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INTRODUCTION

The origin of q-calculus (quantum calculus) [1, 2] traces back to the early20th cen-
tury. Many mathematicians have important works in the area of q-calculus andq-
hypergeometric series. Theq-deformation of classical nonlinear integrable system (also
calledq-deformed integrable system) started in 1990’s by means ofq-derivative∂q in-
stead of usual derivative∂ with respect tox in the classical system. As we know, the
q-deformed integrable system reduces to a classical integrable system asq goes to 1.

Several q-deformed integrable systems have been presented, for example, q-
deformation of the KdV hierarchy [3, 4, 5],q-Toda equation [6],q-Calogero-Moser
equation [7]. Obviously, theq-deformed Kadomtsev-Petviashvili (q-KP) hierarchy is
also a subject of intensive study in the literature from [8] to [13].

The additional symmetries, string equations and Virasoro constraints [14, 15, 16, 17,
18, 19] of the classical KP hierarchy are important since they are involved in the matrix
models of the string theory [20]. For example, there are several new works [21, 22,
23, 24, 25] on this topic. It is quite interesting to study theanalogous properties ofq-
deformed KP hierarchy by this expanding method. In [11], theadditional symmetries
of the q-KP hierarchy were provided. Recently, additional symmetries and the string
equations associated with theq-KP hierarchy have already been reported in [11, 13]. The
negative Virasoro constraint generators {L−n,n ≥ 1} of the 2−reducedq-KP hierarchy
are also obtained in [13] by the similar method of [18].

Our main purpose of this article is to give the complete Virasoro constraint generators
{ Ln,n ≥−1} and W-constraints {wm,m ≥−2} for the p-reducedq-KP hierarchy by the
different process with negative part of Virasoro constraints given in [13]. The method of
this paper is based on Adler-Shiota-van Moerbeke (ASvM) formula.

This paper is organized as follows. We give a brief description ofq-calculus andq-KP
hierarchy in Section 2 for reader’s convenience. The main results are stated and proved
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in Section 3, which are the Virasoro constraints and W-constraints on theτ function for
the p-reducedq-KP hierarchy. Section 4 is devoted to conclusions and discussions.

q-CALCULUS AND q-KP HIERARCHY

At the beginning of the this section, Let us recall some useful facts ofq-calculus [2] in
the following to make this paper be self-contained.

The Euler-Jacksonq-difference∂q is defined by

∂q( f (x)) =
f (qx)− f (x)

x(q−1)
, q 6= 1 (1)

and theq-shift operator isθ( f (x)) = f (qx). It is worth pointing out thatθ does not
commute with∂q, indeed, the relation(∂qθ k( f )) = qkθ k(∂q f ),k ∈ Z holds. The limit
of ∂q( f (x)) asq approaches 1 is the ordinary differentiation∂x( f (x)). We denote the
formal inverse of∂q as∂−1

q . The followingq-deformed Leibnitz rule holds

∂ n
q ◦ f = ∑

k≥0

(

n
k

)

q
θ n−k(∂ k

q f )∂ n−k
q , n ∈ Z (2)

where theq-number(n)q =
qn−1
q−1 and theq-binomial is introduced as

(

n
0

)

q
= 1,

(

n
k

)

q
=

(n)q(n−1)q · · ·(n− k+1)q

(1)q(2)q · · ·(k)q
.

Let (n)q! = (n)q(n−1)q(n−2)q · · ·(1)q, theq-exponenteq(x) is defined by

eq(x) =
∞

∑
n=0

xn

(n)q!
= exp(

∞

∑
k=1

(1−q)k

k(1−qk)
xk).

Similar to the general way of describing the classical KP hierarchy [14, 19], we
will give a brief introduction ofq-KP hierarchy and its additional symmetries based
on [10, 11].

The Lax operatorL of q-KP hierarchy is given by

L = ∂q +u0+u−1∂−1
q +u−2∂−2

q + · · · . (3)

whereui = ui(x, t1, t2, t3, · · · ,), i = 0,−1,−2,−3, · · · . The corresponding Lax equation
of theq-KP hierarchy is defined as

∂L
∂ tn

= [Bn,L], n = 1,2,3, · · · , (4)

here the differential partBn = (Ln)+ =
n
∑

i=0
bi∂ i

q and the integral partLn
− = Ln −Ln

+. L in

eq.(3) can be generated by dressing operatorS = 1+∑∞
k=1 sk∂−k

q in the following way

L = S∂qS−1. (5)



Dressing operatorS satisfies Sato equation

∂S
∂ tn

=−(Ln)−S, n = 1,2,3, · · · . (6)

Theq-wave functionwq(x, t;z) and theq-adjoint functionw∗
q(x, t;z) of q-KP hierarchy

are given by

wq(x, t;z) = Seq(xz)exp(
∞

∑
i=1

tiz
i), w∗

q(x, t;z) = (S∗)−1|x/qe1/q(−xz)exp(−
∞

∑
i=1

tiz
i),

which satisfies following linearq-differential equations

Lwq = zwq, L∗|x/qw∗
q = zw∗

q,

here the notationP|x/t = ∑i Pi(x/t)t i∂ i
q is used for aq-pseudo-differential operator of

the form P = ∑i pi(x)∂ i
q, and the conjugate operation “∗” for P is defined byP∗ =

∑
i
(∂ ∗

q )
i pi(x) with ∂ ∗

q = −∂qθ−1 = −1
q∂ 1

q
, (∂−1

q )∗ = (∂ ∗
q )

−1 = −θ∂−1
q , (PQ)∗ = Q∗P∗

for any twoq-PDOs.
Furthermore,wq(x, t;z) and w∗

q(x, t;z) of q-KP hierarchy can be expressed by sole
functionτq(x; t) [10] as

wq =
τq(x; t − [z−1])

τq(x; t)
eq(xz)eξ (t,z) =

eq(xz)eξ (t,z)e−∑∞
i=1

z−i
i ∂iτq

τq
, (7)

w∗
q =

τq(x; t +[z−1])

τq(x; t)
e1/q(−xz)e−ξ (t,z) =

e1/q(−xz)e−ξ (t,z)e+∑∞
i=1

z−i
i ∂iτq

τq
,

whereξ (t,z) = ∑∞
i=1 tizi and [z] =

(

z, z2

2 ,
z3

3 , . . .
)

. The operatorG(z) is introduced as

G(z) f (t) = f (t − [z−1]), then

wq =
G(z)τq

τq
eq(xz)eξ (t,z) ≡ ŵqeq(xz)eξ (t,z). (8)

The following Lemma shows there exist an essential correspondence betweenq-KP
hierarchy and KP hierarchy.
Lemma 1. [10] Let L1 = ∂ +u−1∂−1+u−2∂−2+ · · · , where∂ = ∂/∂x, be a solution of
the classical KP hierarchy andτ be its tau function. Thenτq(x, t) = τ(t +[x]q) is a tau
function of theq-KP hierarchy associated with Lax operatorL in eq.(3), where

[x]q =
(

x,
(1−q)2

2(1−q2)
x2,

(1−q)3

3(1−q3)
x3, · · · ,

(1−q)i

i(1−qi)
xi, · · ·

)

.

DefineΓq and Orlov-Shulman’sM operator [11] forq-KP hierarchy asM = SΓqS−1

andΓq = ∑∞
i=1

(

iti +
(1−q)i

(1−qi)
xi
)

∂ i−1
q . The the additional flows for each pair {m,n} are



difined as follows
∂S

∂ t∗m,n
=−(MmLn)−S, (9)

or equivalently

∂L
∂ t∗m,n

=−[(MmLn)−,L],
∂M

∂ t∗m,n
=−[(MmLn)−,M]. (10)

The additional flows∂ ∗
mn =

∂
∂ t∗m,n

commute with the hierarchy∂k =
∂

∂ tk
, i.e.[∂ ∗

mn,∂k] = 0

but do not commute with each other, so they are additional symmetries [12].(MmLn)−
serves as the generator of the additional symmetries along the trajectory parametrized
by t∗m,n.
Theorem 1.[13] If an operatorL does not depend on the parameterstn and the additional
variablest∗1,−n+1, thenLn is a purely differential operator, and the string equationsof the
q-KP hierarchy are given by

[Ln,
1
n
(ML−n+1)+] = 1, n = 2,3,4, · · · (11)

VIRASORO AND W-CONSTRAINTS FOR THE q-KP
HIERARCHY

In this section, we mainly study the Virasoro constraints and W-constraints onτ-function
of the p-reducedq-KP hierarchy. To this end, two useful vertex operatorsXq(µ,λ ) and
Yq(µ,λ ) would be introduced.

The vertex operatorXq(µ,λ ) is defined in [11] as

Xq(µ,λ ) = eq(xµ)e−1
q (xλ )exp(

∞

∑
i=1

ti(µ i −λ i))exp(−
∞

∑
i=1

µ−i −λ−i

i
∂i). (12)

We can also denote the vertex operatorXq(µ,λ ) by

Xq(µ,λ ) =: exp(α(λ )−α(µ)) : (13)

where the symbol :: means that we keepti be always left side of∂ j, and α(λ ) =

∑αn ·
λ−n

n , hereα0 = 0,αn = ∂n =
∂

∂ tn
for n > o, αn = |n|t|n|+

(1−q)|n|

1−q|n|
x|n| for n < o.

The following lemma is given without proof.
Lemma 2. Taylor expansion of theXq(µ,λ ) on µ at the point ofλ is

Xq(µ,λ ) =
∞

∑
m=0

(µ −λ )m

m!

∞

∑
n=−∞

λ−m−nW (m)
n ,

here∑∞
n=−∞ λ−m−nW (m)

n = ∂ m
µ Xq(µ,λ )|µ=λ .



The first items ofW (m)
n are

W (o)
n = δn,0,

W (1)
n = αn,

W (2)
n = (−n−1)αn + ∑

i+ j=n
: αiα j :

W (3)
n = (n+1)(n+1)αn+ ∑

i+ j+k=n

: αiα jαk : −
3
2
(n+2) ∑

i+ j=n
: αiα j :

There is Adler-Shiota-van Moerbeke (ASvM) formula [11] forq-KP hierarchy as

Xq(µ,λ )wq(x, t;z) = (λ −µ)Yq(µ,λ )wq(x, t;z), (14)

where the operatorYq(µ,λ ) is the generators of additional symmetry ofq-KP hierarchy
as

Yq(µ,λ ) =
∞

∑
m=0

(µ −λ )m

m!

∞

∑
n=−∞

λ−m−n−1(MmLm+n)−. (15)

ASvM formula is equivalent to the following equation

∂ ∗
m,n+mτq =

W (m+1)
n (τq)

m+1
. (16)

The following theorem holds by virtue of the ASvM formula.
Theorem 2.

(
W (m+1)

n

m+1
− c)τq = 0, m = 0,1,2,3· · · . (17)

Proof. Consider the condition∂ ∗
m,n+mŵq = 0, from eq.(8), and denotẽτq = G(z)τq,

∂ ∗
m,n+mŵq = ∂ ∗

m,n+m
τ̃q

τq
=

τ̃q

τq

(∂ ∗
m,n+mτ̃q

τ̃q
−

∂ ∗
m,n+mτq

τq

)

= ŵq(G(z)−1)
∂ ∗

m,n+mτq

τq
= 0.

The operatorG(z) has the property, which is(G(z)− 1) f (t) = 0 implies f (t) is a
constant, from this we can get

∂ ∗
m,n+mτq

τq
= c (18)

where c is constant. Combining eq.(16) with eq.(18) finishesthe proof. �

Now we consider thep-reducedq-KP hierarchy, by setting(Lp)− = 0, i.e. Lp =
(Lp)+. From Lax equation ofq-KP hierarchy, thep-reduced condition means that
L is independent ont jp as ∂ jpL = 0, j = 1,2,3, · · · and τq is independent ont jp as
∂ jpτq = 0, j = 1,2,3, · · · .

Based on theorem 2, the Virasoro constraints and W-constraints for thep-reduced
q-KP hierarchy will be obtained. Letn = kp in theorem 2 and denote

t̃i = ti +
(1−q)i

i(1−qi)
xi, i = 1,2,3, · · · . (19)



First of all, form = 0, eq.(17) in theorem 2 becomes

(W (1)
kp − c)τq = 0. (20)

Let c = 0, we have thatαkpτq =
∂τq

∂ tkp
= 0, it is just the conditionLp = (Lp)+ for

p-reducedq-KP hierarchy.

For m = 1, it is

(
W (2)

kp

2
− c)τq = 0 (21)

Theorem 3. The Virasoro constraints imposed on the tau functionτq of the p-reduced
q-KP hierarchy are

Lkτq = 0, k =−1,0,1,2,3, · · · ,

here

L−1 =
1
p

∞

∑
n = p+1
n 6= 0(modp)

nt̃n
∂

∂ t̃n−p
+

1
2p ∑

i+ j=p
i jt̃it̃ j,

L0 =
1
p

∞

∑
n = 1
n 6= 0(modp)

nt̃n
∂

∂ t̃n
+(

p
24

−
1

24p
),

Lk =
1
p

∞

∑
n = 1
n 6= 0(modp)

nt̃n
∂

∂ t̃n+kp
+

1
2p ∑

i+ j = kp
i, j 6= 0(modp)

i jt̃it̃ j, k ≥ 1,

andLn satisfy Virasoro algebra commutation relations

[Ln,Lm] = (n−m)L(n+m), m,n =−1,0,1,2,3, · · · . (22)

Proof. Following the results in eq.(20) and eq.(21), we have

(
W (2)

kp

2
− c)τq = (

1
2 ∑

i+ j=kp

: αiα j : −c)τq = 0. (23)

Define Lk =
W (2)

kp
p , let c = p

24 −
1

24p in L0, otherwisec = 0. The p-reduced condition
n 6= 0(modp) can be naturally added without destroying the algebra structure, because
of t̃mp is presented together with ∂

∂ t̃mp+kp
.

By a straightforward and tedious calculation, the Virasorocommutation relations

[Ln,Lm] = (n−m)L(n+m), m,n =−1,0,1,2,3, · · ·



can be verified. �

For m = 2, it is

(
W (3)

kp

3
− c)τq = (

1
3 ∑

i+ j+h=kp

: αiα jαh : −c)τq = 0. (24)

Theorem 4. Let

wm = ∑
i+ j+h = mp
i, j,h 6= 0(modp)

: αiα jαh :, m ≥−2,

the W-constraints on the tau functionτq of the p-reducedq-KP hierarchy are

wmτq = 0,m ≥−2,

and they satisfy following algebra commutation relations

[Ln,wm] = (2n−m)wn+m,n ≥−1,m ≥−2.

For m ≥ 3, using the similar technique in theorem 3 and 4, we can deduce the higher
order algebraic constrains on the tau functionτq of the p-reducedq-KP hierarchy.
Remark 1. As we know, theq-deformed KP hierarchy reduces to the classical KP
hierarchy whenq → 1 and u0 = 0. The parameters(t̃1, t̃2, · · · , t̃i, · · ·) tend to (t1 +
x, t2, · · · , ti, · · ·) as q → 1. One can further identifyt1 + x with x in the classical KP
hierarchy, i.e.t1+ x → x. The deformation asq goes to 1 of Virasoro constraints and
W-constraints for thep-reducedq-KP hierarchy are identical with the results of the clas-
sical KP hierarchy given by L.A.Dickey [16] and S.Panda, S.Roy [18].

CONCLUSIONS AND DISCUSSIONS

To summarize, we have derived the Virasoro constraints and W-constraints of thep-
reducedq-KP hierarchy in theorem 3 and 4 respectively. The results ofthis paper
show obviously that the Virasoro constraint generators {Ln,n ≥−1} and W-constraints
{ wm,m ≥ −2} for the p-reducedq-KP hierarchy are different with the form of the KP
hierarchy. Furthermore, we also would like to point out the following interesting relation
between theq-KP hierarchy and the KP hierarchy

Ln = L̂n|
ti→t̃i=ti+

(1−q)i

i(1−qi)
xi

and it seems to demonstrate thatq-deformation is a non-uniform transformation for
coordinatesti → t̃i, which is consistent with results onτ function [10] and theq-soliton
[12] of theq-KP hierarchy. HerêLn [16, 18] are Virasoro generators of the KP hierarchy.
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