined as the partial

fidelity

MB(t) =
〈

〈ψ0|Tre[e−iHbt/~e−iHf t/~ρ0e
iHf t/~eiHbt~]|ψ0〉

〉

, (1.2)

where Hb and Hf are given by

Hf = Hs ⊗ Ie + Is ⊗He + Uf (1.3)

Hb = −(Hs +Σs)⊗ Ie + Is ⊗−(He +Σe) + Ub, (1.4)

and represent the forward and backward Hamiltonian respectively. Equation (1.2)
can be explained as follows. First take an initial state ρ0 and evolve it forward up
to time time t with Hamiltonian Hf . Then, invert time evolution and evolve with
Hamiltonian Hb. The imperfection in the inverting process is represented by: Σs

for the system, Σe for the environment. The terms Uf , Ub represent forward and
backward interaction between system and environment (for simplicity throughout
this work we consider Uf = −Ub). Finally, the evolution of the system and the BE is
obtained by performing a partial trace over the environment degrees of freedom and
computing the overlap. Tracing out the environment makes the effective evolution
of the system non-unitary producing decoherence (Zurek 2003). An average over

initial states of the environment ρ
(e)
0 is necessary (represented with big brackets in

equation (1.2)) because we have no control over its degrees of freedom.
In the work of Petitjean & Jacquod (2006) the BE was studied semiclassically

for two interacting – classically chaotic – sub-systems. One of them was used as
system and the other as an environment. They found three different regimes for
the BE as function of time: parabolic or Gaussian for very short times; exponential
for intermediate, followed by a saturation depending on the effective Hilbert space
size. Here we focus on the exponential regime and specifically on the dependence
of the decay rate on the perturbation and environment parameters. The authors
show (Petitjean & Jacquod 2006, see also Petitjean & Jacquod 2009) that in the
Fermi golden rule (FGR) regime (small perturbation and weak coupling with the
environment) the decay rate of the BE results from the sum of the decay rates
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Irreversibility in quantum maps with decoherence 3

of the LE due to imperfect time inversion (by definition the BE in the limit no
decoherence is just the LE), and the contribution due to the interaction Uf , Ub

with the environment, Γ = ΓΣs
+ Γf + Γb. Henceforth, we call this the sum law.

Moreover, for chaotic systems they find that in the limit of strong environment
coupling or large perturbation the decay rate is perturbation independent and is
given by the classical Lyapunov exponent.

In the present contribution, we study the BE for quantum maps on the torus
that are classically chaotic. Quantum maps are very simple models that have all
the main features of chaotic systems and are ideal for numerical studies. Our goal is
to understand the behaviour of the BE under the action of different environments.
For this reason we have computed the decay of the BE for a wide range of the
parameters that control the perturbation of the system and the interaction with
the environment. We find that a sum law for the decay rate of the BE exists. It
can be expressed as the sum of the decay rates of the LE and the purity of the
system, but it is fulfilled only partially, depending on the decoherence model. The
decoherence models that we present can be written as a convolution with a kernel.
It is for the cases where the kernels have polynomially decaying tails –models with
somewhat large correlations in phase space– when the sum law is best achieved. In
addition, the oscillations of the decay rate of the LE, found in e.g Wang (2004),
Andersen (2006) and Ares & Wisniacki (2009), are damped completely in the limit
of strong decoherence. However, the decoherence (and perturbation) independent
decay rate saturation at the classical Lyapunov exponent is not present for all
decoherence models.

The paper is organised as follows. In §2 a we describe the quantum kicked maps
on the torus, the systems used for our studies. Then in, §2 b, we introduce our
model of open maps using translations in phase space and the Kraus operator sum
form. The main part of this contribution is §3 which is devoted to the numerical
calculations and presentation of the results. Finally, in §4 we summarise our work
and results.

2. The system

(a) Quantum ‘kicked’ maps

Classical maps generally arise from the discretisation of a differential equation
of the motion – like e.g. a Poincaré surface of section. Nevertheless one can build
abstract maps that do not necessarily relate to a differential equation but that can
however provide insight into the properties of chaotic dynamics - e.g the baker’s map
or the cat map. Like classical maps, quantum maps are usually simple operators
with all typical properties of quantum chaotic systems like level spacing statistics.
In addition, there exist efficient quantum algorithms for some quantum maps (e.g.
Goergeot & Shepelyansky 2001; Lévy et al. 2003). As the Hilbert space grows
exponentially with the number of qubits, one could reach the semiclassical limit
with a relatively small number of qubits. For this reason they are ideal testbeds for
current quantum computers in one of their possible uses: quantum simulators (see
Schack 2006).

The systems we consider are quantum maps on the 2-torus. Periodic boundary
conditions imply that Hilbert space has finite dimension N and the effective Planck
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4 I. Garćıa-Mata, B. Casabone & D. A. Wisniacki

constant is ~ = 1/2πN . This means that the semiclassical limit is reached as N →
∞. Position and momentum bases are discrete sets {qi = i/N}N−1

i=0 and {pi =
i/N}N−1

i=0 related by the discrete Fourier transform

〈p|q〉 = 1√
N
e−(2πiN)pq. (2.1)

For practical purposes we will consider maps which can be expressed as two
shears –linear or non-linear–

p′ = p− dV (q)
dq

q′ = q − dT (p′)
dp′

(mod 1). (2.2)

These maps can be quantised and the associated unitary map can be written as a
product of two ‘kicks’

U = ei2πNT (p)e−i2πNV (q). (2.3)

These types of map usually arise from Hamiltonians with periodic delta-kicks, like
the kicked rotator (Chirikov et al. 1988) or the kicked Harper Hamiltonian (Leboeuf
et al. 1990) . One of the advantages of implementing these types of maps numerically
is due to the possibility of using the fast Fourier transform.

(b) Open quantum maps

A system with an evolution given by a map U might interact with another sys-
tem acting as environment. If the dynamics of the environment cannot be accessed
or controlled then the usual procedure is to trace out the degrees of freedom of the
environment. Tracing out the environment translates into a loss information about
the evolution, hence the word open – we picture information flowing out of the
system. It is this loss of information the cause of decoherence – and subsequent loss
of quantumness (Zurek 2003). For a Markovian environment and in the weak cou-
pling limit, this is given by a completely positive–trace preserving map of density
matrices into density matrices – sometimes called superoperator –which generally
can be written in Kraus operator sum form (Kraus 1983)

ρt =
∑

i

Kiρt−1K
†
i , (2.4)

where trace preservation is assured by
∑

iK
†
iKi = I (I is the identity).† Therefore

the action of the environment is coded into the Kraus operators Ki, in analogy
with the Lindblad master equation (Lindblad 1979) where the action of the en-
vironment is given by the Lindblad operators. Different Kraus operators will give
different types of environments. Rather than modelling the environment through
the Lindblad operators and solving the master equation, here we directly model the
effect of the environment on the density matrix of the system by

ρt
def
= Dǫ(ρt−1) =

N−1
∑

p,q=0

cǫ(q, p)Tqpρt−1T
†
qp, (2.5)

† Throughout this contribution the ‘time’ t is a discrete time variable which implies the number
of times a map (or a superoperator) has been applied.
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Irreversibility in quantum maps with decoherence 5

where Tqp are the translation operators on the torus, cǫ(q, p) is a function of q and
p and ǫ quantifies the strength of the system-environment coupling. Even though
position and momentum operators with canonical commutation rules are not de-
fined on the torus, translations can be defined as cyclic shifts over the bases ele-
ments (Schwinger 1960). Since Tqp are unitary, trace preservation in equation equa-
tion (2.5) requires that

∑

q,p cǫ(q, p) = 1. The action decoherence superoperator
Dǫ introduced by equation (2.5) has a simple interpretation: it implements every
possible translation in phase space with probability cǫ(q, p). This effect is clear in
the Wigner function representation. Let W (q, p) be the discrete Wigner function
(see e.g. Bianucci et al. 2002) of a density matrix ρ then equation equation (2.5)
can be re-written as a convolution with cǫ(q, p)

Wt(Q,P ) =
∑

q,p

cǫ(q, p)Wt−1(Q− q, p− P ). (2.6)

This is an incoherent sum of slightly displacedWigner functions. Any fast oscillating
term present in the state represented by W (q, p) will be eventually washed out,
depending on the form of cǫ(q, p).

For simplicity we suppose that the complete evolution of the quantum map and
the decoherent part take place in two steps: first the unitary map U followed by
the decoherence term of equation (2.5)

ρt = Dǫ(Uρt−1U
†). (2.7)

This is an approximation that works exactly in some cases, e.g. a billiard that has
elastic collisions on the walls and diffusion in the free evolution between collisions.
This kind of two-step model has been used to study quantum to classical corre-
spondence and the emergence of classical properties from the quantum dynamics
(Nonnenmacher 2003; Garćıa-Mata & Saraceno 2004)

The effect of decoherence can be characterized by using the purity

P (t) = tr(ρ2t ), (2.8)

were ρt is the reduced density matrix of the system. The purity measures the relative
weight of the non-diagonal matrix elements. It is a basis dependent measure that
can be used to quantify the amount entanglement between two parties. If P (t) = 1,
it means that the global system can be factorized into two separate systems and
there is no entanglement. On the contrary, if the purity of the reduced density
matrix is minimum (completely mixed state), then the entanglement is maximal.
In the case of an N dimensional system P (t) = 1/N for a completely mixed state
(maximally entangled with the environment). As a function of time, after an initial
short transient, the purity decays exponentially. For long times it saturates to a
minimum value given by ~/(2π).

3. Numerical results

For our numerical calculations we use the cat map perturbed in position and mo-
mentum with a smooth non-linear shear

p′ = p+ a q − 2πk sin(2πq)

q′ = q + b p′ − 2πk sin(2πp′)
(mod 1), (3.1)
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6 I. Garćıa-Mata, B. Casabone & D. A. Wisniacki

with a, b integers. This map is uniformly hyperbolic and fully chaotic. Fo k ≪ 1 the
largest Lyapunov exponent given by λ ≈ ln((2+ab+

√

ab(4 + ab))/2)/2. According
to equation (2.3) the quantum version of equation (3.1) is

Uk = e2πi(−P 2/(2N)−k cos(2πP/N)) e2πi(Q
2/(2N)+k cos(2πQ/N)), (3.2)

where P, Q = 0, . . . , N − 1. All the arithmetic peculiarities of the cat map, which
account for the non-generic spectral statistics are destroyed for k 6= 0 ( Basilio
de Matos & Ozorio de Almeida 1995; Keating & Mezzadri 2000). We can rewrite
equation (1.2) for the BE for our open map as the overlap between two states
evolving forward in time – with slightly different maps plus decoherence – as

MB(t) = Tr[ρ̄tρt] (3.3)

where

ρt = Dǫ(Ukρt−1U
†
k), (3.4)

ρ̄t = Dǫ(Uk′ρt−1U
†
k′), (3.5)

where k, k′ are the perturbation strength of the cat map. We measure the pertur-
bation of one map with respect to the other by the parameter

Σ ≡ |k′ − k|. (3.6)

For a chaotic system, after an initial transient the BE decays exponentially (Petit-
jean & Jacquod 2009). Here we focus on the decay rate Γ as a function of Σ and ǫ
for the exponential decay regime. In the limit ǫ → 0 we have Γ = ΓΣ, where ΓΣ is
the decay rate of the LE. In the limit Σ → 0 the BE as defined in equation (3.3) is
equal to the purity, so decay rate is given by the decay rate of the purity Γǫ.

We explore the behaviour of Γ for three decoherence models and a wide range of
values of ǫ and Σ. We analyse the parameter domain of validity of the sum law (now
Γ = ΓΣ+Γǫ) for these models. The different models of decoherence we consider are
implemented simply by changing the coefficients cǫ(q, p) in equation (2.5). Like for
the LE, to extract the decay rate Γ an average over an ensemble of initial states
needs to be performed. For the averages we used ns = 10 randomly chosen coherent
states.

(a) Gaussian diffusion

The first model we have considered was introduced in the work of Garćıa-Mata
et al. (2003) to model diffusion in a quantum map. We take a periodic sum of
Gaussians – to fit the boundary conditions of the 2-torus –

cǫ(q, p) =
1

A

x
∑

j,k=−x

exp

[

− (q − jN)2 + (p− kN)2

2
(

ǫN
2π

)2

]

, (3.7)

where x is large enough (typically of order 10-15) so that the tails of the furthermost
Gaussians can be neglected and A is the normalisation factor (q, p = 0, . . . , N − 1).
We call this model Gaussian diffusion model (GDM). The GDM can be interpreted

Article submitted to Royal Society



Irreversibility in quantum maps with decoherence 7

Figure 1. (a) Decay rate Γ of the LB as a function of the rescaled strength of the pertur-
bation Σ/~ for a GDM environment. The map is the quantum version of the perturbed
cat [equation (3.1)] with a = b = 2. Averages were done over ns = 10 initial states. Other
parameters are: k = 0.001, N = 800. (×) ǫ = 0 (LE), (���) ǫ = 0.003, (♦♦♦) ǫ = 0.0035, (△△△)
ǫ = 0.004, (◦) ǫ = 0.005, (▽▽▽) ǫ = 0.01. The horizontal dashed (in (a) and (b)) lines cor-
respond to the Lyapunov exponents of the corresponding map λ = ln[3+ 2

√
2] ≈ 1.76275;

(b) The decay decay rate Γǫ of the purity as a function of the perturbation parameter ǫ.
The points correspond to the initial values of the curves in (a). (inset) Decay rate Γ−Γǫ

as a function of the rescaled strength of the perturbation Σ/~.

as a smoothing or coarse graining of the unitary evolution: with Gaussian weight
the state is displaced all over a region of size of order ǫ. As a consequence, the
interference terms get washed out, while the remaining classical part is diffused. As
stated before, in the continuous limit equation (2.6) is a convolution of the Wigner

Article submitted to Royal Society



8 I. Garćıa-Mata, B. Casabone & D. A. Wisniacki

function with a kernel cǫ(q, p). For the GDM it can be related to the solution of the
heat equation with diffusion constant given by (ǫ/2π)2 (Zurek & Paz 1994; Strunz
& Percival 1998; Carvalho et al. 2004; Wisniacki & Toscano 2009).

In figure 1(a) we show the decay rate Γ of the BE as function of perturbation
parameter Σ for the perturbed cat map a = b = 2, N = 800 and k = 0.01 in the
presence of GDM for distinct values of ǫ. The Lyapunov exponent λ = ln[3 + 2

√
2]

is marked by a dashed line. For ǫ = 0 (red × symbol) we recover the decay rate of
the LE: for small Σ we get the characteristic quadratic behaviour for small pertur-
bation – Fermi golden rule regime; for larger values of Σ we get a non-universal –
perturbation dependent – oscillatory behaviour which has also been observed in the
work of Wang et al. (2004), Ares & Wisniacki (2009) and Casabone et al. 2010. As ǫ
increases, the initial Γ value tends to increase (giving the characteristic exponential
decay of the purity rate due to decoherence) while the amplitude of the oscillations
seem to decrease approaching the value of the classical Lyapunov exponent. In fig-
ure 1 (b) the decay rate of the purity Γǫ, which corresponds to the BE for Σ = 0).
The coloured points correspond to the curves – for different ǫ values – in figure 1
(a). For the GDM we observe saturation of Γǫ at λ as is expected. In the inset we
assess the sum law Γ ∼ Γǫ + ΓΣ for the BE. There we plot Γ − Γǫ as a function
of Σ/~: the expected behaviour – all curves collapsing into the one corresponding
to ΓΣ – is only observed for values of ǫ . 0.0035 corresponding to Γǫ . 0.5. For
ǫ = 0.0035 (♦♦♦ symbols) we see that the sum law breaks up around Σ/~ ≈ 0.75. For
ǫ & 0.0035 the sum law is no longer valid.

(b) Generalised depolarising channel

The next environment model that we considered is the generalised depolarising
channel (DC). Although – as we shall see – in phase space it is somehow an ex-
tremely non-local noise, its importance lies in that it is one of simplest and best
known noise channels in quantum information formalism (Nielsen & Chuang 2000).
The action of the DC for one qubit (N = 2) is simple: with probability (1 − ǫ) it
does nothing, and with probability ǫ it ‘depolarises’ it, meaning that it leaves it in a
completely mixed state. This is done by applying every possible Pauli matrix on the
state. For an N dimensional system, and a torus phase space it can be generalised
as follows (Aolita et al. 2004)

D
DC
ǫ = (1 − ǫ)ρ+

ǫ

N2

∑

q,p6=0

TqpρT
†
qp (3.8)

that is, with probability (1−ǫ) it leaves the state unchanged, while with probability
ǫ it applies every possible translation in phase space, with equal weight ǫ/N2. So
contrary to the GDM where the incoherent sum over displaced states took place
between states lying effectively close – due to the Gaussian weight–, for the DC the
incoherent sum is over all states, close or apart. It is in this sense that we say this
model is highly non-local.

In figure 2 (a) we show the BE decay rate Γ as function of perturbation param-
eter Σ for the perturbed cat map a = b = 2, N = 800 and k = 0.01 in the presence
of DC noise model for distinct values of ǫ. Again, here the red line with × symbols
is ΓΣ of the LE. For smaller ǫ the curves look like essentially the same curve shifted
upwards. There is no evident saturation at the Lyapunov exponent. For a larger ǫ
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Irreversibility in quantum maps with decoherence 9

Figure 2. (a) Decay rate Γ of the LB as a function of the rescaled strength of the
perturbation Σ/~ for a DC environment. The map is the quantum version of the perturbed
cat [equation (3.1)] with a = b = 2. Averages were done over ns = 10 initial states. Other
parameters are: k = 0.001, N = 800. (×) ǫ = 0 (LE), ( ���) ǫ = 0.1, (△△△) ǫ = 0.22, (◦)
ǫ = 0.40, (▽▽▽) ǫ = 0.7. The horizontal dashed (in (a) and (b)) lines correspond to the
Lyapunov exponents of the corresponding maps λ = ln[3+2

√
2] ≈ 1.76275; (b) The decay

rate Γǫ of the purity as a function of the perturbation parameter ǫ. The points correspond
to the initial values of the curves in (a) (inset) Decay rate Γ − Γǫ as a function of the
rescaled strength of the perturbation Σ/~.

the BE oscillations tend to disappear and the growth is somehow linear with no
apparent saturation. On figure 2 (b) we show the decay rate of the purity Γǫ as a
function of ǫ and the coloured points mark the initial values of the curves on the
top. Initially Γǫ grows linearly. As it is expected (Casabone et al. 2010), there is

Article submitted to Royal Society



10 I. Garćıa-Mata, B. Casabone & D. A. Wisniacki

Figure 3. (a) Decay rate Γ of the LB as a function of the rescaled strength of the per-
turbation Σ/~ for a LDM environment. The map is the quantum version of the perturbed
cat [equation (3.1)] with a = b = 2. Averages were done over ns = 10 initial states Other
parameters are: k = 0.001, N = 800. (×) ǫ = 0 (LE), ( ���) ǫ = 0.001, (△△△) ǫ = 0.002, (◦)
ǫ = 0.005, (▽▽▽) ǫ = 0.01. The horizontal dashed (in (a) and (b)) lines correspond to the
Lyapunov exponents of the corresponding map λ = ln[3+2

√
2] ≈ 1.76275; (b) The decay

rate Γǫ of the purity as a function of the perturbation parameter ǫ. The points correspond
to the initial values of the curves in (a). (inset) Decay rate Γ − Γǫ as a function of the
rescaled strength of the perturbation Σ/~.

no parameter independent regime for the DC observed, neither for Γ nor for Γǫ. In
the inset of figure 2 we show the decay rate of Γ−Γǫ. We can see the lines collapse
to the curve corresponding to ΓΣ (red with × symbols) for the LE for a sizeable
interval of Σ/~ and up to values of Γǫ ≈ 1. From the work by Casabone et al. (2010)
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Irreversibility in quantum maps with decoherence 11

we know that the decay rate of purity as a function of ǫ is Γǫ = 2ǫ, for small ǫ. It
is simple to show that in the interval of epsilon where this is valid holds the sum
law ΓΣ ≈ Γ− Γǫ also holds. Here this is true up to values ǫ . 0.4 (see also figure 2
in Casabone et al. 2010) correspoding to Γǫ . 1.

(c) Lorentzian decoherence

Finally we consider a model which is more local than the DC but which unlike
the GDM has polynomially decaying tails for cǫ(q, p). The motivation for using this
model arose in the work by Casabone et al. 2010 when comparing the universalities
of the purity and the LE. We take cǫ(q, p) a sum of Lorentzians

cǫ(q, p) =
1

πA

x
∑

j,k=−x

ǫN
2π

(

(

ǫN
2π

)2
+ (q −Nj)2 + (p−Nk)2

) (3.9)

with A the proper normalisation for
∑

q,p cǫ(q, p) = 1 and q, p = 0, . . . , N − 1. The
sum is done to account for the periodicity of the torus (theoretically x→ ∞, prac-
tically x is an integer much larger than 1). We call this model Lorentz decoherence
model (LDM). Equation (2.5) with cǫ(q, p) given by equation (3.9) defines a ran-
dom process with Lorentzian weight that can be related to superdiffusion by Lévy
flights. The effect of heavy tails in decoherence is also explored in e.g the work of
Schomerus & Lutz (2007).

In figure 3(a) we show the decay rate Γ of the BE as function of perturbation
parameter Σ for the perturbed cat map a = b = 2, N = 800 and k = 0.01 in the
presence of LDM for different ǫ values. Again we see that for small ǫ the curves
look like a shift of one another – although less so than for the DC model– and then
for large values of ǫ the oscillations are destroyed and the growth of Γ is linear, like
for the DC. On figure 3(b) the decay rate Γǫ of the purity with the initial points
of the curves on the top superimposed. The initial growth of Γǫ is quadratic with
ǫ as was shown in Casabone et al. (2010). It can also be clearly observed that in
neither figure there is a parameter independent –Lyapunov – regime. In the inset
of figure 3 we show the decay rate Γ− Γǫ. The sum law ΓΣ ∼ Γ− Γǫ holds for an
interval of Σ/~ of up to Σ/~ ≈ 1.5 (similar to the DC case) but it seems to break
up a little bit earlier in the values of Γǫ. Notice that in the inset of figure 3(b), the
line corresponding to the circles (Γǫ ≈ 1) separates from the others at Σ/~ ≈ 0.75.

4. Conclusions

Summarising we have studied the BE for quantum chaotic maps with three dif-
ferent types of decoherence. The BE complements the original idea of the LE in
that it considers the presence of an environment yielding it appropriate for the un-
derstanding realistic experiments. We have done extensive numerical calculations
for a wide range of values of the perturbation of the map and the strength of the
decoherence superoperator and we have focused on the decay rate of the BE in
the regime where it decays exponentially. Other than providing a ‘visual landscape’
of the decay rate Γ of the BE our calculations enable a qualitative and quantita-
tive analysis of the universal regimes found in the literature. We found that the
more realistic diffusion model (GDM) correctly retrieves the Lyapunov behaviour
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for large enough values of ǫ. However, for this same case the sum law Γ ≈ ΓΣ + Γǫ

breaks up for relatively small values of ǫ. We infer that this problem is related
to the geometry of phase space (similar non-universal behaviour is found for the
purity in the work of Casabone et al. 2010). On the contrary, the two other cases
considered satisfy the sum law rather well. These two models have in common the
slow decaying tails of the kernel cǫ(q, p), which means that the decoherence model
acts non-locally in phase space. Furthermore these two models fail to exhibit the
parameter independent Lyapunov regime.

We have used quantum maps as generic chaotic systems and three very different
decoherence models. We can thus conclude that non-generic behaviour is to be
expected in echo experiments with arbitrary types environment.

The authors acknowledge financial support from CONICET (PIP-6137), UBACyT (X237)
and ANPCyT. D.A.W. and I. G.-M. are researchers of CONICET.
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Lévy, B., Georgeot, B. & Shepelyansky, D. L. 2003 Quantum computing of quantum chaos
in the kicked rotator model. Phys. Rev. E 67, 046 220.

Lindblad, G. 1976 On the generators of quantum dynamical semigroups. Commun. Math.

Phys. 48, 119-130.

Nielsen, A. & Chuang, I. L. 2000 Quantum Computation and Quantum Information. Cam-
bridge University Press.

Pastawski, H. M., Levstein, P. R., Usaj, G., Raya, J. & Hirschinger, J. 2000 A nuclear
magnetic resonance answer to the BoltzmannLoschmidt controversy? Physica A283,
166.

Peres, A. 1984 Stability of quantum motion in chaotic and regular systems. Phys. Rev. A.
30, 1 610-1 615.

Petitjean, C. & Jacquod, P. 2006 Quantum reversibility and echoes in interacting systems.
Phys. Rev. Lett. 97, 124 103.

Petitjean, C. & Jacquod, P. 2009 Decoherence, entanglement and irreversibility in quantum
dynamical systems with few degrees of freedom. Adv. Phys 58, 67-196

Rhim, W.-K., Pines, A. & Waugh, J. S. 1970 Violation of the Spin-Temperature Hypoth-
esis. Phys. Rev. Lett. 25, 218-220.

Schack, R. 2006 Simulation on a quantum computer. Informatik - Forschung und Entwick-

lung 21, 21 - 27.

Schomerus, H. & Lutz, E. 2007 Nonexponential Decoherence and Momentum Subdiffusion
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