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Abstract. Biswas and Milovic[Appl. Math. Comput. 208 (2009) 209-302] have
found the optical one-soliton solutions of a fourth order dispersive cubic-quintic
nonlinear Schrédinger equation. In this comment, we first show there are mistakes
in the paper and demonstrate that the obtained solutions do not satisfy the consid-
ered equation. And then we reconstruct a series of exact solutions by means of the

ansatz method and F-expansion method.

1. Analysis of the solutions given in Ref.[1]

As is well known, the investigation for solition solutions of nonlinear Schrodinger equation
is always an important and attractive topic. Very recently, Biswas and Milovic[I] considered

the higher order dispersive cubic-quintic nonlinear Schrodinger equation,

iqt + aqee — bQuozs + C(\q!2 +d!q\4)q = 0. (1)

One optical soliton solution of Eq.(I]) was constructed. However, we find there are mistakes

in the paper[l] and the obtained solution does not satisfy Eq. ().

Biswas et al.[I] assumed that Eq.(d) has an exact solution in the form
g(w,t) = P(x,t)e' Tretetto) (2)

where P(z,t) is a real function to be determined later, and k,w are real constants. Substi-
tuting Eq.([2]) into Eq.(d) yields a complex differential equation of P(x,t), in which the real

and imaginary parts read, respectively,

opP 2y OP ’rprP
5—25((1"‘2[)%)%"‘4[)/1@—0, (3)
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(W+ar? + b )P — cP? — cdP° — (a+6bs%) —5 +b—F = 0. (4)
Ox Oz
In Ref.[I], the solution of Eqs.(B])-(#]) was supposed as
A
P=—" =Bt 5
(A + cosh )P 4 (z—v1), (5)

Substituting Eq.(@) into Eqs.(3))-(]), the authors obtained two expressions with respect to
cosh7 and sinh7. We have noticed that there are many mistakes about the expressions
(12)-(13) given in Ref.[T]. Then equating the coefficients of 1/(A+ cosh 7)P*7(j = 0,---,4) of
the obtained expressions, the values of A, B,w, A\ and v were determined. Together with the

transforation (2)), the optical soliton solution was constructed,
A .
r.t) = e (—k zHwt+0) 6
atw,t) A+ cosh(B(xz — vt)) ’ (6)

where A, B,w, A and v were given by Eqgs.(16)-(21) of Ref.[I].

However, the “solution” (@) does not satisfy Eq.(T]). We can note this fact without substi-
tuting (@) into Eq.(d). The solitons are the results of a delicate balance between dispersion
and nonlinearity, thus it is impossible that the linear partial differential equation (B]) admits

the bell type solitary wave (f).

To be on the save side we have substituted Eq. () with p = 1 into Eq.(3]) and have obtained

the following expression,

v+ 2ak + 4bk> — 4bkB%  24bkB%coshT  24bkB? sinh? 1)

b = + —
! (A + cosh 7)? (A4 cosh7)3 (A + cosh7)*

A BsinhT.

We can see that this expression is equal to zero only in two cases. Oneis A =0 or B =0,
and the other is K = v = 0. This means that the “solution” () obtained by Biswas et al. in

[1] is not correct.

2. New optical solitary wave solution of Eq. ()

In the following, we adopt the ansatz solution of Li et al.[2] in the form
q(x,t) — E(x,t) ez’ (kx—wt-i—@)’ (7)

where E(x,t) is the complex envelope function, and k,w are real constants. Substituting

Eq.([@) into Eq.() and removing the exponential term, we can rewrite Eq.(d) as

i By + 2ik(a+20k?)E, + (a+6bk?) By — 4ibk Erpe — bEppes

(8)
+(w—ak?—=bkY)E +c|E*E + cd|E|*E = 0.
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We now take the complex envelope ansatz function E(z,t) as
E(z,t) = iB + Atanh({), { =px+ st, (9)

where 3, \, p, s are real constants. Substituting Eq.([d]) into Eq.(8]) and setting the coefficients
of tanh(€)7(j = 0,---,5) to zero, one obtains the following algebraic equations:

A(dedt —24p*b) =0, A(N3Bed + 24bp°k) = 0,

As —2XB3cd — ABec+2kpa + 32bp°k + 4bpk?) = 0,

A(N2c+2X23%cd 4 40 p*b + 2 p2a + 12 k%p?b) = 0,

A (2p%a + k?a — Bred — B2e + k*b + 16 p*b — w + 12 k2p?b) = 0,

Bbk* — Bw — B3¢ — 2apAk — Ped — sh — Abp\ k> — 8bp3k\ + Bak? = 0.
Solving it we obtain one set of nontrivial solution,

s = Sbpk(k?+p?), B = —%\, w=2p%a+3k%a + 37 k* + 52 k%p?b + 16 pb,

10
_ 2p* (300K + 20 bp® + a) (10)
A2 ’

12bp?

d=— .
M (30 0% 4 20 bp® + a)

C =

From (7)), (@) and (I0), we obtain the optical solitary wave of Eq.(l),
gz, t) = (_% + \ tanh(pz + Sbpk(k2 + p?) t)) oi (ko—(2p*at3 k?a+37 k*b+52 k*p°b+16 pb) t+9)7

where p, k are determined by the last two identities of Eq.(I0). From (@) and (I0), the

amplitude of the complex envelope function E(z,t) reads,
24,2 1/2
|E(z,t)] = {% + A2 tanh?(p 2 + 8bpk(k? +p2)t)} )

which may approach nonzero when the time variable approaches infinity.

3. A series of exact solutions for Eq.(I]) by using F-expansion
method

We suppose that the solution of (1) is of the form
q(z,t) = P(1)e'", =Bz —vt), n=(—kz +wt+0), (11)

where P(7) is a real function, and B, v, k,w are real constants to be determined. Substituting
Eq.(IT) to Eq.(I) and separating the real and imaginary parts, one may obtain the following
equations,

— B(v+2ar +4bk®) P' + 4bk B> P" = 0, (12)



(wHar?+bY)P — ¢P3 — cdP5 — B*(a+ 6bx*) P" + bB*P"™ = 0. (13)

The linear ordinary differential equation (I2]) has no solitary wave solutions, thus we have to

take kK = v = 0. In this case Eq.(I2) is satisfied identically, and Eq.(I3]) becomes,

wP — ¢P? — cdP® — aB*P" + bB*P" = 0. (14)

Eq.(I[4) can be solved by using the F-expansion method[3]-[6]. According to the F-

expansion method, we suppose,

P(r) = Y AiF'(r), Ay #0, (15)
i=0
where A;(i = 0,---,n) are real constants to be determined, the integer n is determined by

balancing the linear highest order term and nonlinear term. And F'(7) in (L&) satisfies,
dF(r)

dr
where hg, ho, hy are real constants. By balancing the linear highest order derivative term P””

with nonlinear term P° in Eq.(I4]), we find n = 1. Thus Eq.(I5) becomes,

= hg + ho F(T)2 + h4F(T)4, (16)

P(r) = Ay + Ay F(7). (17)

Substituting Eq.(I7) into Eqs.(4]) along with Eq.(I6), collecting all terms with the same
power of FJ(1)(j = 0,---,5), and equating the coefficients of these terms yields a set of
algebraic equations with respect to Ag, A1, B, w, a, b, ¢, d, hg, ho, hy:

deA1*Ay = 0, wAy—cAy® — decAy® = 0,

10dcA1? Ag® + 3cA1?Ag = 0, 24bA1B'hy® — dcAi® = 0,

20bA1 B*hohy — 10dcAy Ag® — cAy® — 2 A1 B%ahy = 0,

w Ay — 3cAyAp® — A1 B%ahy + 12bA1 B*hahg + bA1 B*hy® — 5dcAy Ag* = 0.

Solving the above algebraic equations, we have a set of nontrivial solution,

12bB2%h
AO = 0, Al = :l:\/ 4 ,
d(10bB%hy — a) a8)
2 2
w = B%(ahy — 12bB%hshg — bB?hs?), ¢ = 4(10 bB(sbh2 —a),

When hg = 1,hy = —(1 + m?),hy = m?, Eq.(8) has the solution F(7) = sn7. From
Eq.(II) and Eq. ([I7), Eq.() has the solution,

12B%bm? i (— B2(B2b+B2bm* +14B2bm? +am?+a) t+6)
) =y~ e P (B am) ’
d(10B2b + 10B%bm® + a)



where B is determined by d(10bB% + 10m2?bB? + a)? — 6bc = 0.

When hg = 1 —m? hy = 2m? — 1,hy = —m?, Eq.(I6) has the solution F(7) = cnr.
Inserting it into (7)) and using the transformation (III), Eq.(d) has the solution,

2, 2
gs(a 1) = & i 128 bm2 i en(B z, m) ¢ (B*(1652bm? ~1652bm —Bh—a+2am?) 1+0),
d(10 B%b — 20 B> + a)

where B is determined by d(a + 10bB? — 20bB2m?)? — 6bc = 0.

Some solitary wave solutions can be obtained if the modulus m approaches to 1. For
example, when m — 1, the solution go(z,t) degenerates to the kink type envelope wave

solution,

Q4(x, t) =+ _LB2 tanh(B z) et (=2 B2(8 B%b+a) t+0)7
d(20 B*b + a)

where B is determined by d(a + 206B%)? — 6bc = 0.

When m — 1, the solution ¢3(z,t) degenerates to the bell type envelope wave solution,

12B2%b

h(B i (B?(a—B?b) t+0)
d(a— 10 %) ChBa)e ’

(J5(l‘,t) ==

where B is determined by d(a — 10bB?)? — 6bc = 0.

As pointed out in Ref.[3], Eq.(I0) has many other Jacobi elliptic function solutions in
terms of dn(€), ns(€), nd(€), ne(€), se(€), cs(€), sd(€), ds(€), cd(€), de(€) as well as the

corresponding solitary wave and trigonometric function solutions. For simplicity, such types

of solutions to Eq.(T]) are not listed here.

With the aid of Maple, we have checked the solutions g;(z,t)(j = 1,---,5) by putting
them back into Eq.(T).
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