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GLOBALLY COUPLED CHAOTIC MAPS WITH BISTABLE BEHAVIOUR:

LARGE DEVIATIONS

GERHARD KELLER

Abstract. For a system of globally coupled chaotic maps with bistable behaviour we relate
the rate function for large deviations in the system size at finite time to dynamical properties
of the self consistent Perron-Frobenius operator (SCPFO) that describes the system in the
infinite size limit.

1. Introduction

The following system of globally coupled chaotic interval maps was studied in [BKZ09]: let
X = [−1

2 ,
1
2 ] and, for r ∈ (−2/3, 2/3), let

(1) Tr(x) := fr(x) mod

(
Z+

1

2

)
=

{
fr(x) on [−1

2 ,−
r
4),

fr(x)− 1 on (− r
4 ,

1
2 ],

where fr(x) = (r+4)x+r+1
2rx+2 is linear fractional. Observe that fr(−

1
2 ) = −1

2 , fr(−
r
4) = 1

2

and fr(
1
2) = 3

2 . The Tr are thus smooth deformations of the doubling map T0 on X, and
they are certainly among the best understood smooth chaotic dynamical systems. They are
semiconjugate to the full shift on two symbols, and they have a unique absolutely continuous
invariant measure with an analytic density and the strongest possible exponential mixing
properties.

The local units Tr are combined to a globally coupled map TN : XN → XN defined by

(2) TN (x) = (Tr(x)(x1), . . . ,T r(x)(xN )) with r(x) = G(φ(x))

where

(3) φ(x) = N−1
∑

i

xi and G(t) = A · tanh

(
B

A
t

)
with 0 < A 6 0.4 and 0 6 B 6 18.

The function G can indeed be a much more general sigmoidal function, see [BKZ09] for details.
The two faces of the dynamics of TN are highlighted by the following theorems. The first

one describes the long-time behaviour of the system at fixed system size N .

Theorem A (Theorem 1 of [BKZ09]). For any N ∈ N and all parameters A,B as in (3),
the map TN : XN → XN has a unique absolutely continuous invariant probability measure
µN . Its density is strictly positive and real analytic. The systems (TN ,µN ) are exponen-
tially mixing in various strong senses, in particular do Hölder observables have exponentially
decreasing correlations.
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As TN is equivariant under coordinate permutations, all (XN ,TN ) can be embedded into

the dynamical system (P(X), T̃ ) where P(X) denotes the space of Borel probability measures

on X and T̃ (Q) := Q ◦ T−1
G(φ(Q)) with φ(Q) :=

∫
X xQ(dx). Indeed, using the empirical

measures ǫN : XN → P(X), ǫN (x) = N−1
∑

i δxi
, it is obvious that ǫN ◦ TN = T̃ ◦ ǫN . Of

course, the dynamics of T̃ are not easier to understand than those of the TN . But if T̃ is
restricted to the space of probabilities Q = uλ absolutely continuous w.r.t Lebesgue measure

λ on X, then d(T̃Q)
dλ = P̃ u where P̃ : D → D is the self consistent Perron-Frobenius operator

of the system acting nonlinearly on the space D of probability densities on X by

(4) P̃ u = PG(φ(u))u where φ(u) =

∫

X
xu(x) dx.

Here Pr : D → D is the usual (linear) Perron-Frobenius operator of Tr. It has a unique fixed
point, namely the unique invariant density ur of the map Tr. The monotone increasing map
H : (−2

3 ,
2
3 ) → (−2

3 ,
2
3 ), H(r) = G(φ(ur)) always has the fixed point r = 0. It has two more

fixed points −r∗ < 0 < r∗ if and only if H ′(0) = A
6 > 1 [BKZ09, Section 2.5].

The dynamics of P̃ are summarised in the following theorem.

Theorem B (Theorem 2 and Remark 5 of [BKZ09]). Consider P̃ : D → D, D equipped with
the metric inherited from L1

λ. Then the following holds:

1) If A 6 6 (the stable regime), then u0 is the unique fixed point of P̃ , and it attracts all
densities, that is,

lim
n→∞

P̃nu = u0 for all u ∈ D.

2) If A > 6 (the bistable regime), then u−r∗ , u0, ur∗ are the only fixed points of P̃ . Now u0
is unstable, while u−r∗ and ur∗ are stable. More precisely:

a) u±r∗ are stable fixed points for P̃ in the sense that their respective basins of attraction
are L1

λ-open. They are indeed Lyapunov-stable.
b) If u∈ D is not attracted by u−r∗ or ur∗, then it is attracted by u0.
c) u0 is not stable. Indeed, u0 can be L1

λ-approximated by convex analytic densities from

either basin. It is a hyperbolic fixed point of P̃ in a sense made precise in Proposition 5
of [BKZ09].

Remark 1. a) In Proposition 3 it is shown that DA(u0) is the boundary of DA(u−)∪DA(u+).
I conjecture that even more is true, namely that DA(u0) is the common boundary of
DA(u−) and DA(u+).

b) The formula for the codimension one stable eigenspace given in [BKZ09, Proposition 5] is
wrong. We correct it at the end of section 4.

What are links between the finite-dimensional dynamics of the TN and their infinite-

dimensional idealization P̃? Here is a first one: it is a rather general fact for mean field coupled
piecewise expanding maps that all weak accumulation points of the sequence (µN ◦ǫ−1

N )N>0 of
probability measures on P(X) are supported by the set Pλ := {Q ∈ P(X) : Q ≪ λ} [Kel00].

Together with the observation from Theorem B that, for each u ∈ D, P̃nu converges to one
of u−r∗, u0 or ur∗ , this implies the next result.

Theorem C (Theorem 3 of [BKZ09]). The TN -invariant probability measures µN on XN

correspond to T̃ -invariant probability measures µN ◦ ǫ−1
N on P(X). All weak accumulation
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points π of the latter sequence are T̃ -invariant probability measures on P(X) supported by the
three fixed points u−r∗λ, u0λ = λ and ur∗λ.

The proof of this theorem does not use the fact that u±r∗ are stable while u0 is unstable

under P̃ . Taking this into account one would expect that all weak accumulation points π
are supported just by u−r∗ and ur∗ so that, due to the sign flip symmetry of the system, the
measures µN ◦ ǫ−1

N converge weakly to 1
2δu−r∗λ +

1
2δur∗λ.

Theorem C (partially) describes the limit “N → ∞” after the limit “time → ∞” was taken.
(Observe that µN = limt→∞ λ ◦ T−t

N for each N because of the mixing properties of the TN .)

In this note we describe another link between the dynamics of TN and P̃ . It is based on rate
functions for large deviations in the system size (that is when N → ∞) at finite time t, and
certain limits of these rate functions when t → ∞. In section 2 we draw some consequences
from Sanov’s theorem and the contraction principle that apply to rather general mean field
coupled dynamical systems and provide asymptotic expressions for related large deviations
rates in Theorem 1. For the special example introduced above we evaluate the expressions

from Theorem 1 in section 3. Corollary 1 relates these rates to the dynamics of P̃ on D, and

Theorem 2 shows that, although P̃ is bistable, the complicated boundaries of the domains of
attraction preclude a simple expression for these rates.

2. Large deviations in mean field coupled dynamical systems

We begin with some general considerations on large deviations in mean field coupled dy-
namical systems. So we allow that (X, d) is a complete metric space with a “reference” Borel
measure λ. Each Tr : X → X is assumed to be continuous λ-a.e., and the r-dependence
should be continuous in the following sense:

(5) ∀r ∀ǫ > 0∃δ > 0 : λ(cl{x : ∃r′ ∈ (r − δ, r + δ) s.th. d(Tr(x), Tr′(x)) > ǫ}) < ǫ

where cl(A) denotes the topological closure of a set A. This means that small changes in the
parameter cannot cause large deformations of the graphs of the map. The particular model
from the introduction obviously satisfies these assumptions.

We are interested in the large deviation behaviour of the systems (XN ,TN ) under initial
distributions QN

ũ = (ũ λ)⊗N on XN , i.e. when the initial vector x has i.i.d. entries with
density ũ with respect to the measure λ on X. Each x ∈ XN gives rise to an empirical
measure εx := 1

N

∑N
k=1 δxk

, and Sanov’s theorem (see e.g. [DZ98, Theorem 6.2.10]) states
that the empirical measures εx satisfy a large deviations principle (LDP) with good convex
rate function in the space P(X) of all Borel probability measures on X (equipped with the
topology of weak convergence) when N → ∞. The rate function I : P(X) → [0,+∞] is given
by

(6) I(Q) = H(Q|ũλ) =

{ ∫
u · log u

ũ dλ if Q = uλ≪ ũλ
+∞ otherwise

Instead of H(Q|ũλ) we write H(u|ũ) if Q = uλ.
To capture the time evolution of the system consider the map Γ : P(X) → P(X)N,

(7) Γ(Q) =
(
Q, T̃Q, T̃ 2Q, T̃ 3Q, . . .

)

In order to study large deviations as N → ∞ for the measures QN
ũ ◦ Γ−1 one needs to apply

the contraction principle to Γ. To this end it suffices to choose a topology on P(X)N such
that Γ is continuous at each Q with I(Q) < ∞, see [Puh91] or [Gar04] for details. The
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most obvious choice is the product topology. As T̃ is continuous at all measures Q ≪ λ (see

Lemma 2 in section 4), the same holds for each T̃ t. Therefore, the measures QN
ũ ◦ Γ−1 on

P(X)N satisfy a LDP with good rate function

(8) IΓ(ν) = inf{I(Q) : Γ(Q) = ν}

Consider the following special instances of such an LDP: Fix a measurable subset A ⊆ P(X)
and consider the sets

As,t = {ν = (νk)k∈N ∈ P(X)N : νk ∈ A (s 6 k < t)}

for s < t 6 ∞. Then, by the LDP,

−
◦
γs,t := − inf{IΓ(ν) : ν ∈

◦
As,t} 6 lim inf

N→∞

1

N
logQN

ũ {x ∈ XN : Γ(ǫx) ∈ As,t}

6 lim sup
N→∞

1

N
logQN

ũ {x ∈ XN : Γ(ǫx) ∈ As,t}

6− γ̄s,t := − inf{IΓ(ν) : ν ∈ Ās,t}.

(9)

Here P(X) is equipped with the Borel-σ-algebra of the weak topology on P(X). It coincides
with the Borel-σ-algebra of the τ -topology on P(X) which is stronger than the weak topology
because it is generated by all bounded measurable test functions ψ : X → R. For details
see e.g. [DZ98, section 6.2]. We note here that the restriction of the τ -topology to the space
{Q ∈ P(X) : Q ≪ λ} coincides with the restriction of the weak topology on L1

λ to D (after
identification of a density u with its measure Q = uλ).

From a dynamical point of view, it would be most interesting to study large deviations for
the sets As,∞. But since each (TN ,µN ) is mixing, QN

ũ {x ∈ XN : Γ(ǫx) ∈ As,∞} = 0 for all

s > 0 except if the set {x ∈ XN : ǫx ∈ A} has full λN -measure in XN , so that this leads
mostly to trivial results. Therefore the only meaningful way to look at the limit t→ ∞ is to

study
◦
γs,t and γ̄s,t for large t. To this end we provide the following lemma.

Proposition 1. Fix s > 0.

a)
◦
γs,t = inf{I(Q) : T̃ kQ ∈

◦
A (s 6 k < t)} and γ̄s,t = inf{I(Q) : T̃ kQ ∈ Ā (s 6 k < t)} for all

s < t 6 ∞.

b)
◦
γs,t 6

◦
γs,∞ and γ̄s,t 6 γ̄s,∞ for all t > s.

c) limt→∞ γ̄s,t = supt>s γ̄s,t = γ̄s,∞.

Only the last statement is not obvious. Its proof is deferred to section 4.
In order to get rid of the fixed initial time s we define

(10)
◦
γ(A, ũ) := inf

s

◦
γs,∞ = lim

s→∞

◦
γs,∞ and γ̄(A, ũ) := inf

s
γ̄s∞ = lim

s→∞
γ̄s∞ .

The notation recalls the dependence of all γ’s on A and ũ. The following corollary characterises
◦/−
γ (A; ũ) in terms of asymptotic dynamical properties of the dynamical system (D, P̃ ).

Theorem 1. For A ⊂ P(X) let A′ = {u ∈ D : uλ ∈ A}. Then the asymptotic values for the
rates in the LDP from (9) satisfy

(11)
◦/−
γ (A, ũ) = inf

{
H(u|ũ) : ∃s > 0 such that P̃ ku ∈

◦/−

A′ for all k > s

}
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where
◦/−

A′ denotes the interior/closure of A′ is w.r.t. the weak topology on L1
λ.

Proof. If one replaces the condition P̃ ku ∈
◦/−

A′ in (11) by T̃ k(uλ) ∈
◦/−

A , the identity (11)
is an immediate consequence of Proposition 1. So we have to show the equivalence of these
two conditions. Recall that the bijection u↔ uλ is a homeomorphism between D (equipped
with the weak L1

λ-topology) and Pλ := {Q ∈ P(X) : Q≪ λ} (equipped with the τ -topology).

Therefore, P̃ ku ∈ A′ is equivalent to T̃ k(uλ) ∈ A ∩ Pλ
Pλ (the closure in the relative τ -

topology on Pλ), which coincides with Ā ∩ Pλ. As T̃ k(uλ) ∈ Pλ for every u ∈ D, this shows

that P̃ ku ∈ A′ is equivalent to T̃ k(uλ) ∈ Ā. The argument for the interior is similar. �

In general, the infimum in (11) is difficult to evaluate. In the next section we have a closer
look at this problem for the special system introduced in section 1.

3. Large deviations for a bistable system with chaotic units

Recall from Theorem B that, for the example introduced in section 1, the dynamical system

(D, P̃ ) either has the unique globally stable fixed point u0, or it has the stable fixed points
u± := u±r∗ plus the “hyperbolic” fixed point u0. In the latter case the basins of u± are open
in the L1

λ-norm topology on D.
We specialise to sets Aα = {Q ∈ P(X) : φ(Q) > α}. It is open in the weak (and, a fortiori,

in the τ -topology), and its closure is Āα = {Q ∈ P(X) : φ(Q) > α}.
Theorem B from the introduction together with Theorem 1 implies the following identity.

Corollary 1. For each α < φ(u+),

(12) γ(ũ) := inf {H(u|ũ) : u ∈ DA(u+)} =
◦
γ(Aα, ũ) = γ̄(Aα, ũ)

where DA(u+) is the domain of attraction of the stable fixed point u+ of P̃ : D → D. Note
that this quantity is independent of α.

The determination of γ(ũ) is difficult. What can be said immediately is:

I) If ũ belongs to DA(u+), then γ(ũ) = 0.
II) If ũ belongs to DA(u−), then γ(ũ) is strictly positive, because DA(u−) is L1

λ - open.
There is no explicit lower bound on γ(ũ) that I can give in case ũ ∈ DA(u−), but the
following holds: As DA(u−) is open in L1

λ, there is δ > 0 such that Bδ(ũ) ⊂ DA(u−), and
as H(u|ũ) > ‖u − ũ‖21 by Pinsker’s inequality, this implies immediately that γ(ũ) > δ2.

As ũ ∈ DA(u−), the density ˆ̃u : x 7→ ũ(−x) belongs to DA(u+), and hence

(13) γ(ũ) 6 H(ˆ̃u|ũ)

Denote the “multiplicative” symmetrisation of ũ by

(14) u∗ = Z−1
∗ (ũˆ̃u)1/2 where Z∗ =

∫
(ũˆ̃u)1/2 dλ 6 1.

Estimate (13) can be rewritten now

γ(ũ) 6 H(ˆ̃u|ũ) = −2 logZ∗ +H(ũ|u∗).

A much better upper bound for γ(ũ) than this one is available.

Proposition 2. If ũ belongs to DA(u−), then 0 < γ(ũ) 6 H(u∗|ũ) = − logZ∗ < −
∫
log ũ(x)dx.
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Proof. We will see in Proposition 3 that each symmetric density u ∈ D can be L1
λ-approximated

by densities v from DA(u+) in such a way that the infimum of the entropies H(v|ũ) of the
approximating densities is less or equal to H(u|ũ). Therefore,

γ(ũ) 6 inf {H(u|ũ) : u ∈ D symmetric} .

We evaluate this infimum: for symmetric densities u,

H(u|ũ) =
1

2

∫

X
u log

u

ũ
dλ+

1

2

∫

X
û log

û

ˆ̃u
dλ =

∫
u log

u

u∗
dλ− logZ∗.

This quantity is minimised by u = u∗ so that γ 6 H(u∗|ũ) = − logZ∗ < −
∫
log u∗dλ =∫

log ũdλ by Jensen’s inequality. �

Proposition 3. Each u ∈ DA(u0) belongs to the L1
λ - closure of DA(u−) or of DA(u+) in D

or to both. If u is symmetric, it belongs to both closures.
In any case H(u|ũ) > lim infδ→0H(vδ |ũ) where the liminf is taken along a family of den-

sities vδ ∈ DA(u+) that approximates u.

The proof is deferred to section 4.
Because of the strong symmetry properties of our system one might conjecture that the

estimate in Proposition 2 is optimal. Our main result, Theorem 2 below, shows that this is
not the case. We start with some

Lemma 1. Suppose that inf ũ > 0 and let u∗ = Z−1
∗ (ũˆ̃u)1/2 as before. Let g be a bounded

function on X with
∫
g dλ = 0. Then, in the limit ‖g‖∞ → 0,

H(u∗ + g|ũ) = H(u∗|ũ)−

∫
log ũ · gas dλ+O

(∥∥∥∥
g2

u∗

∥∥∥∥
∞

)

where gas(x) =
1
2(g(x) − g(−x)) is the antisymmetric part of g.

The proof is a direct calculation.

Remark 2. Consider the case of Gibbs (=exponential) densities ũ = Z−1
β eβx for β ∈ R.

So we assume that the initial configuration (x1, . . . , xN ) is chosen “as randomly as possible”
under the sole constraint E[xi] = φ(ũ) = 1

2 coth(β)−
1
β , a quantity that ranges from −1

2 to 0

when β is varied in (−∞, 0). As ũ is decreasing for such β and as P̃ maps decreasing densities

to decreasing ones, P̃nũ is decreasing for all n, and so ũ belongs to DA(u−) ∪DA(u0).

In this case u∗ = 1, Z∗ = Z−1
β so that γ(ũ) 6 logZβ = β

2 + log 1−e−β

β , see Proposition 2.

Furthermore, d
dtH(u∗ + tg|ũ)|t=0 = −βφ(gas) = −βφ(g) by Lemma 1, so that the entropy

can be decreased only if the field of g is negative (recall that β < 0). This is the reason that
exponential densities ũ need a separate proof in the next theorem.

Theorem 2. Suppose inf ũ > 0 and let u∗ = Z−1
∗ (ũˆ̃u)1/2 be as before. Then there are densities

u ∈ DA(u+) such that H(u|ũ) < H(u∗|ũ).
As a consequence, γ(ũ) < H(u∗|ũ) = − logZ∗ with strict inequality.

Remark 3. I conjecture that Proposition 3 can be strengthened to show that DA(u0) is the
common boundary of DA(u+) and DA(u−) and that γ(ũ) = inf{H(u|ũ) : u ∈ DA(u0)}.
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4. Proofs

Lemma 2. Under assumption (5), if each Tr is continuous λ-a.e., then the map T̃ : P(X) →
P(X) is continuous at all measures Q ≪ λ.

Proof. The proof is similar to that of [BKZ09, Lemma 1]. Let Q,Qn ∈ P(X) and suppose

that Qn ⇀ Q weakly. It suffices to prove that
∫
ψ d(T̃Qn) →

∫
ψ d(T̃Q) for any Lipschitz

continuous ψ : X → R. Define rn = r(Qn) := G(φ(
∫
xQn(dx))) and r = r(Q) analogously.

Fix ε > 0 and denote Uε = cl{x ∈ X : ∃n > nε s.th. d(Tr(x), Trn(x)) > ε} where the nε
can be chosen such that λ(Uε) < ε by assumption (5). The weak convergence of Qn to Q
implies that lim supn→+∞Qn(Uε) 6 Q(Uε). Then, for n > nε,

∣∣∣
∫

X
ψ d(T̃Q)−

∫

X
ψ d(T̃Qn)

∣∣∣ =
∣∣∣
∫

X
ψ ◦ Tr dQ−

∫

X
ψ ◦ Trn dQn

∣∣∣

6

∣∣∣
∫

X
ψ ◦ Tr d(Q−Qn)

∣∣∣+
∣∣∣
∫

Uc
ε

(ψ ◦ Tr − ψ ◦ Trn) dQn

∣∣∣+
∣∣∣
∫

Uε

(ψ ◦ Tr − ψ ◦ Trn) dQn

∣∣∣

6

∣∣∣
∫

X
ψ ◦ Tr d(Q−Qn)

∣∣∣+ Lip(ψ) ε + 2‖ψ‖∞Qn(Uε).

Since Q≪ λ and the map Tr is continuous λ-a.e., the first term converges to zero as n→ ∞
and the third term is asymptotically bounded by lim supn→∞ 2‖ψ‖∞Qn(Uε) 6 2‖ψ‖∞Q(Uε)
which tends to zero when ε→ 0. �

Proof of Proposition 1. a) For finite t and also for t = ∞ this is a simple consequence of the
definitions and the properties of the product topology.

b) and c) It follows directly from the definitions of γ̄s,t and
◦
γs,t that both quantities are

increasing in t. This implies b) and shows that the limit and the supremum in c) coincide.
It remains to show that supt>s γ̄s,t > γ̄s,∞. We may assume that γs := supt>s γs,t < ∞,

and consider a sequence of densities (ut)t>s such that T̃ k(utλ) ∈ Ā for k = s, . . . , t and
limt→∞H(ut|ũ) = γs. Let m = ũλ and ht = ut/ũ. Then the the densities ht are uniformly
integrable w.r.t. m because they have uniformly bounded entropy [Kal01, Exercise 4.6], and
hence (ht)t>s is precompact in the weak topology on L1

m [Kal01, Lemma 4.13]. Let h be
any weak limit point of the ht. We show in Lemma 3 below that, for all weakly compact

subsets Dc ⊂ D ⊂ L1
m, the maps Dc → R, f 7→ d

dm T̃
k(fm) (k > 0) are continuous w.r.t. the

weak topology on L1
m. A fortiori, each measure T̃ k(hm) (k > s) with h as above is a limit

point of the the measures T̃ k(utλ) = T̃ k(htm) in the weak topology on P(X), and therefore

T̃ k(hm) ∈ Ā.
By part a) of the lemma it remains to show that H(hũ|ũ) 6 γs. Let, for 0 < η < 1,

hη = (1 − η)(h ∧ η−1) + η̃ where η̃ is chosen such that hη is a probability density w.r.t. m.
Observe that η̃ > η and that η̃ → 0 when η → 0. As

h(x) ln hη(x) >

{
h(x) ln h(x) > −1

e if h(x) 6 1
0 if h(x) > 1

,

these functions have an integrable minorant, and we can apply Fatou’s lemma:

H(hũ|ũ) =

∫
h ln hdm =

∫
lim inf
η→0

h lnhη dm 6 lim inf
η→0

∫
h ln hη dm.
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As, for each fixed η, hη is bounded away from 0 and +∞, the weak convergence of the ht
leads to

H(hũ|ũ) 6 lim inf
η→0

lim
t→∞

∫
ht lnh

η dm = lim inf
η→0

lim
t→∞

∫
ut lnh

η dλ

= lim inf
η→0

lim
t→∞

(∫
ut lnht dλ−

∫
ut ln

ht
hη

dλ

)

= lim inf
η→0

lim
t→∞

(H(ut|ũ)−H(ut|ũh
η))

6 lim
t→∞

H(ut|ũ)

= γα,s

�

Lemma 3. Let m = ũλ be as in the proof of Proposition 1. For each n > 0 the map

ϕn : Dc → R, f 7→ φ(P̃n(fũ)), is continuous w.r.t. the weak topology on L1
m for all weakly

compact subsets Dc ⊂ D ⊂ L1
m.

Proof. We prove this by induction on n. For n = 0, f 7→ ϕ0(f) = φ(fũ) =
∫
xf(x)m(dx) is

obviously continuous. Suppose the statement holds for k = 0, . . . , n−1. Then f 7→ rk+1(f) :=
G(ϕk(f)) is continuous for all such k. Suppose now that ft ∈ Dc and ft → f weakly in L1

m.
Denote T

r(f) := Trn(f) ◦ . . . ◦ Tr1(f). Then there are ηt → 0 and measurable subsets At ⊂ X
such that

|T
r(ft)(x)− T

r(f)(x)| < ηt for all x ∈ X \ At and m(At) < ηt.

Hence,

|φ(P̃n(ftũ))− φ(P̃n(fũ))| =

∣∣∣∣
∫
T
r(ft)(x) · ft(x)m(dx) −

∫
T
r(f)(x) · f(x)m(dx)

∣∣∣∣

6

∣∣∣∣
∫
T
r(f)(x) · (ft(x)− f(x))m(dx)

∣∣∣∣+ ηt +

∫

At

ft(x)m(dx)

The first term in this sum converges to zero as t → ∞ because the ft converge to f weakly in
L1
m, the second term converges to zero by definition, and the third one because Dc is weakly

compact in L1
m so that the ft are uniformly m-integrable and m(At) < ηt → 0. �

For the remaining proofs we need to collect some notation and facts from [BKZ09]. In that
paper essential use was made of a subclass D′ ⊂ D of probability densities on X = [−1

2 ,
1
2 ]

that are (generalised) convex combinations of densities wy(x) = 1−y2/4
(1−xy)2

, y ∈ Y := [−2
3 ,

2
3 ].

Recall that v ∈ D′ is a generalised convex combination of the wy if there is a Borel probability
µ on Y (the representing measure) such that v(x) =

∫
Y wy(x)µ(dy).

The following aspect of these densities will be used in the sequel:

(15)

Each fractional linear map on R whose asymptotic value does not belong to [−3
2 ,

3
2 ]

can be written in the form f(x) = x+b
yx+d with y ∈ Y . Its inverse is f−1(z) = dz−b

1−yz ,

whose derivative (f−1)′(z) = (d− by)(1− y2

4 )
−1wy(z) is a multiple of wy. Therefore, if

an interval J is mapped diffeomorphically onto X by f , then the normalised Lebesgue
measure on J is transformed into the measure wyλ on X. In particular, the density
of this transformed measure belongs to D′.

As each map Tr has two increasing linear fractional branches, each mapping a subinterval
of X onto X, a density wy is transformed under Tr into a convex combination Prwy of two
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densities of this type. More generally, convex combinations of densities wy are transformed to
convex combinations of wy’s which means that Pr(D

′) ⊆ D′. The action of Pr on D′ induces
an action L∗

r : P(Y ) → P(Y ) on their representing measures such that Pru =
∫
Y wy L

∗
rµ(dy)

for u =
∫
Y wy µ(dy). Analogously, there is a nonlinear (self consistent) operator L̃∗ on P(Y )

such that P̃ u =
∫
Y wy L̃

∗µ(dy) [BKZ09, Section 4.1].
L∗
r can be described in terms of two contractions σr, τr : Y → Y , namely L∗

rδy = pr δσr(y)+
(1− pr) δτr(y). Both contractions are increasing on Y , and they satisfy σr 6 τr. The maps σr
and τr correspond to the mass transport by the left and right branch of Tr, respectively.

Let R := [−2
5 ,

2
5 ]. For r = (r1, . . . , rn) ∈ Rn denote by T

(n)
r and P

(n)
r the composition

Trn ◦ · · · ◦Tr1 and its corresponding Perron Frobenius operator, respectively. For each u ∈ D,

P̃nu = P
(n)
r u for a suitable r ∈ Rn that is determined by the density u. Analogously, for

u ∈ D′ with representing measure µ, L̃∗nµ = L
∗(n)
r µ. We note the following fact:

(16)

L∗(n)δy is a convex combination of 2n point masses in points κn ◦ · · · ◦ κ1(y) where
κi ∈ {σri , τri} for all i. Each of these contributions represents the transport of wy by
the corresponding branch of Tr. In view of the monotonicity properties of the σr and
τr, σr(y) 6 κn ◦ · · · ◦ κ1(y) 6 τr(y) for all these points.

For later use we note some further estimates. They follow easily from the explicit formulas

wy(x) =
1−y2/4
(1−xy)2

and σr(y) =
2(y+r)

(r+1)y+r+4 [BKZ09, Section 4.1] using σ−1
r (r) = r

1−r .

‖wσ−1
r (r) − 1‖∞ 6 const ·|σ−1

r (r)| 6 const ·|r|

|φ(wy)| 6 const ·|y|

|G−1(r)| 6 const ·|r|

(17)

We will also use the fact that the L∗
r and also L̃∗ respect the stochastic order ≺ on P(Y )

[BKZ09, Section 4.3]. Finally we introduce one further notation: χr(x) = −1 if x < − r
4 and

χr(x) = 1 if x > − r
4 . Recall from (1) that − r

4 is the discontinuity of Tr.

Proof of Proposition 3. Let u ∈ DA(u0) and ε > 0. We will show that there is v ∈ DA(u−)∪
DA(u+) such that ‖u − v‖1 < 3ε. First there is a Lipschitz-continuous v1 ∈ D such that
‖u− v1‖1 < ε. Fix n such that ‖v1−E[v1|Z]‖ < ε for each partition Z of X into subintervals

of length at most (34 )
n. As inf T ′

r > 4
3 for each r ∈ R, each composition T

(n)
r with r =

(r1, . . . , rn) ∈ Rn gives rise to a decomposition Zr of X into 2n monotonicity intervals of at
most this size. Hence, letting vr := E[v1|Zr], we have ‖v1 − vr‖1 < ε for sufficiently large

n. Observe that, typically, P̃nvr 6= P
(n)
r vr, because G(φ(P̃

ivr)) does not coincide with ri+1

for all i = 0, . . . , n − 1. But the map associating with r ∈ Rn the n-tupel of parameters

(G(φ(vr)), G(φ(P̃ vr)), . . . , G(φ(P̃
n−1vr))) ∈ Rn is continuous so that it has at least one fixed

point according to Brouwer’s theorem. From now on, r denotes such a fixed point. Then

ṽ := P̃nvr = P
(n)
r vr is a convex combination of the 2n densities wκn◦···◦κ1(0), see (16). So ṽ

belongs to D′, see (15). If ṽ ∈ DA(u−) ∪ DA(u+), then also vr ∈ DA(u−) ∪ DA(u+) and as
‖vr − u‖1 < 2ε, we are done. Otherwise, vr ∈ DA(u0), and we will approximate it by some
vδ ∈ DA(u−) ∪DA(u+).

To this end fix functions gj ∈ L1
m such that φ(gj) = 1 and Prj+1gj = 0 for j = 0, . . . , n− 1.

Possible choices are gj = βj ·χrj+1 ·T
′
rj+1

where βj is a suitable normalising constant. Finally

let q ∈ D be constant on the rightmost (or leftmost) monotonicity interval of T
(n)
r and 0
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elsewhere. Then define

vδ := (1− δ)vr + δ


q +

n−1∑

j=0

γj
gj

P
(j)
r 1

◦ T
(j)
r




whereIt follows that δ > 0 is small and where γ0, . . . , γn−1 are determined such that φ(P
(k)
r vδ) =

φ(P
(k)
r vr) for k = 0, . . . , n− 1. This can be done recursively for k = n− 1, . . . , 0 because

φ(P
(k)
r vδ)− φ(P

(k)
r vr)

=δ


φ(P (k)

r (q − vr)) +

k−1∑

j=0

γjφ(Prk ◦ . . . ◦ Prj+1gj)

+ γkφ(gj) +
n−1∑

j=k+1

γjφ

(
P

(k)
r 1 ·

(
gj

P
(j)
r 1

◦ Tr
j
◦ . . . ◦ Trk+1

))


=δ


φ(P (k)

r (q − vr)) + γk +

n−1∑

j=k+1

γjφ

(
P

(k)
r 1 ·

(
gj

P
(j)
r 1

◦ Tr
j
◦ . . . ◦ Trk+1

))


for all these k. Note that the choice of the γj does not depend on δ. This implies that
‖vδ − vr‖1 6 δCn for some constant Cn independent of δ and therefore ‖vδ − u‖1 < 3ε when

δ < C−1
n ε. Note also that vδ ∈ D for sufficiently small δ > 0 because

∫ gj

P
(j)
r 1

◦ T
(j)
r (x)dx =

∫
gj(x)dx =

∫
Prj+1gj(x)dx = 0, and infx vr(x) > 0 since vr ∈ D′.

Therefore, P̃nvδ = P
(n)
r vδ = (1 − δ)P

(n)
r vr + δP

(n)
r q belongs to D′ and, denoting the

representing measures of P
(n)
r vδ, P

(n)
r vr and P

(n)
r q by µδ, µr and µq, respectively, it follows

that µδ = (1 − δ)µr + δµq. Now the choice of q as being concentrated on the rightmost (or

leftmost) monotonicity interval of T
(n)
r implies that µq ≻ µr (or µq ≺ µr), compare (16).

Therefore, µδ ≻ µr (or µδ ≺ µr).

It follows that at most one of the two densities P̃nvδ = P
(n)
r vδ and ṽ = P

(n)
r vr = P̃nvr

can belong to DA(u0), see [BKZ09, Lemma 13]. As we assumed here that vr ∈ DA(u0), we

conclude that P̃nvδ ∈ DA(u−) ∪DA(u+) and hence also vδ ∈ DA(u−) ∪DA(u+).
It remains to check that the entropies H(vδ|ũ) approach H(u|ũ) when first δ → 0 and then

n → ∞ and ε → 0. As it is possible to perform the first approximation of u by a Lipschitz
density v in such a way that |H(v|ũ) − H(u|ũ)| < ε, this follows immediately, because all
other densities occurring in the proof are bounded in a way that L1

λ - convergence implies
convergence of the relative entropies. �

Proof of Theorem 2.
Exponential densities: As indicated in Remark 2, we begin with the special case of expo-
nential densities ũ(x) = Z−1

β eβx, β < 0. Recall that u∗ = 1 in this case.

As H(u∗+g|ũ) = H(u∗|ũ)−βφ(gas)+O(‖g‖2∞) = H(u∗|ũ)−βφ(g)+O(‖g‖2∞) for functions
g with

∫
g(x) dx = 0, we will construct densities

u = u∗ + g , g = (wσ−1
r (r) − 1 + trgr) (r > 0)
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with suitable functions gr such that Prgr = 0 and φ(gr) = 1. This ensures on the one hand
that

φ(g) = φ(wσ−1
r (r) − 1 + trgr) = φ(wσ−1

r (r)) + tr,

so that, choosing tr = G−1(r) − φ(wσ−1
r (r)), we can make sure that φ(g) = G−1(r) > 0

and hence H(u|ũ) < H(u∗|ũ) for sufficiently small r > 0. To control the O(||g||2∞) - term
one has to use the estimates in (17). On the other hand, such a choice guarantees that

P̃ u = PG(φ(u))u = PG(φ(g))u = Pru = Prwσ−1
r (r) = pr(σ

−1
r (r)) · wσr(σ

−1
r (r)) + (1− pr(σ

−1
r (r))) ·

wτr(σ
−1
r (r)) = (12 − r

2−r ) · wr + (12 + r
2−r ) · wτr(σ

−1
r (r)) where we used the explicit formula for

pr(y) from [BKZ09, Eq. (4.4)]. Therefore, P̃ u belongs to D′ with representing measure
(12 − r

2−r )δr + (12 + r
2−r )δτr(σ−1

r (r)) ≻ δr ≻ δ0 (observe that τr(σ
−1
r (r)) > σr(σ

−1
r (r)) = r).

Hence P̃ u ∈ DA(u+) by [BKZ09, Proposition 2].
It remains to construct the functions gr. Possible choices are gr = (2 + O(r))χr T

′
r with

O(r) chosen such that φ(gr) = 1.

The case of general ũ: For each antisymmetric, bounded g : X → R such that P0g = 0, we
have

0 =

∫
P0g(x)dx =

∫
g(x)T0(x)dx =

∫
g(x)(2x −

1

2
χ0(x))dx = 2φ(g) −

∫ 1/2

0
g(x)dx,

so that φ(g) = 1
2

∫ 1/2
0 g(x)dx. Motivated by Lemma 1 we fix any such g with

(18) φ(g) = 0 and

∫
log ũ(x) · g(x)dx > 0.

As the linear space of all bounded, antisymmetric g with P0g = 0 is infinite-dimensional,
such a function g will always exist except if ũ is an exponential density. (For example,
g(x) = 1

3χ0(x)− sign(sin(6πx)) will do in case ũ = ur for r < 0, as a numerical check shows.
Indeed,

∫
log ur(x) · g(x)dx > 0 for all r < 0 in this case.) Observe that, for sufficiently small

t > 0,

(19) ∆t := H(u∗|ũ)−H(u∗ + tg|ũ) > 0

because of Lemma 1 and (18).
We proceed by approximating u∗ + tg by a density that is mapped under finitely many

iterations of P̃ to a density from D′. Let Zn be the partition of X into monotonicity intervals

of T n
0 and u

(n)
∗ = E[u∗|Zn]. As u∗ is symmetric and as all intervals of Zn have length 2−n,

also u
(n)
∗ is symmetric. Choose n = n(t) such that

(20) |H(u∗+tg|ũ)−H(u
(n)
∗ +tg|ũ)| =

∣∣∣∣∣

∫
g log

u∗

u
(n)
∗

dλ

∣∣∣∣∣+O

(∥∥∥∥
g2

u∗

∥∥∥∥
∞

)
+O

(∥∥∥∥∥
g2

u
(n)
∗

∥∥∥∥∥
∞

)
<

∆t

4

in the limit ‖g‖∞ → 0. (Observe that inf u
(n)
∗ > inf u∗ > 0.) Let β > 0 and

vt,β := u
(n)
∗ + t


g + β




n−1∑

j=0

4γjχ0 ◦ T
j
0 + 4(χr − r/2) ◦ T n

0





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where r = r(β, t) is the unique (positive !) solution of G(tβ(1 − r2/4)) = r, and γ0, . . . , γn−1

are determined such that

φ(P k
0 vt,β) =

{
0 for k = 0, . . . , n− 1
tβ(1− r2/4) for k = n.

This can be done recursively as in the proof of Proposition 3: as all P k
0 u

(n)
∗ are symmetric, as

P0χ0 = 0, P0g = 0 and φ(g) = 0, and as φ(P k
0 (χ0 ◦ T

j
0 )) =

∫
P j−k
0 id ·χ0 dλ = 2−(j−k) φ(χ0) =

1
42

−(j−k) for j > k,

φ(vt,β) = tβ




n−1∑

j=0

γj2
−j + 2−n(1− r2/4)




φ(P k
0 vt,β) = tβ

k−1∑

j=0

4γjφ(P
k−j
0 χ0) + tβ

n−1∑

j=k

4γjφ(χ0 ◦ T
j−k
0 ) + tβ2−(n−k)(1− r2/4)

= tβ

n−1∑

j=k

γj2
−(j−k) + tβ2−(n−k)(1− r2/4) for k > 1.

Observe that the γj can be chosen independently of t and β. Observe also that
∫
χr(x)dx =

r/2 so that vt,β is indeed a probability density for small enough t and β. In view of (19) and
(20),

H(vt,β |ũ) = H(u∗|ũ)−∆t + {H(vt,β |ũ)−H(u
(n)
∗ + tg|ũ)}.

The term in curly brackets is bounded by ∆t

4 provided ‖tβ(
∑n−1

j=0 4γjχ0 ◦ T
j
0 + 4(χr − r/2) ◦

T n
0 )‖∞ is small enough. But this quantity is bounded by tβ4(

∑n
j=0 |γj | + 1), so it can be

controlled by choosing β close to 0. Therefore, for all sufficiently small t > 0 and n = n(t) as
above, there is βt > 0 such that

(21) H(vt,β|ũ) < H(u∗|ũ)−
∆t

2
for all |β| 6 βt.

As a final step we show that vt,β ∈ DA(u+) if 0 < β 6 βt. As G(φ(P
k
0 vt,β)) = G(0) = 0 for

k = 0, . . . , n − 1, we have

P̃nvt,β = Pn
0 vt,β

= Pn
0 u

(n)
∗ + tPn

0 g + tβ




n−1∑

j=0

4γjP
n−j
0 χ0 + 4(χr − r/2)




= Pn
0 u

(n)
∗ + tβ4(χr − r/2)

= 1 + tβ4(χr − r/2).

Here we used that Pn
0 u

(n)
∗ = 1, P0g = 0 and P0χ0 = 0. Therefore, by the above choice of

r = r(t, β),

G(φ(P̃nvt,β)) = G(φ(1 + tβ4(χr − r/2))) = G(φ(tβ4χr)) = G(tβ(1 − r2/4)) = r

so that

P̃n+1vt,β = Pr(1 + tβ4(χr − r/2))

= (1 + tβ(−4− 2r))Pr1[− 1
2
,− r

4
] + (1 + tβ(4− 2r))Pr1[− r

4
, 1
2
]
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Indeed, this is a convex combination of (12 − r
4)

−1Pr1[− 1
2
,− r

4
] and (12 + r

4)
−1Pr1[− r

4
, 1
2
], both

densities in D′. The representing measure of the first one is supported by the point σr(0),
that of the second one by τr(0). As r > 0, these points are to the right hand side of 0 so

that the supporting measure of P̃n+1vt,β is ≻ δ0. It follows from Lemma 13 in [BKZ09] that

P̃n+1vt,β ∈ DA(u+) so that also vt,β ∈ DA(u+).
�

Hyperbolicity of the fixed point h0 = 1 - a correction

Proposition 5 of [BKZ09] states that DP̃|D∩BV(X) has h0 = 1 as a hyperbolic fixed point. The

proof gives (correctly) the unstable eigendirection [x] with eigenvalue λ = 1
2 + B

12 , but the
codimension one stable eigenspace given there is wrong. Instead it is

Es :=

{
g ∈ BV(X) :

∫
g(x)dx = 0andφ

(
(λ− P0)

−1(g)
)
= 0

}
.

Indeed, for g ∈ Es we have φ(g) = −
∑∞

k=1 φ
(
(λ−1P0)

k(g)
)
, from which it follows easily that

(
DP̃|h0

)n
(g) = Pn

0 g −B · φ
(
(λ− P0)

−1(Pn
0 g)
)
= O(2−n).
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