Virasoro and W-constraints for the q-KP hierarchy

Kelei Tian*, Jingsong He^{\dagger} and Yi Cheng*
*Department of Mathematics, University of Science and Technology of China, Hefei, 230026
Anhui, China
${ }^{\dagger}$ Department of Mathematics, Ningbo University, Ningbo, 315211 Zhejiang, China. Email: hejingsong@nbu.edu.cn.

Abstract

Based on the Adler-Shiota-van Moerbeke (ASvM) formula, the Virasoro constraints and W-constraints for the p-reduced q-deformed Kadomtsev-Petviashvili (q-KP) hierarchy are established.

Keywords: q-KP hierarchy, Virasoro constraints, W-constraints
PACS: 02.30.Ik

INTRODUCTION

The origin of q-calculus (quantum calculus) [1, 2] traces back to the early 20th century. Many mathematicians have important works in the area of q-calculus and q hypergeometric series. The q-deformation of classical nonlinear integrable system (also called q-deformed integrable system) started in 1990's by means of q-derivative ∂_{q} instead of usual derivative ∂ with respect to x in the classical system. As we know, the q-deformed integrable system reduces to a classical integrable system as q goes to 1 .

Several q-deformed integrable systems have been presented, for example, q deformation of the KdV hierarchy [3, 4, 5], q-Toda equation [6], q-Calogero-Moser equation [7]. Obviously, the q-deformed Kadomtsev-Petviashvili (q-KP) hierarchy is also a subject of intensive study in the literature from [8] to [13].

The additional symmetries, string equations and Virasoro constraints [14, 15, 16, 17, 18, 19] of the classical KP hierarchy are important since they are involved in the matrix models of the string theory [20]. For example, there are several new works [21, 22, 23, 24, 25] on this topic. It is quite interesting to study the analogous properties of q deformed KP hierarchy by this expanding method. In [11], the additional symmetries of the q-KP hierarchy were provided. Recently, additional symmetries and the string equations associated with the q-KP hierarchy have already been reported in [11, 13]. The negative Virasoro constraint generators $\left\{L_{-n}, n \geq 1\right\}$ of the 2 -reduced $q-K P$ hierarchy are also obtained in [13] by the similar method of [18].

Our main purpose of this article is to give the complete Virasoro constraint generators $\left\{L_{n}, n \geq-1\right\}$ and W-constraints $\left\{w_{m}, m \geq-2\right\}$ for the p-reduced q-KP hierarchy by the different process with negative part of Virasoro constraints given in [13]. The method of this paper is based on Adler-Shiota-van Moerbeke (ASvM) formula.

This paper is organized as follows. We give a brief description of q-calculus and q-KP hierarchy in Section 2 for reader's convenience. The main results are stated and proved
in Section 3, which are the Virasoro constraints and W-constraints on the τ function for the p-reduced q-KP hierarchy. Section 4 is devoted to conclusions and discussions.

q-CALCULUS AND q-KP HIERARCHY

At the beginning of the this section, Let us recall some useful facts of q-calculus [2] in the following to make this paper be self-contained.

The Euler-Jackson q-difference ∂_{q} is defined by

$$
\begin{equation*}
\partial_{q}(f(x))=\frac{f(q x)-f(x)}{x(q-1)}, \quad q \neq 1 \tag{1}
\end{equation*}
$$

and the q-shift operator is $\theta(f(x))=f(q x)$. It is worth pointing out that θ does not commute with ∂_{q}, indeed, the relation $\left(\partial_{q} \theta^{k}(f)\right)=q^{k} \theta^{k}\left(\partial_{q} f\right), k \in \mathbb{Z}$ holds. The limit of $\partial_{q}(f(x))$ as q approaches 1 is the ordinary differentiation $\partial_{x}(f(x))$. We denote the formal inverse of ∂_{q} as ∂_{q}^{-1}. The following q-deformed Leibnitz rule holds

$$
\begin{equation*}
\partial_{q}^{n} \circ f=\sum_{k \geq 0}\binom{n}{k}_{q} \theta^{n-k}\left(\partial_{q}^{k} f\right) \partial_{q}^{n-k}, \quad n \in \mathbb{Z} \tag{2}
\end{equation*}
$$

where the q-number $(n)_{q}=\frac{q^{n}-1}{q-1}$ and the q-binomial is introduced as

$$
\binom{n}{0}_{q}=1, \quad\binom{n}{k}_{q}=\frac{(n)_{q}(n-1)_{q} \cdots(n-k+1)_{q}}{(1)_{q}(2)_{q} \cdots(k)_{q}}
$$

Let $(n)_{q}!=(n)_{q}(n-1)_{q}(n-2)_{q} \cdots(1)_{q}$, the q-exponent $e_{q}(x)$ is defined by

$$
e_{q}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{(n)_{q}!}=\exp \left(\sum_{k=1}^{\infty} \frac{(1-q)^{k}}{k\left(1-q^{k}\right)} x^{k}\right) .
$$

Similar to the general way of describing the classical KP hierarchy [14, 19], we will give a brief introduction of $q-K P$ hierarchy and its additional symmetries based on [10, 11].

The Lax operator L of q-KP hierarchy is given by

$$
\begin{equation*}
L=\partial_{q}+u_{0}+u_{-1} \partial_{q}^{-1}+u_{-2} \partial_{q}^{-2}+\cdots \tag{3}
\end{equation*}
$$

where $u_{i}=u_{i}\left(x, t_{1}, t_{2}, t_{3}, \cdots,\right), i=0,-1,-2,-3, \cdots$. The corresponding Lax equation of the q-KP hierarchy is defined as

$$
\begin{equation*}
\frac{\partial L}{\partial t_{n}}=\left[B_{n}, L\right], \quad n=1,2,3, \cdots \tag{4}
\end{equation*}
$$

here the differential part $B_{n}=\left(L^{n}\right)_{+}=\sum_{i=0}^{n} b_{i} \partial_{q}^{i}$ and the integral part $L_{-}^{n}=L^{n}-L_{+}^{n} . L$ in eq.(3) can be generated by dressing operator $S=1+\sum_{k=1}^{\infty} s_{k} \partial_{q}^{-k}$ in the following way

$$
\begin{equation*}
L=S \partial_{q} S^{-1} \tag{5}
\end{equation*}
$$

Dressing operator S satisfies Sato equation

$$
\begin{equation*}
\frac{\partial S}{\partial t_{n}}=-\left(L^{n}\right)_{-} S, \quad n=1,2,3, \cdots \tag{6}
\end{equation*}
$$

The q-wave function $w_{q}(x, t ; z)$ and the q-adjoint function $w_{q}^{*}(x, t ; z)$ of q-KP hierarchy are given by

$$
w_{q}(x, t ; z)=S e_{q}(x z) \exp \left(\sum_{i=1}^{\infty} t_{i} z^{i}\right), \quad w_{q}^{*}(x, t ; z)=\left.\left(S^{*}\right)^{-1}\right|_{x / q} e_{1 / q}(-x z) \exp \left(-\sum_{i=1}^{\infty} t_{i} z^{i}\right),
$$

which satisfies following linear q-differential equations

$$
L w_{q}=z w_{q},\left.\quad L^{*}\right|_{x / q} w_{q}^{*}=z w_{q}^{*},
$$

here the notation $\left.P\right|_{x / t}=\sum_{i} P_{i}(x / t) t^{i} \partial_{q}^{i}$ is used for a q-pseudo-differential operator of the form $P=\sum_{i} p_{i}(x) \partial_{q}^{i}$, and the conjugate operation " $*$ " for P is defined by $P^{*}=$ $\sum_{i}\left(\partial_{q}^{*}\right)^{i} p_{i}(x)$ with $\partial_{q}^{*}=-\partial_{q} \theta^{-1}=-\frac{1}{q} \partial_{\frac{1}{q}},\left(\partial_{q}^{-1}\right)^{*}=\left(\partial_{q}^{*}\right)^{-1}=-\theta \partial_{q}^{-1},(P Q)^{*}=Q^{*} P^{*}$ for any two q-PDOs.

Furthermore, $w_{q}(x, t ; z)$ and $w_{q}^{*}(x, t ; z)$ of q-KP hierarchy can be expressed by sole function $\tau_{q}(x ; t)$ [10] as

$$
\begin{gather*}
w_{q}=\frac{\tau_{q}\left(x ; t-\left[z^{-1}\right]\right)}{\tau_{q}(x ; t)} e_{q}(x z) e^{\xi(t, z)}=\frac{e_{q}(x z) e^{\xi(t, z)} e^{-\sum_{i=1}^{\infty} \frac{z^{-i}}{i} \partial_{i}} \tau_{q}}{\tau_{q}}, \tag{7}\\
w_{q}^{*}=\frac{\tau_{q}\left(x ; t+\left[z^{-1}\right]\right)}{\tau_{q}(x ; t)} e_{1 / q}(-x z) e^{-\xi(t, z)}=\frac{e_{1 / q}(-x z) e^{-\xi(t, z)} e^{+\sum_{i=1}^{\infty} \frac{z^{-i}}{i} \partial_{i}} \tau_{q}}{\tau_{q}},
\end{gather*}
$$

where $\xi(t, z)=\sum_{i=1}^{\infty} t_{i} z^{i}$ and $[z]=\left(z, \frac{z^{2}}{2}, \frac{z^{3}}{3}, \ldots\right)$. The operator $G(z)$ is introduced as $G(z) f(t)=f\left(t-\left[z^{-1}\right]\right)$, then

$$
\begin{equation*}
w_{q}=\frac{G(z) \tau_{q}}{\tau_{q}} e_{q}(x z) e^{\xi(t, z)} \equiv \hat{w}_{q} e_{q}(x z) e^{\xi(t, z)} \tag{8}
\end{equation*}
$$

The following Lemma shows there exist an essential correspondence between q-KP hierarchy and KP hierarchy.
Lemma 1. 10] Let $L_{1}=\partial+u_{-1} \partial^{-1}+u_{-2} \partial^{-2}+\cdots$, where $\partial=\partial / \partial x$, be a solution of the classical KP hierarchy and τ be its tau function. Then $\tau_{q}(x, t)=\tau\left(t+[x]_{q}\right)$ is a tau function of the $q-\mathrm{KP}$ hierarchy associated with Lax operator L in eq.(3), where

$$
[x]_{q}=\left(x, \frac{(1-q)^{2}}{2\left(1-q^{2}\right)} x^{2}, \frac{(1-q)^{3}}{3\left(1-q^{3}\right)} x^{3}, \cdots, \frac{(1-q)^{i}}{i\left(1-q^{i}\right)} x^{i}, \cdots\right) .
$$

Define Γ_{q} and Orlov-Shulman's M operator [11] for q-KP hierarchy as $M=S \Gamma_{q} S^{-1}$ and $\Gamma_{q}=\sum_{i=1}^{\infty}\left(i t_{i}+\frac{(1-q)^{i}}{\left(1-q^{i}\right)} x^{i}\right) \partial_{q}^{i-1}$. The the additional flows for each pair $\{m, n\}$ are
difined as follows

$$
\begin{equation*}
\frac{\partial S}{\partial t_{m, n}^{*}}=-\left(M^{m} L^{n}\right)_{-} S \tag{9}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\frac{\partial L}{\partial t_{m, n}^{*}}=-\left[\left(M^{m} L^{n}\right)_{-}, L\right], \quad \frac{\partial M}{\partial t_{m, n}^{*}}=-\left[\left(M^{m} L^{n}\right)_{-}, M\right] \tag{10}
\end{equation*}
$$

The additional flows $\partial_{m n}^{*}=\frac{\partial}{\partial t_{m, n}^{*}}$ commute with the hierarchy $\partial_{k}=\frac{\partial}{\partial t_{k}}$, i.e. $\left[\partial_{m n}^{*}, \partial_{k}\right]=0$ but do not commute with each other, so they are additional symmetries [12]. $\left(M^{m} L^{n}\right)_{-}$ serves as the generator of the additional symmetries along the trajectory parametrized by $t_{m, n}^{*}$.
Theorem 1. 13] If an operator L does not depend on the parameters t_{n} and the additional variables $t_{1,-n+1}^{*}$, then L^{n} is a purely differential operator, and the string equations of the q-KP hierarchy are given by

$$
\begin{equation*}
\left[L^{n}, \frac{1}{n}\left(M L^{-n+1}\right)_{+}\right]=1, n=2,3,4, \cdots \tag{11}
\end{equation*}
$$

VIRASORO AND W-CONSTRAINTS FOR THE q-KP HIERARCHY

In this section, we mainly study the Virasoro constraints and W-constraints on τ-function of the p-reduced q-KP hierarchy. To this end, two useful vertex operators $X_{q}(\mu, \lambda)$ and $Y_{q}(\mu, \lambda)$ would be introduced.

The vertex operator $X_{q}(\mu, \lambda)$ is defined in [11] as

$$
\begin{equation*}
X_{q}(\mu, \lambda)=e_{q}(x \mu) e_{q}^{-1}(x \lambda) \exp \left(\sum_{i=1}^{\infty} t_{i}\left(\mu^{i}-\lambda^{i}\right)\right) \exp \left(-\sum_{i=1}^{\infty} \frac{\mu^{-i}-\lambda^{-i}}{i} \partial_{i}\right) \tag{12}
\end{equation*}
$$

We can also denote the vertex operator $X_{q}(\mu, \lambda)$ by

$$
\begin{equation*}
X_{q}(\mu, \lambda)=: \exp (\alpha(\lambda)-\alpha(\mu)): \tag{13}
\end{equation*}
$$

where the symbol :: means that we keep t_{i} be always left side of ∂_{j}, and $\alpha(\lambda)=$ $\sum \alpha_{n} \cdot \frac{\lambda^{-n}}{n}$, here $\alpha_{0}=0, \alpha_{n}=\partial_{n}=\frac{\partial}{\partial t_{n}}$ for $n>o, \alpha_{n}=|n| t_{|n|}+\frac{(1-q)^{|n|}}{1-q^{|n|}} x^{|n|}$ for $n<o$.

The following lemma is given without proof.
Lemma 2. Taylor expansion of the $X_{q}(\mu, \lambda)$ on μ at the point of λ is

$$
X_{q}(\mu, \lambda)=\sum_{m=0}^{\infty} \frac{(\mu-\lambda)^{m}}{m!} \sum_{n=-\infty}^{\infty} \lambda^{-m-n} W_{n}^{(m)},
$$

here $\sum_{n=-\infty}^{\infty} \lambda^{-m-n} W_{n}^{(m)}=\left.\partial_{\mu}^{m} X_{q}(\mu, \lambda)\right|_{\mu=\lambda}$.

The first items of $W_{n}^{(m)}$ are

$$
\begin{aligned}
& W_{n}^{(o)}=\delta_{n, 0} \\
& W_{n}^{(1)}=\alpha_{n}, \\
& W_{n}^{(2)}=(-n-1) \alpha_{n}+\sum_{i+j=n}: \alpha_{i} \alpha_{j}: \\
& W_{n}^{(3)}=(n+1)(n+1) \alpha_{n}+\sum_{i+j+k=n}: \alpha_{i} \alpha_{j} \alpha_{k}:-\frac{3}{2}(n+2) \sum_{i+j=n}: \alpha_{i} \alpha_{j}:
\end{aligned}
$$

There is Adler-Shiota-van Moerbeke (ASvM) formula [11] for q-KP hierarchy as

$$
\begin{equation*}
X_{q}(\mu, \lambda) w_{q}(x, t ; z)=(\lambda-\mu) Y_{q}(\mu, \lambda) w_{q}(x, t ; z) \tag{14}
\end{equation*}
$$

where the operator $Y_{q}(\mu, \lambda)$ is the generators of additional symmetry of q-KP hierarchy as

$$
\begin{equation*}
Y_{q}(\mu, \lambda)=\sum_{m=0}^{\infty} \frac{(\mu-\lambda)^{m}}{m!} \sum_{n=-\infty}^{\infty} \lambda^{-m-n-1}\left(M^{m} L^{m+n}\right)_{-} . \tag{15}
\end{equation*}
$$

ASvM formula is equivalent to the following equation

$$
\begin{equation*}
\partial_{m, n+m}^{*} \tau_{q}=\frac{W_{n}^{(m+1)}\left(\tau_{q}\right)}{m+1} \tag{16}
\end{equation*}
$$

The following theorem holds by virtue of the ASvM formula.

Theorem 2.

$$
\begin{equation*}
\left(\frac{W_{n}^{(m+1)}}{m+1}-c\right) \tau_{q}=0, m=0,1,2,3 \cdots \tag{17}
\end{equation*}
$$

Proof. Consider the condition $\partial_{m, n+m}^{*} \hat{w}_{q}=0$, from eq.(8), and denote $\tilde{\tau}_{q}=G(z) \tau_{q}$,

$$
\partial_{m, n+m}^{*} \hat{w}_{q}=\partial_{m, n+m}^{*} \frac{\tilde{\tau}_{q}}{\tau_{q}}=\frac{\tilde{\tau}_{q}}{\tau_{q}}\left(\frac{\partial_{m, n+m}^{*} \tilde{\tau}_{q}}{\tilde{\tau}_{q}}-\frac{\partial_{m, n+m}^{*} \tau_{q}}{\tau_{q}}\right)=\hat{w}_{q}(G(z)-1) \frac{\partial_{m, n+m}^{*} \tau_{q}}{\tau_{q}}=0
$$

The operator $G(z)$ has the property, which is $(G(z)-1) f(t)=0$ implies $f(t)$ is a constant, from this we can get

$$
\begin{equation*}
\frac{\partial_{m, n+m}^{*} \tau_{q}}{\tau_{q}}=c \tag{18}
\end{equation*}
$$

where c is constant. Combining eq.(16) with eq.(18) finishes the proof.
Now we consider the p-reduced q-KP hierarchy, by setting $\left(L^{p}\right)_{-}=0$, i.e. $L^{p}=$ $\left(L^{p}\right)_{+}$. From Lax equation of q-KP hierarchy, the p-reduced condition means that L is independent on $t_{j p}$ as $\partial_{j p} L=0, j=1,2,3, \cdots$ and τ_{q} is independent on $t_{j p}$ as $\partial_{j p} \tau_{q}=0, j=1,2,3, \cdots$.

Based on theorem 2, the Virasoro constraints and W-constraints for the p-reduced q-KP hierarchy will be obtained. Let $n=k p$ in theorem 2 and denote

$$
\begin{equation*}
\tilde{t}_{i}=t_{i}+\frac{(1-q)^{i}}{i\left(1-q^{i}\right)} x^{i}, i=1,2,3, \cdots . \tag{19}
\end{equation*}
$$

First of all, for $m=0$, eq.(17) in theorem 2 becomes

$$
\begin{equation*}
\left(W_{k p}^{(1)}-c\right) \tau_{q}=0 \tag{20}
\end{equation*}
$$

Let $c=0$, we have that $\alpha_{k p} \tau_{q}=\frac{\partial \tau_{q}}{\partial t_{k p}}=0$, it is just the condition $L^{p}=\left(L^{p}\right)_{+}$for p-reduced q-KP hierarchy.

For $m=1$, it is

$$
\begin{equation*}
\left(\frac{W_{k p}^{(2)}}{2}-c\right) \tau_{q}=0 \tag{21}
\end{equation*}
$$

Theorem 3. The Virasoro constraints imposed on the tau function τ_{q} of the p-reduced q-KP hierarchy are

$$
L_{k} \tau_{q}=0, \quad k=-1,0,1,2,3, \cdots,
$$

here

$$
\begin{aligned}
& L_{-1}=\frac{1}{p} \sum_{\substack{n=p+1 \\
n \neq 0(\bmod p)}}^{\infty} n \tilde{t}_{n} \frac{\partial}{\partial \tilde{t}_{n-p}}+\frac{1}{2 p} \sum_{i+j=p} i j \tilde{f}_{i} \tilde{t}_{j}, \\
& L_{0}=\frac{1}{p} \sum_{\substack{n=1 \\
n \neq 0(\bmod p)}}^{\infty} n \tilde{t}_{n} \frac{\partial}{\partial \tilde{t}_{n}}+\left(\frac{p}{24}-\frac{1}{24 p}\right), \\
& L_{k}=\frac{1}{p} \sum_{\substack{n=1 \\
n \neq 0(\bmod p)}}^{\infty} n \tilde{t}_{n} \frac{\partial}{\partial \tilde{t}_{n+k p}}+\frac{1}{2 p} \sum_{\substack{i+j=k p \\
i, j \neq 0(\bmod p)}} i j \tilde{t}_{i} \tilde{t}_{j}, \quad k \geq 1,
\end{aligned}
$$

and L_{n} satisfy Virasoro algebra commutation relations

$$
\begin{equation*}
\left[L_{n}, L_{m}\right]=(n-m) L_{(n+m)}, m, n=-1,0,1,2,3, \cdots \tag{22}
\end{equation*}
$$

Proof. Following the results in eq.(20) and eq.(21), we have

$$
\begin{equation*}
\left(\frac{W_{k p}^{(2)}}{2}-c\right) \tau_{q}=\left(\frac{1}{2} \sum_{i+j=k p}: \alpha_{i} \alpha_{j}:-c\right) \tau_{q}=0 \tag{23}
\end{equation*}
$$

Define $L_{k}=\frac{W_{k p}^{(2)}}{p}$, let $c=\frac{p}{24}-\frac{1}{24 p}$ in L_{0}, otherwise $c=0$. The p-reduced condition $n \neq 0(\bmod p)$ can be naturally added without destroying the algebra structure, because of $\tilde{t}_{m p}$ is presented together with $\frac{\partial}{\partial \tilde{t}_{m p+k p}}$.

By a straightforward and tedious calculation, the Virasoro commutation relations

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{(n+m)}, m, n=-1,0,1,2,3, \cdots
$$

can be verified.
For $m=2$, it is

$$
\begin{equation*}
\left(\frac{W_{k p}^{(3)}}{3}-c\right) \tau_{q}=\left(\frac{1}{3} \sum_{i+j+h=k p}: \alpha_{i} \alpha_{j} \alpha_{h}:-c\right) \tau_{q}=0 \tag{24}
\end{equation*}
$$

Theorem 4. Let

$$
w_{m}=\sum_{\substack{i+j+h=m p \\ i, j, h \neq 0(\bmod p)}}: \alpha_{i} \alpha_{j} \alpha_{h}:, m \geq-2,
$$

the W-constraints on the tau function τ_{q} of the p-reduced q-KP hierarchy are

$$
w_{m} \tau_{q}=0, m \geq-2
$$

and they satisfy following algebra commutation relations

$$
\left[L_{n}, w_{m}\right]=(2 n-m) w_{n+m}, n \geq-1, m \geq-2
$$

For $m \geq 3$, using the similar technique in theorem 3 and 4, we can deduce the higher order algebraic constrains on the tau function τ_{q} of the p-reduced q-KP hierarchy.
Remark 1. As we know, the q-deformed KP hierarchy reduces to the classical KP hierarchy when $q \rightarrow 1$ and $u_{0}=0$. The parameters $\left(\tilde{t}_{1}, \tilde{t}_{2}, \cdots, \tilde{t}_{i}, \cdots\right)$ tend to $\left(t_{1}+\right.$ $\left.x, t_{2}, \cdots, t_{i}, \cdots\right)$ as $q \rightarrow 1$. One can further identify $t_{1}+x$ with x in the classical KP hierarchy, i.e. $t_{1}+x \rightarrow x$. The deformation as q goes to 1 of Virasoro constraints and W-constraints for the p-reduced q-KP hierarchy are identical with the results of the classical KP hierarchy given by L.A.Dickey [16] and S.Panda, S.Roy [18].

CONCLUSIONS AND DISCUSSIONS

To summarize, we have derived the Virasoro constraints and W-constraints of the p reduced q-KP hierarchy in theorem 3 and 4 respectively. The results of this paper show obviously that the Virasoro constraint generators $\left\{L_{n}, n \geq-1\right\}$ and W-constraints $\left\{w_{m}, m \geq-2\right\}$ for the p-reduced q-KP hierarchy are different with the form of the KP hierarchy. Furthermore, we also would like to point out the following interesting relation between the q-KP hierarchy and the KP hierarchy

$$
L_{n}=\left.\hat{L}_{n}\right|_{t_{i} \rightarrow \tilde{t}_{i}=t_{i}+\frac{(1-q)^{i}}{i\left(1-q^{i}\right)^{i}}}
$$

and it seems to demonstrate that q-deformation is a non-uniform transformation for coordinates $t_{i} \rightarrow \tilde{t}_{i}$, which is consistent with results on τ function [10] and the q-soliton [12] of the q-KP hierarchy. Here \hat{L}_{n} [16, 18] are Virasoro generators of the KP hierarchy.

ACKNOWLEDGMENTS

This work is supported by the NSF of China under Grant No. 10671187. Jingsong He is also supported by Program for NCET under Grant No. NCET-08-0515.

REFERENCES

1. A.Klimyk, K.Schmüdgen, Quantum groups and their represntaions(Springer, Berlin, 1997).
2. V.Kac, P.Cheung, Quantum calculus(Springer-Verlag, New York, 2002).
3. D.H.Zhang, Quantum deformation of KdV hierarchies and their infinitely many conservation laws, J.Phys.A26(1993),2389-2407.
4. E.Frenkel, Deformations of the KdV hierarchy and related soliton equations, Int. Math. Res. Not. 2(1996), 55-76.
5. B.Khesin, V.Lyubashenko, C.Roger, Extensions and contractions of the Lie algebra of q pseudodifferential symbols on the circle, J. Funct. Anal.143(1997), 55-97.
6. Z.Tsuboi, A.Kuniba, Solutions of a discretized Toda field equation for D_{r} from analytic Bethe ansatz, J.Phys.A 29 (1996), 7785-7796.
7. P.Iliev, q-KP hierarchy, bispectrality and Calogero-Moser systems, J. Geom. Phys. 35(2000), 157182.
8. J.Mas, M.Seco, The algebra of q-pseudodifferential symbols and the $q-W_{\mathrm{KP}}^{(n)}$ algebra, J. Math. Phys. 37(1996), 6510-6529.
9. P.Iliev, Solutions to Frenkel's deformation of the KP hierarchy, J. Phys. A31(1998),241-244.
10. P.Iliev, Tau function solutions to a q-deformation of the KP hierarchy, Lett. Math. Phys. 44(1998), 187-200.
11. M.H.Tu, q-deformed KP hierarchy: its additional symmetries and infinitesimal Bäcklund transformations, Lett. Math. Phys. 49(1999), 95-103.
12. J.S.He, Y.H.Li, Y.Cheng, q-deformed KP hierarchy and its constrained sub-hierarchy. SIGMA 2(2006), 060(33pages).
13. K.L.Tian, J.S.He, Y.C.Su, Y.Cheng, String equations of the q-KP hierarchy(2009 arXiv:0902.4376).
14. E.Date, M.Kashiwara, M.Jimbo, T.Miwa, Transformation groups for soliton equations, in Nonlinear integrable systems-classical and quantumtheory, edited by M. Jimbo and T. Miwa (World Scientific, Singapore, 1983) p.39-119.
15. A.Yu.Orlov, E.I.Schulman, Additional symmetries of integrable equations and conformal algebra reprensentaion, Lett. Math. Phys. 12(1986), 171-179.
16. L.A.Dickey, Additional symmetries of KP, Grassmannian, and the string equation, Mod. Phys. Lett. A8(1993), 1259-1272.
17. M.Adler, T.Shiota, P.van Moerbeke, A Lax representation for the Vertex operator and the central extension, Comm. Math. Phys. 171(1995), 547-588.
18. S.Panda, S.Roy, The Lax operator approach for the Virasoro and the W-constraints in the generalized KdV hierarchy, Internat. J. Modern Phys. A8(1993), 3457-3478.
19. L.A.Dickey, Soliton Equations and Hamiltonian Systems(2nd Edition) (World Scintific, Singapore,2003).
20. A.Morozov, Integrability and matrix models, Phys. Usp. 37 (1994), 1-55(arXiv:hep-th/9303139).
21. A.Mironov, WDVV equations in Seiberg-Witten theory and associative algebras. Nuclear Phys. B Proc. Suppl. 61A (1998), 177-185.
22. H.Aratyn, J.F.Gomes, A.H.Zimerman, Integrable hierarchy for multidimensional Toda equations and topological-anti-topological fusion, J. Geom. Phys. 46 (2003),21-47.
23. A.Alexandrov, A.Mironov, A.Morozov, Solving Virasoro constraints in matrix models, Fortschr. Phys. 53 (2005),512-521.
24. A.Mironov, A.Morozov, Virasoro constraints for Kontsevich-Hurwitz partition function(2008, arXiv:0807.2843).
25. H.F.Shen, M.H.Tu, On the String Equation of the BKP hierarchy(2008 arXiv:0811.1469).
