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Abstract.

In this work we introduce a differential equation model with time-delay that

describes the three-stage dynamics and the two time scales observed in HIV infection.

Assuming that the virus has high mutation and rapid reproduction rates that stress

the immune system throughout the successive activation of new responses to new

undetectable strains, the delay term describes the time interval necessary to mount

new specific immune responses. This single term increases the number of possible

solutions and changes the phase space dynamics if compared to the model without

time delay. We observe very slow transits near the unstable fixed point, corresponding

to a healthy state, and long time decay to the stable fixed point that corresponds to the

infected state. In contrast to the results obtained for models using regular ODE, which

only allow for partial descriptions of the course of the infection, our model describes

the entire course of infection observed in infected patients: the primary infection, the

latency period and the onset of acquired immunodeficiency syndrome (AIDS). The

model also describes other scenarios, such as the very fast progression to the disease

and the less common outcome in which, although the patient is exposed to HIV, he/she

does not develop the disease.
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1. Introduction

After almost three decades of research attempting to understand the dynamics of HIV

infection, many aspects of its underlying mechanisms remain unrevealed. Understanding

the three-stages dynamics and two time scales has also challenged the scientific

community over the past decades. Despite the intrinsic differences between individuals,

the evolution of HIV infection follows a common pattern [1] that starts with the primary

infection during the first weeks after contamination and is characterized by an extensive

dissemination of the infection (large virus count), followed by a pronounced decline

in the virus count caused by the development of the virus-specific immune response.

Notwithstanding the decrease in the virus load, the system does not recover completely

from the infection after the primary infection and very low concentrations of virus

remain in the organism. This second stage, called the latency period, is asymptomatic

and varies from patient to patient. The time-scale of the clinical latency period ranges

from months to several years, and if untreated, is characterized by a progressive decrease

in the number of HIV target cells, the TCD4+ cells. The third phase corresponds to

the onset of acquired immunodeficiency syndrome (AIDS) defined as the time when the

T cell counts reaches the order of 20 − 30% of the concentration of the TCD4+ cells

in healthy individuals [2].Without any treatment, the patient dies from opportunistic

diseases.

Among the efforts to understand the dynamics of the disease, many mathematical

models have been proposed to describe either specific aspects of the HIV dynamics or

the overall behavior of the evolution of the infection. The attempts of the first two

decades are reviewed in details in [3, 4] and references therein, but recent contributions

still indicate an active interest in the theme [5–7]. To date, most of the proposed models

have been based on differential equations (ODE and PDE) ( see for exemple [3,4,8–12]),

although discrete models have also been considered [13–16]. While most of the models

proposed until 2001 were very successful in describing specific aspects of the dynamics or

the primary infection or the latency period, none was able to describe the entire course of

the infection employing the same set of parameters. The first model that described the

three-stage dynamics and two time scale as observed in infected patients was a cellular

automaton model put forward to describe the dissemination of infection in the target T

cells located in the lymph nodes [15]. Recently, Stilianakis and Schenzle [17] proposed an

ODE approach to reproduce the entire course of HIV infection. The model describes the

targeted infection of TCD4+ cells generating new variants of HIV that compete between

themselves with a capacity of increased reproducibility within the selected variants that

in turn leads to the immune system’s loss of control over the infection. Using seven

non-linear ODE’ s and 22 parameters, the results presented by the authors reproduce

the entire course of the infection on the time scale of days, corresponding to the very fast

progression of the disease. The authors claim that although the results presented do not



The dynamics of the HIV infection: a time-delay differential equation approach 3

reproduce the typical course, they were able to reproduce (not revealed in the paper)

the whole spectrum of courses observed in infected patients by varying the parameters.

In a further discussion, they mention that due to complications in the dynamics of the

disease, the model loses its applicability to the third phase of the infection. According

to the results and discussions presented throughtout the paper the model seems to

reproduce the three stages only for fast progressions of the disease (one time scale) and

fails to reproduce the two time scales (days and years) observed in infected patients to

describe the third phase.

Here we seek to describe the entire course of the HIV infection using a unique

set of parameters and a non-linear differential equation approach that includes time-

delayed terms. Our model follows the same assumptions as the cellular automata

model introduced by Zorzenon dos Santos and Coutinho [15]: HIV’s high mutation

and rapid replication rates and the ability of the immune system to mount a new

regular immune response to any non-identified HIV resulting from the virus proliferation

process. However, since a time interval (τ) is necessary for the immune system to mount

any specific response developing from the necessary signaling among the cells, the non-

identified strain remaining during this time interval is able to disseminate the infection

throughout the target cells. In the follow up, these newly infected cells would be able

to produce new strains (through mutations) that may not be recognized by the immune

system (IS) therefore, disseminating the infection during the same period of time.

The addition of this single delay term changes the dynamics of the model in the

phase space, generating trajectories that depend on its non-local properties. These

properties change the transit of the trajectories near the fixed points allowing for the

description of the entire course of the HIV with the two time scale and three-stage

dynamics. Time -delay effects are present in different (molecular, cellular or organ)

mechanisms of various biological systems [18] and recently, other models with time

delay terms have been introduced to describe HIV infection. However, in these models,

the time delay either represents a finite incubation time before the release of new viruses

by infected TCD4+ cells [19, 20] or describes the delayed effects of the anti-retroviral

drugs on the plasma viremia that leads to the viremia decay [7, 11, 21, 22]. Although

these ODE models have time delay terms, they do not reproduce the two time scales

and three-stage dynamics of the HIV infection as in the model we introduce.

2. The model

In order to facilitate the understanding of the model introduced herein, let us briefly

summarize the main assumptions of the CA model [15]. The CA model describes the

local interaction among target cells (T cells and macrophages) and the virus in the

lymph nodes, taking into account the HIV’s high mutation and rapid reproduction

rates, as well as the fact that the immune system responds regularly to HIV as to any

other virus. The target cells can be found in four states: healthy (h), infected (A and

B) and dead (d) (or empty sites). Healthy cells are the target cells that may become
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infected. Infected-A corresponds to the stage in which the infected cell disseminates the

infection during τ time steps (the period of time necessary to mount the specific immune

response) and infected-B corresponds to the last state of the infection in which the cells

are recognized and killed in the next time step. The dynamics of the interaction among

automata is defined by four rules: (1) h cells become infected if at least one nearest

neighbor is infected- A. Since it is considered that each new infected- A that enters

the system carries a new strain of virus, (2) asserts that infected -A cells spread the

infection into its vicinity during τ time steps, and afterwards the infected-A cell turns

to a less infective-B stage. Rule (3) describes the turnover of B cells into d cells (or

empty sites) in the next time step. The regular blood flow in the system allows for the

natural replenishment of the target cells in the lymph nodes, therefore (4) replaces d

cells by h with probability prepl or by infected-A cells with probability prepl ∗ pinfec ,

since we also consider that the empty sites may be occupied by infected cells coming

from other lymphatic compartments. In the CA model, the fast dynamics of the primary

infection corresponds to a rapid increase in the number of infected cells through the cycle

h→A→B→d→h. The slow dynamics of the latency period is related to the formation

of the spatial structures of infected cells. As shown in [15], these growing structures

slowly compromise more and more cells, segregating and trapping the healthy ones and

leading to a reduction in TCD4+ cell counts. These structures are associated with

syncytia (aggregation of infected cells) formation, observed in HIV cultures and in the

lymph nodes of HIV patients.

Our model describes the time evolution of TCD4+ cell density in healthy, infected

and dead states using a set of ordinary differential equations. As in the CA model,

we have differentiated the stages A and B in the population of infected cells, but in

turn there are also two differentiated two stages in the population of healthy cells : h1

corresponding to the healthy cells present in the tissue at the beginning of the HIV

infection, and h2 corresponding to the population of new cells that enter the system

when the infection has already set in. If instead we consider only one type of healthy

cells we will obtain the same qualitative results, but shorter latency periods, as discussed

bellow. The sum of all the variables (populations) remains constant over time and the

time delay terms would be included in the equations for infected-A and -B cells to

describe the time necessary for the IS to convert any new A cell into a type B cell.

Therefore, the model is described by the following set of differential equations:

ḣ1 = − k5h1 (t)A
p
− k6h1B

n,

ḣ2 = k3d− k5h2A
q
− k6h2B

n,

Ȧ = − k1A (t− τ) + k4d+ k5(h1A
p + h2A

q) + k6(h1 + h2)B
n,

Ḃ = k1A (t− τ)− k2B (t) ,

ḋ = − k3d (t)− k4d (t) + k2B (t) . (1)

where p and q represent the number of A neighbors required to convert healthy (h1

or h2) cells into newly infected-A cells; n is the number of B neighbors necessary to
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infect healthy cells (h1 or h2). As in [15], we consider p = 1, n = 4 and τ = 4. The h2

population has no correspondent in the CA model but is expected to be more resistant

to HIV, requiring a larger number q (when compared to p) of A neighbors to become

infected. This assumption is based on the fact that once the virus is detected and the

specific immune response is developed the system would respond faster to newly infected

cells, therefore more infected cells would be necessary to infected a healthy one, once

the infection has set in. The rate constants describe the different transitions between

states. Two of them can be directly related to CA parameters: k3 being the rate at

which new A-cells are produced is related to prepl mentioned above, and k4 corresponds

to the rate at which newly infected cells enter the system( prepl ∗ pinfec). The remaining

rate constants, k1, k2, k5 and k6 describe, respectively, the transitions from states A to

the B, B to d, and h1 and h2 to A.

As in the CA model [15], values were chosen for some rate constants and parameters

based on certain biological data : (i) the replenishment ability of the system k3 O(1) ;

(ii) a very low but finite probability (1 in 10000 cells of the peripheral blood harbor the

viral DNA) that some of the newly infected cells entering the system would come from

other compartments k4 << 1; and (iii) since the responses to different virus can vary

from a few days to 8 weeks, as in the CA model, we adopted τ = 4.

The values of ki are not freely chosen, but obey certain constraints that result from

considering : i) the coordinates of the fixed points (FP = (h1, h2, A, B, d) representing

densities that should remain in the [0, 1] interval; (ii) at the infected state the densities

would respect the inequalities: infected−A > infected−B > 0 and d < infected−B

; and (iii)prepl > pinf otherwise would replace the empty sites only by infected-A cells.

Therefore, k2 > k1, k5 > k1, k3 + k4 > k2, k3 > k4.

3. Results

The system of equations (1) admits three FP solutions. Two, FP0 = (1, 0, 0, 0, 0) and

F̂P0 = (0, 1, 0, 0, 0), represent the healthy states and a third that represents the infected

state FP1 = (0, h2, A, B, d). To find its coordinates, it is necessary to solve the following

equation for B :

RB
n
+ SB

n−1
+ T

[
k2

k1

]q−1

B
q
+ U

[
k2

k1

]q−1

B
q−1

+ V = 0. (2)

Equation (2) is obtained by making the left-hand sides from the equations of system

(1) equal zero, as well as considering the condition of normalization. Once equation

(2) has been obtained, it is then possible to describe the behavior of the infected B-

cells, in which coefficients R, S, T, U and V are functions of the parameters of the

model. Depending on the value of q ( integer or not), (2) becomes either a polynomial

or a transcendental equation. However, for integer q ∈ [0, 4], the resulting analytical

expression for B is very complex and has no practical application to the analysis of FP1.

Therefore, (2)is always solved by numerical methods.
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Figure 1. Location of some eigenvalues in the (α, β) plane, corresponding to the

intersections of the nullclines u(α, β) = 0 (solid) and v(α, β) = 0 (dotted). The main

features are: u ≡ 0 when β = 0; there are two real eigenvalues for α = 0 (λ0), and

α < 0 (λ4);there is a pair of complex eigenvalues (λ2,3) close to the origin; and an

absence of eigenvalues with α > 0.

FP0 and F̂P0 are both unstable. FP0 is reached only for initial condition with

h1=1, while few heteroclinic orbits converge to F̂P0 along the direction of its attractive

manifold. To analyze the stability of the FP1, we follow the standard procedure using

the equation for the eigenvalues of the Jacobean matrix J , M(λ)=det(J − λI)=0. For

τ >0,M(λ)=0 becomes a transcendental equation since it contains terms that depend on

e−λτ . Irrespective of the value of τ , we always obtain an identically vanishing eigenvalue

(λ0), related to the conservation of the number of cells.

When τ=0 there is no delay in mounting the specific immune response

and its spectral equation is polynomial. For example, if we choose k1=0.16,

k2=0.2, k3=0.68, k4=2.5 × 10−5, k5=0.6, k6=0.1, n=4, p=q=1, we obtain FP1=(0,

0.266,0.361,0.289,0.085), while the spectrum is given by (λ0, λ1, λ2,3, λ4)=(0,-0.705,-

0.196±0.215i,-0.217). Since h1 = 0, λ4 describes only the decay of h1 to 0; λ1 indicates

a fast decay to a two-dimensional space in which the slow decay towards FP1 , actually

described by λ2,3, takes place. In other words, as observed in the CA model [23] the

absence of time delay in mounting the specific response would favor the spread of the

infection and shorten the latency period. If instead of unity we adopt q = 1.13, the

decaying dynamics slow down as Re(λ2,3) = −0.169, i. e., the effect of shortening the

latency period can be reduced if we increase the resistance of the new incoming healthy

cells.

For τ > 0, the complex eigenvalues are obtained employing the Newton-Raphson

(NR) procedure, using the notation λ = α + iβ where α = Re(λ) and β = Im(λ),

M(λ) = u(α, β)+iv(α, β). The eigenvalues correspond to the points where the nullclines

of u(α, β) = 0 and v(α, β) = 0 intersect in the (α, β) plane, as illustrated in Figure 1.

Graphs are very helpful for finding roots of M(λ) = 0, since they indicate the initial
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values for the NR procedure. The overall picture remains essentially the same if we

enlarge the region of the (α, β) plane in which the nullclines are drawn. Note that the

nullclines cross each other only in the negative α region and FP1 remains stable. The

several nullcline branches, when α < 0, indicates that both u and v oscillate and that

there are an infinite number of solutions to M(λ) = 0. The influence of τ on the decay

rate influences only the eigenvalues with the smallest real part, i.e., λ2,3. The stability

analysis shows that, when τ is increased from 0 to 4, the decay time to FP1 is amplified

by factor 7 for q = 1.13, and factor 5.4 for q = 1.0. All results of the stability analysis

for τ = 0 are checked by measuring the slope of the amplitude of the decaying solution

to FP1 that coincides with Re(λ2,3).

If we vary the parameters respecting the conditions discussed at the beginning of

this section, we note that the coordinates of FP1 change in a continuous manner and

FP1 remains a stable fixed point. Furthermore, by fixing the values of the rate constants,

we find that the attracting properties of FP1 weaken as q and τ increase. These two

parameters of the model contribute to reducing the velocity at which the trajectories

decay. In other words according to this model the duration of the latency period is

determined by the slow dynamics on the trajectories close to the stable fixed point,

which in turn is controlled by parameters q and τ . By increasing the value of q we require

a larger number of infected-A cells in order to infect healthy cells h2, indicating that an

increase in the resistance of the incoming target cells also increases the latency period.

On the other hand, greater the τ , the greater the latency period or the individual’ s

survival lifetime. Nevertheless, these features are not sufficient in themselves to account

by themselves for the observed increase in the time-scale associated with the latency

phase. It also depends on the presence of heteroclinic orbits generated by the time delay

term, uncovered by numerically integrating the set of equations (1) using a fourth order

Runge-Kutta method adapted to the time-delay approach.

As in the case of the FP analysis, a detailed investigation of all possible trajectories

of the system (1) for large regions of parameter space has been carried out. For the sake

of clarity, here we report only the results that illustrate the typical patterns obtained in

different regions of the parameter space. Since FP0 is unstable, almost all trajectories

starting in its neighborhood are pushed away. When τ = 0 the system evolves rapidly

to the infected state (FP1) and the onset of AIDS occurs a few weeks after the infection.

This would correspond to cases where the disease progresses rapidly , which in general

is observed in HIV patients who have been contaminated under immune-depression

conditions, caused by malnutrition or other diseases that compromise TCD4+ cells

(e.g. tuberculosis). If we increase the value of τ from 0 to 4, the trajectory is deviated

from FP1 towards the neighborhood of F̂P0, where the slow transit leads to the a steady

increase of latency period.

Figure 2(a) summarizes the main results obtained for this model: the appropriate

description of the three-stage dynamics observed in infected individuals who have not

been submitted to drug therapies. In contrast to other ODE models, here, using a

unique set of parameters, we were able to reproduce the primary infection and a large



The dynamics of the HIV infection: a time-delay differential equation approach 8

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

(a)

 

 

C
el

l d
en

si
ti

es

Years

0.992 0.996 1.000
0.000

0.004

0.008

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

FP
0
,FP

0  

 

 

h
1
 + h

2

A
 +

 B FP
0

(b)

FP
0
,

 

 

 

h
1
 + h

2

A
 +

 B

FP
1

Figure 2. (a) Time evolution of HIV infection showing three distinct phases.

Squares, circles and triangles represent h1 + h2, A + B and d cells, respectively. The

parameter values and initial conditions adopted are: k1=0.163, k2=0.228, k3=0.65,

k4=3.25×10−5, k5=0.606, k6=0.02, n=4, p=1, q=1.13, h1=0.95, A=0.05. (b) The

same orbit in a plane projection of phase space. Diamond indicates the initial

point. Inset: details of the first transit close to F̂P0. The trajectory first lies in

the attracting manifold, but later it is pushed away from F̂P0 along the repulsive

manifold. Heteroclinic orbits occur if F̂P0 is reached.
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range of latency periods (plateau in Figure 2a) that vary from weeks to years. Moreover,

a plateau is obtained on the T cell counts when the trajectory on the phase space goes

towards the region of very slow dynamics, close to F̂P0 (see Figure 2b and inset). As

previously mentioned, the deviation of the trajectory in the phase space to the slow

transit region largely depends on the values of q and τ . Since an increase of these

parameters leads to a decrease in Re(λ2,3) , the return of the phase space trajectory

towards FP1 proceeds at a much slower pace, thus increasing the length of the latency

period.

With regard to the estimates of the latency period, we observe that at the end of

the plateau, the healthy TCD4+ cell counts oscillates for some time until it stabilizes

below the threshold associated to the onset of AIDS. Since the latency period is defined

as the time between the end of the primary infection and the onset of AIDS, we may

make a second estimate of the latency period that will be larger than that roughly

estimated from the plateau. The parameter values used in Figure 2 were chosen so as

to maximize the length of the latency phase. However, the same qualitative pattern,

with a well-defined latency period, is observed for a finite region of the parameter space.

Usually, the three-phase pattern remains stable to changes ∼ 1−2% in parameter values

of the reported sets. Besides this, if no distinction is made between h1 and h2, (p = q),

similar patterns are obtained, albeit with a smaller plateau. For other regions of the

space parameter, the decay of the trajectory to FP1 may proceed with less defined slow

transits close to F̂P0 and therefore lose the clearly defined latency period.

Different patterns other than those of the three-stage dynamics may be obtained for

other parameter values not considered here. Without going into detailed description, a

brief comment follows on the most important patterns obtained by changing the values

of q and τ . For low values of q, the plateau is reduced, however, if it is increased beyond

1.18, we observe that all trajectories starting in a neighborhood of FP0 converge to

F̂P0. These heteroclinic trajectories, linking two unstable FPs that are not related to

the infected state, describe the situation well documented in the literature, where the

patient has contact with the virus but does not develop the disease. Moreover, for

q = 1.13 and τ = 3, the latency phase is still short, while, for τ = 5, a sustained

oscillation pattern is found due to the existence of stable limit cycles around a locally

stable FP1. In such a case, two attracting stable sets are present. In other words for

τ > 4.5 the monotonic behavior disappears.

Therefore, it is possible ’grosso modo’ , to group the different trajectories into the

following groups: i) rapid decay to FP1; ii) decay to FP1 through a latency phase, whose

duration will depend on the values of q and τ ; iii) trajectories converging to F̂P0 for

q sufficiently large (>1.18); iv) stable limit cycle around FP1 with a large amplitude,

when τ is larger than 4.5

Figure 3 illustrates the average values of the cell counts resulting from the

integration of (1) for Nt = 200 trajectories. The initial conditions were randomly

chosen from the very close neighborhood of FP0 for the same parameter values used in

Figure 2. This assumption may be interpreted as if each of the 200 individuals had been
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Figure 3. Average values of healthy, infected and dead cell counts resulting from 200

trajectories using different initial conditions starting in a neighborhood of FP0. The

parameter values are the same as those used in Figure 2, as are the symbols used to

describe different concentrations . The error bars indicate the standard deviation.

exposed to different initial viral loads. Similar results are obtained if slight fluctuations

of the parameters are permitted to characterize different individuals of the simulated

population. When we compare the results obtained to its corresponding counterparts

obtained with the CA model [15], we observe the same overall dispersion pattern in both.

However, in the present case the average dispersion is lower in the primary infection and

after the onset of AIDS, but as obtained with the CA model it increases greatly during

the latency phase. The large error bars obtained during the latency period indicate a

large range of variability on the development of the disease among the 200 individuals

(trajectories).

The results of this study show that a set of ordinary differential equations with time

delay terms describing the retard on mounting the specific response, is able to provide

a description of the entire course of the HIV infection using a single parameter set. To

our knowledge, this has not been achieved previously by any other similar approach.

As the model is essentially based on the rules of a CA model, our results indicate that

these rules capture the main elements and mechanisms underlying the dynamics of the

infection of TCD4+ cells. In the CA model, spatial localization is very important for

the emergence of distinct time-scales. In the model presented here, with no spatial

dependence, the individual phases are found to be associated with particular structures

in the phase space, which are induced by the time-delay terms. These terms describe the

interplay amongst new generations of infected cells (strains) and new specific responses

and increase the number of possible classes of solution. Although the number of different

solutions is not as broad as those of systems with explicit spatial dependence, it is
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sufficient to generate phase space structures that drive the system to regions of very

slow dynamics. A more detailed discussion of all types of solution for system (1) will

be published elsewhere.
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