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INTRODUCTION

The origin ofg-calculus (quantum calculus) [1, 2] traces back to the €20y cen-
tury. Many mathematicians have important works in the arka@-oalculus andg-
hypergeometric series. Tlgedeformation of classical nonlinear integrable systersqal
calledg-deformed integrable system) started in 1990’s by meanpdgfrivativedy in-
stead of usual derivativé with respect tax in the classical system. As we know, the
g-deformed integrable system reduces to a classical iribgsgstem ag goes to 1.

Several g-deformed integrable systems have been presented, for ptxaop
deformation of the KdV hierarchy [3, 4] 5§-Toda equation |6]g-Calogero-Moser
equation [7]. Obviously, the-deformed Kadomtsev-Petviashvilj-KP) hierarchy is
also a subject of intensive study in the literature from {8[13].

The additional symmetries, string equations and Virasorstraints|[14, 15, 16, 17,
18,119] of the classical KP hierarchy are important sincg tre involved in the matrix
models of the string theory [20]. For example, there are reéveew works |[21| 22,

3,124, 25] on this topic. It is quite interesting to study #r@alogous properties of
deformed KP hierarchy by this expanding method..In [11], ddditional symmetries
of the g-KP hierarchy were provided. Recently, additional symimstand the string
equations associated with tgekP hierarchy have already been reported.in[11, 13]. The
negative Virasoro constraint generatots §,n > 1} of the 2—reducedg-KP hierarchy
are also obtained in [13] by the similar method|of [18].

Our main purpose of this article is to give the complete \Grasonstraint generators
{Ln,n > —1} and W-constraints{m,, m > —2} for the p-reducedy-KP hierarchy by the
different process with negative part of Virasoro constagiven in [13]. The method of
this paper is based on Adler-Shiota-van Moerbeke (ASvMnida.

This paper is organized as follows. We give a brief desaiptif g-calculus and}-KP
hierarchy in Section 2 for reader’s convenience. The maulte are stated and proved
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in Section 3, which are the Virasoro constraints and W-gairss on ther function for
the p-reducedy-KP hierarchy. Section 4 is devoted to conclusions and dsous.

g-CALCULUSAND g-KP HIERARCHY

At the beginning of the this section, Let us recall some Udafits ofg-calculus [2] in
the following to make this paper be self-contained.
The Euler-Jacksog-differenced, is defined by

aa(100) =+ P =1,

and theg-shift operator is9(f(x)) = f(gx). It is worth pointing out that® does not
commute withdy, indeed, the relatioridy6%(f)) = g*6¥(dqf),k € Z holds. The limit
of dq(f(x)) asq approaches 1 is the ordinary differentiatid f (x)). We denote the
formal inverse oty asdq*1. The followingg-deformed Leibnitz rule holds

q#1 (1)

n _ -
of=3 (k) 0" *(okf)ag ¥, nez (2)
k>0 q
where theg-number(n)q = q(;_*ll and theg-binomial is introduced as

A (B e

Let (n)g! = (N)g(N—1)g(N—2)q--- (1)q, theg-exponenty(X) is defined by

e e (1
W)= 3 a2 )

Similar to the general way of describing the classical KRdrighy [14,/ 19], we
will give a brief introduction ofg-KP hierarchy and its additional symmetries based
on [10,/11].

The Lax operatoL of g-KP hierarchy is given by

L =05+ Up+U_10; " +U 2042+ (3)

whereu; = u;(X,tg,to,t3,---,),i = 0,—1,—-2,—3,---. The corresponding Lax equation
of theg-KP hierarchy is defined as

Z—;:[Bml—], n:172737‘“7 (4)

n .
here the differential pai, = (L"), = Y bidy and the integral pait” =L"—L". L in
i=0
eq.[3) can be generated by dressing opei@terl + S ; skdq_k in the following way
L=S9,S (5)



Dressing operatds satisfies Sato equation
s
oty

The g-wave functionwg(x,t;z) and theg-adjoint functionwg(x,t;z) of g-KP hierarchy
are given by

~(LM_S, n=123,--. (6)

Wq(X,t;2) = exp(zltz' W (x,t;2) = (S)~ |X/qe1/q XZ) exp(— thz'

which satisfies following lineag-differential equations

here the notatiofP|,; = ;R (x/t)t 'd' is used for ag-pseudo-differential operator of
the formP = 5 pi( )0' and the conjugate operation™for P is defined byP* =

5 (0;)'pi(X) with 95 = —aqefl = —%aé, (051 = (95) "t =-605", (PQ)* = Q*P*

|

for any twog-PDOs.

Furthermorewg(x,t;2) andwy(x,t;2) of g-KP hierarchy can be expressed by sole
functiong(x;t) [10] as

_ Txt—[z7Y) £y Sq(@)ef e 2 24 a
Wa= Tq(Xt) eq(xz)e""? = = , @)
! _1 E(t Z) +ZI I &I
V\f"q — Mel/q(_xz)efé(tz) _ el/q( )e e 1 Tq,
Tq(X;t) o

whereé (t,z) = Zi°°:1ti2i and [z = (z,%,%,...). The operatoiG(2) is introduced as
G(z)f(t) = f(t—[z 1)), then

G(2)1q

Wa == = eq(x2) € 12 = igeg(x2)et 2. (8)

The following Lemma shows there exist an essential cormesdpace betweeqg-KP
hierarchy and KP hierarchy.
Lemmal. [10] LetL; =0 +u_10 14+u_202+---, whered = d/0x, be a solution of
the classical KP hierarchy armbe its tau function. Themg(x,t) = 7(t + [Xq) is a tau
function of theg-KP hierarchy associated with Lax operakoin eq.[3), where

(1-9? , (1-q?° (1-q)
X, X2, X3, X,
S PR TR e L

Definelq and Orlov-Shulman’#/ operatori[11] forg-KP hierarchy asvl = S'q§1

(1-9)
andlNg=357 <|tI =)

(X|g =

xi)dcifl. The the additional flows for each paim{n} are



difined as follows
0S

= —(MML")_
iy, ~ ~(MTL)-S 9)
or equivalently
oL oM
atﬁln [( ) Y ]7 dtrq;Ln [( ) I ] ( 0)

The additional flow®y,, = commute with the hierarchgy =

0rﬂ;]n 0'( |e[0mn,ak]20

but do not commute with each other, so they are additionahsgtmes [12].(M™ML")_
serves as the generator of the additional symmetries alengrajectory parametrized
by thn

Theorem 1.[13] If an operatoL does not depend on the parametgind the additional
variablesty _, ;, thenL" is a purely differential operator, and the string equatiofithe
g-KP hlerarchy are given by

1
L% (ML), =1, n=2.34,- (11)

VIRASORO AND W-CONSTRAINTSFOR THE g-KP
HIERARCHY

In this section, we mainly study the Virasoro constrainAAconstraints om-function
of the p-reducedy-KP hierarchy. To this end, two useful vertex operad&§s,A) and
Yq(H,A) would be introduced.

The vertex operataXy(u, A ) is defined inl[11] as

0 —i —i

Xl ) = e)eg 0 Jep( 3 i~ ep(— 3 B Pm). (12)

We can also denote the vertex operatgfu,A) by
Xg(H,A) =t exp(a(A) —a(u)) : (13)

where the symbol :: means that we kege always left side obj, anda(A) =

d
s an-2", hereag = 0,an = dh = P forn> o, an = |nftjy 4 = q)‘ X" for n < o.
The followmg lemma is given W|thout proof.

Lemma 2. Taylor expansion of th&,(u,A) onu at the point ofA is

X = 3 B 5 g

m=0 nN=—o

here3® o, A~ ™A™ = 9MXq(1,A) | us



The first items of\\™ are

V\AO) - d’LO?
V\A'gl) - al’h
W2 = (—n—1)an+ > aiaj:
i+]=n
3
wid = (N+1)(n+1)an+ Z( ;aiaiak:—é(n-l—Z) Z L aiaj
i+j+k=n I+]1=n

There is Adler-Shiota-van Moerbeke (ASvM) formula![11] tpKP hierarchy as

Xa(lt: A Wa(x,:2) = (A — ¥ (1, A IWq(x,t:2), (14)

where the operatofy(u, A ) is the generators of additional symmetrygeKP hierarchy
as

Yo(U,A) = % w % A-men-lgympmeny (15)
m=0 m: n=—o
ASvM formula is equivalent to the following equation

o _ Wrgm+1)<TQ) 16
mn+mlQ = o (16)

The following theorem holds by virtue of the ASvM formula.

Theorem 2.

_ - - e 17
( —1 C)Tlq=0, m=0,1,2,3 (17)

Proof. Consider the conditiody, o, mWq = 0, from eq{(8), and denot = G(2)1q,

g T
* F-T ] q__ 'q
am7n+qu - 0m7n+m_ - (
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The operatorG(z) has the property, which i§G(z) — 1) f(t) = 0 implies f(t) is a
constant, from this we can get

drT],nerTq —c (18)
Iq
where c is constant. Combining €q.(16) with eq.(18) finishegproof. O

Now we consider thep-reducedg-KP hierarchy, by settindLP)_ =0, i.e. LP =
(LP),. From Lax equation ofj-KP hierarchy, thep-reduced condition means that
L is independent omj, asdjpL = 0,j = 1,2,3,--- and 1q is independent o, as
OjpTq=0,j=1,2,3,---.

Based on theorem 2, the Virasoro constraints and W-consdréor the p-reduced
g-KP hierarchy will be obtained. Let= kp in theorem 2 and denote

T+ (1_q)i i
t._t.+i(1_qi)x',|_1,2,3, . (19)




First of all, form= 0, eq.{1¥) in theorem 2 becomes

1

(Wi —€)Tq = 0. (20)

d L iy

Let ¢ = 0, we have that,Tq = atﬁ = 0, it is just the conditiorLP = (LP), for

kp
p-reducedy-KP hierarchy.

Form=1,itis 2
2
Wkp

(T—c)rq_o (21)

Theorem 3. The Virasoro constraints imposed on the tau functigof the p-reduced
g-KP hierarchy are
Lktq=0, k=-1,0,1,2,3,---,

here
1 il 0 1 o
Li=" > Nfn—— 2 z jtitj,
Pn= p+1 I 2Pif=p
n = 0(modp)
1 > 0 p 1
|-0—I—3 n—1z ntnd +(ﬂ—%>
n = 0(modp)
1 > . 0 1 o
Ly =— Z Nth—=—— Z jtitj, k>1,
Ph=1 P 20 i+j=kp
n = 0(modp) i, j # 0(modp)

andL, satisfy Virasoro algebra commutation relations
[Ln;Lm] = (N—=mM)Lnym), mn=-1,0,1,23,---. (22)
Proof. Following the results in ed.(20) and €g.)21), we have

w2 1
(—2 _¢)1q=(= 1 aiaj: —C)7q = 0. (23)
2 2i+JZ:kp -

2
, W . . "
DefineLy = T let c = 2'21 2Tp in Lo, otherwisec = 0. The p-reduced condition

n # 0(modp) can be naturally added without destroying the algebra tstrecbecause
of tmp is presented together wﬂﬁ—
By a straightforward and tedlous calculatlon the Virasmsmmutation relations

[Ln,Lm] = (N—mM)Lnm), mn=-1,0,1,23,--



can be verified. O
Form=2,itis

3
Wk(p) 1
<T_C>Tq:(§ Z L 0i0j0n: —C)Tq=0. (24)
i+j+h=kp
Theorem 4. Let

Wm = Z L Qidjdn:, m> -2,
i+j+h=mp
i,j,h# 0(modp)

the W-constraints on the tau functiogof the p-reducedy-KP hierarchy are
WnTg=0,m> -2,
and they satisfy following algebra commutation relations
[Ln, Wm] = (20— M)Wpym,N > -1, m> —2.

Form > 3, using the similar technique in theorem 3 and 4, we can dethechigher
order algebraic constrains on the tau functigof the p-reducedy-KP hierarchy.
Remark 1. As we know, theg-deformed KP hierarchy reduces to the classical KP
hierarchy whenq — 1 andup = 0. The parametersfy, s, --,&i,---) tend to (t1 +
X t2,--+,ti,---) asq — 1. One can further identify; + x with x in the classical KP
hierarchy, i.et; +x — x. The deformation ag goes to 1 of Virasoro constraints and
W-constraints for thg-reducedy-KP hierarchy are identical with the results of the clas-
sical KP hierarchy given by L.A.Dickey [16] and S.Panda,®.[L8].

CONCLUSIONS AND DISCUSSIONS

To summarize, we have derived the Virasoro constraints armbigtraints of thep-
reducedg-KP hierarchy in theorem 3 and 4 respectively. The resultshisf paper
show obviously that the Virasoro constraint generatbssg > —1} and W-constraints
{wm, m > —2} for the p-reducedg-KP hierarchy are different with the form of the KP
hierarchy. Furthermore, we also would like to point out thiéofving interesting relation
between thej-KP hierarchy and the KP hierarchy

Ln=Ln| . g
ti—>ti:ti+ﬁx
and it seems to demonstrate tlgptleformation is a non-uniform transformation for
coordinates; — fj, which is consistent with results anfunction [10] and they-soliton
[12] of theg-KP hierarchy. Heré., [16,18] are Virasoro generators of the KP hierarchy.
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