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Abstract

The notion of non-degenerate solutions for the dispersionless Toda
hierarchy is generalized to the universal Whitham hierarchy of genus
zero with M 4 1 marked points. These solutions are characterized by a
Riemann-Hilbert problem (generalized string equations) with respect
to two-dimensional canonical transformations, and may be thought of
as a kind of general solutions of the hierarchy. The Riemann-Hilbert
problem contains M arbitrary functions H,(20,24), a = 1,..., M,
which play the role of generating functions of two-dimensional canon-
ical transformations. The solution of the Riemann-Hilbert problem is
described by period maps on the space of (M + 1)-tuples (z4(p) : @ =
0,1,..., M) of conformal maps from M disks of the Riemann sphere
and their complements to the Riemann sphere. The period maps are
defined by an infinite number of contour integrals that generalize the
notion of harmonic moments. The F-function (free energy) of these
solutions is also shown to have a contour integral representation.
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1 Introduction

The universal Whitham hierarchy is a unified framework for various dis-
persionless integrable systems and Whitham modulation equations [4]. In
particular, the hierarchy of genus zero, which is the subject of this paper,
is a natural generalization of the dispersionless KP and Toda hierarchies
[9]. Therefore it is natural to ask to what extent the rich contents of the
dispersionless KP and Toda hierarchies can be generalized to the hierarchy
of genus zero.

This issue has been sought for since the turn of the century when the
study of dispersionlss integrable systems entered a new stage. As regards
the problem of special solutions, the classical “hodograph method” has been
generalized [II, [11] to obtain a class of solutions including Krichever’s “alge-
braic orbits” [4]. Another class of special solutions (also related to algebraic
orbits) have been studied in the context of the Virasoro constraints [5, 6]
and the large-N limit of multiple orthogonal polynomials [7]. It should be
stressed that the structure of infinitesimal additional symmetries (including
the Virasoro symmetries) was fully elucidated by the work of the Madrid
group [5L[6]. As in the case of the dispersionless KP and Toda hierarchies [9],
those symmetries are derived from a “nonlinear” Riemann-Hilbert problem
(or an equivalent 0 problem [2}3]) with respect to two-dimensional canonical
transformations. As regards the Riemann-Hilbert problem itself, however,
no effective method for finding an explicit form of solutions is known apart
from very special cases; one has to resort to a genuine existence theorem
(though it is enough for deriving the infinitesimal symmetries). Moreover,
the F-function (free energy), also known as the dispersionless (logarithm of)
tau function, has to be treated separately in this approach.

Recently, one of the present authors reformulated the Riemann-Hilbert
problem for the dispersionless Toda hierarchy in a slightly different form,
and introduced the notion of “non-degenerate solutions” for which a more
effective description is available [I3]. A central idea of this result stems
from the work of Wiegmann and Zabrodin [I4] on an integrable structure
of univalent conformal maps in Riemann’s mapping theorem. They used
the harmonic moments of the domain to interpret the conformal maps as
a special solution of the dispersionless Toda hierarchy. This result can be
generalized to pairs of conformal maps [12]. The harmonic moments are
redefined therein as contour integrals that include the conformal map (or
the pair of conformal maps), and shown to give a system of local coordinates
on the space of pairs of conformal maps. Actually, this amounts to solving
a Riemann-Hilbert problem (or “string equations”) in a special case [§].



The method of harmonic moments were generalized later by Zabrodin to a
larger class of solutions of the dispersionless Toda hierarchy [15]. The notion
of non-degenerate solutions is a rigorous reformulation of those solutions,
which thereby turn out to be a kind of general (or generic) solutions of the
dispersionless Toda hierarchy. The goal of this paper is to generalize these
results [I3] to the universal Whitham hierarchy of genus zero.

Let us briefly recall the notion of non-degenerate solutions of the disper-
sionless Toda hierarchy. Those solutions are characterized by a Riemann-
Hilbert problem of the following form: Let H(z, Z) be a holomorphic func-
tion of two variables defined in a suitable domain (not specified here),
and H,(z,2) and H3(z,Z) denote the derivatives H,(z,2) = 0H(z,Z2)/0z,
H:(z,2) = 0H(z,Z)/0Z. Moreover, suppose that H(z, Z) satisfies the non-
degeneracy condition

Hzi(zv 2) 7£ 0.

The problem is to find four functions £(P), M(P), L(P), M(P) of a complex
variable P with the following properties:

(i) L(P) and M(P) are holomorphic functions in the punctured disk 1 <
|P| < 0o, L(P) being univalent therein, and have a Laurent expansion
of the form

L(P)=P+) u, P,
n=1
M(P) = " ntn L(P)" +tg+ > v L(P)".
n=1 n=1

(i) £(P)~! and ./~\;((P) are holomorphic functions in the punctured disk
0 < |P| < 1, L(P) being univalent therein, and have a Laurent expan-
sion of the form

L(P)™ = ianpn—l (ig # 0),
n=0

M(P) = — i nt_nL(P)™™ 4ty — i v_nL(P)".
n=1 n=1

(iii) These functions can be analytically continued to a neighborhood of the
unit circle |P| = 1 and satisfy the functional equations (generalized
string equations)

M(P) = L(P)H.(L(P),L(P)), M(P)=—L(P)H:(L(P),L(P)) (1)



therein.

If the equations
w=zH,(2,2), w=—-ZH3(z,2)

can be solved for Z, the map (z,w) — (f(z,w),g(z,w)) = (Z,%) becomes a
two-dimensional canonical transformation (or symplectic map) with respect
to the symplectic form

dz N dw dz N\ dw

)
z z

the function H(z, Z) being its “generating function”. It is well known that
this is a normal form of canonical transformations in a “general position” of
the set of all canonical transformations. (I]) can be thus rewritten as

L(P) = f(L(P), M(P)), M(P) = g(L(P), M(P)). (2)

This is a Riemann-Hilbert problem of the standard form that characterizes
the Lax and Orlov-Schulman functions of the dispersionless Toda hierarchy
[9]. The aforementioned remark on canonical transformations with gener-
ating functions imply that the non-degenerate solutions are indeed general
solutions of the dispersionless Toda hierarchy.

An advantage of ([Il) over (2]) is that it is “solvable” in the following sense.
The generalized string equations (I]) can be converted to the infinite system
of equations

nto= - ¢ H.(L(P),L(P)L(P)"dL(P),
27TZ |p‘_1
nton = —— ¢ HA(C(P), £(P)L(P)"dE(P),
27TZ |p‘_1 (3)
g — L H.(L(P), £(P))dL(P)
27TZ |p‘_1
b H:(L(P), L(P))dL(P),
271 |P|=1
and
v = 2i L(L(P), £(P))L(P)"dL(P),
1P (4)
o= e b HA(L(P), E(P)E(P) " dE(P)
271 |P|=1



for n = 1,2,.... Note that the contour integrals are analogues of har-
monic moments; in the terminology of geometry, they are a kind of “period
integrals”. A fundamental fact [I3] is that the first set ([3) of these period
integrals give a system of local coordinates on the space of the pairs (£, £~) of
conformal maps. This implies that the “period map” (£, L) — (t, : n € Z)
is (locally) invertible, and the inverse map and the second set () of period
integrals give a (unique) solution of the Riemann-Hilbert problem. Remark-
ably, the F-function, too, turns out to have a contour integral representation
[13].

In the language of the universal Whitham hierarchy of genus zero, the
dispersionless Toda hierarchy amounts to the case with two “marked points”.
The general (M+1)-point hierarchy is formulated by M+1 pairs (z4(p), Ca(p)),
a =0,1,...,M, of Lax and Orlov-Schulman functions. In the two-point
(M = 1) case, these functions are connected with the Lax and Orlov-
Schulman functions of the dispersionless Toda hierarchy as

z20(p) = L(P), 21(p) = L(P) 7,

Colp) = M(P)L(P)™,  Gi(p) = —M(P)L(P),

where the coordinates p and P of the Riemann sphere in both hierarchies
are related as

p:P+U1.

Thus the marked points P = oo, 0 of the dispersionless Toda hierarchy cor-
respond to the marked points p = 00, u; of the universal Whitham hierarchy.
Bearing this interpretation of the dispersionless Toda hierarchy in mind, we
turn to the M + 1-point case.

This paper is organized as follows. In Section 2, we review the funda-
mental structure of the universal Whitham hierarchy of genus zero. Building
blocks of the hierarchy, such as the Lax and Orlov-Schulmann functions, the
S-functions, the F-function and the generalized Grunsky coefficients, are
introduced in detail. For technical reasons, the definition of the F-function
in our previous work [0} [IT] is slightly modified here, though this is not a
serious problem. In Section 3, we formulate the Riemann-Hilbert problem
that defines non-degenerate solutions. The basic setup is parallel to the
formulation by the Madrid group [5, 6]. Our generalized string equations
have M arbitrary functions H,(z0,24), @ = 1,..., M, as functional data.
As in the case of the dispersionless Toda hierarchy, these functions play the
role of generating functions of two-dimensional canonical transformations.
In Section 4, we generalize the period integrals (B]) and () to the space Z



of (M + 1)-tuples (zo(p) : @« = 0,1,..., M) of conformal maps, and show
that a half of them give a system of local coordinates on Z. This justi-
fies the definition of non-degenerate solutions. Section 5 is an intermediate
step towards the construction of the F-function. We present here a con-
tour integral representation of the potentials ¢,,a = 1,..., M, that show
up in the Laurent expansions of the S-functions. These ¢-functions are
used in Section 6 for the construction of the F-function. As in the case
of the dispersionless Toda hierarchy, we define a set of auxiliary functions
Ja1(2052a), Ja,2(20, 2a), @ = 1,..., M. These functions are used to express
the F-function in terms of contour integrals. In Section 7, we illustrate the
construction of non-degenerate solutions in a few special cases that amount
to the examples studied for the dispersionless Toda hierarchy [13].
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Scientific Research No. 19104002, 19540179 and No. 21540218 from the
Japan Society for the Promotionof Science. TT is partly supported by the
grant of the State University — Higher School of Economics, Russia, for the
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2 Building blocks of universal Whitham hierarchy

In this section we review essential facts on the universal Whitham hierarchy
of genus zero necessary for our later discussion, following our previous work
[10L 11]. The notations are mostly the same as [10][11], except that, after the
notation of the recent work [7] of the Madrid group, Greek indices «, j3,. ..
range over 0,1,..., M and Latin indices a,b,... over 1,..., M.

Lax functions The Lax functions z,(p), « = 0,1,..., M, are functions
with Laurent expansions of the form

(o @]
20(p) =p+ Y uop I,
=2

Ta > i
Za(P)Zp_q —i—Zuaj(p—qa)J U (a=1,...,M),

()

J=1

The authors of [10] sincerely apologize numerous typographical errors in the proofs in
it, but the statements there are correct. The only differences from [I0] are the definition
of the F-function (29)) and, consequently, changes of several signatures in, e.g., (32]).



in a neighborhood of p = oo and p = q,, respectively. The coefficients
Uaj (Ta = Uqo) and the centers g, are dynamical variables. To consider
a Riemann-Hilbert problem [5, [6], we choose a set of disjoint positively
oriented simple closed curves C1,...,Cys that encircle g1,...,qy counter-
clockwise, and assume that the Laurent expansion of z,(p) converges in the
inside D, of C, and that the Laurent expansion of zo(p) converges in a
neighborhood of p = oo and can be analytically continued, as a holomorphic
function, to the outside C ~\ (D U---U Dyy) of D,’s.

Lax equations The hierarchy has M + 1 series of time evolutions with
time variables ty,, n = 1,2,... and typ,a =1,...,. M, n=10,1,2,.... The
time evolutions of the Lax functions are defined by the Lax equations

80m26(p) = {Qom(p)a Zﬁ(p)}, aom = a/atany (6)
with respect to the Poisson bracket
of Og af Og

{f’g}:({)_pat—ol_at—ola_p' (7)

The Hamiltonians Q,,(p) are defined as

Qon(p) = (ZO(p)n) (0,>0)° Qan(p) = (Za(p)n) (a,<0) (n=12,...), (8)
Qao(p) = —log(p — qa),

where ( )(0720) denotes the projection to non-negative powers of p, and
( )(a,<0) the projection to negative powers of p — g,. In other words,

20(p)" = Qoa(p) + O(p~")  (p = o0),
2a(p)" = Qan(p) + O(1) (P = qu)

for n > 1. Qun(p) satisfies the dispersionless Zakharov-Shabat equations

aBmQan(p) - 8omQBm(p) + {Qan(p)v Qﬁm(p)} =0. (10)

As pointed out in [5], the dressing functions of the universal Whitham
hierarchy have the following form:

9)

wo0) =Y w0, wa®) = Pajlp—a), (11)
j=1 Jj=0

20(p) :eadsoo(p)p, 2a(p) = e2dea(p) (p— qt(lO))—l.

The following is due to [5], Theorem3.



Proposition 2.1. If (zo(p) : @« =0,1,..., M) is a solution of the universal
Whitham hierarchy, then there exists dressing functions ¢o(p) of the form
(), such that

a= L0 andn #0),
a=L08%#0 andn=0),

Qan — Ra (p)n
Q00 — log 24 (p)

z0(p) =e™ Wz (p) = e W) (p — g{V) 7, (12)
and 3
Vomcpﬁ = Qan,ﬁa (13)
where
Qon — 5a05n125(p)_1 (a# B and (B # 0 orn #0)),
~ Qa0 + log zo(p a#0 and =0 andn = 0),
O g — 4 10 o(p) E TS
(

and V o, 18 the right logarithmic derivative (cf. [5] Appendix A, [9] Appendix
A) defined by

Vant) = Z , Dot (15)

(0)

In the above, q;’,a = 1,..., M, are arbitrary non-dynamical variables.

Without loss of generality, we set q,(lo) = 0 henceforth.

Orlov-Schulman functions The Orlov-Schulman functions (,(p), o =
0,1,..., M are Laurent series of the form

o0

o0
too _
= § ntonzo(p)" " + +§ 20(p) ™" von,
n=1

) (16)
=D ntanza(p)" 7+
n=1
where
M
too = — Z ta0-
a=1
They satisfy the Lax equations
8an<ﬁ(p) = {Qom(p)a Cﬁ(p)} (17)

8



and the canonical Poisson commutation relation

{za(p), Ca(p)} = 1. (18)

In terms of the dressing functions, (, are given by

Go(p) =190 <Z nto,p" " + t%o) ;

n=1
Ca (p) ad@a (Z Nlanp ntl + taop — to1p >
n=1

The canonical Poisson commutation relation (I8)) is a direct consequence of
the definition and the Lax equations (7)) follow from (I4]).

S-functions The S-functions S,(p), « = 0,1,..., M, are defined as po-
tentials of 1-forms as

dSa(p) =0+ (a(p)dza(p)v (19)
where

H_ZQOH dt0n+ZZQan

a=1n=0

They have Laurent expansions of the form

o0
Z t(]nZ(] + to(] log Zo Z p

—n

\_/

Von,
n
0 (20)
za(p) ™"
Ztanza "+ tao log zq(p )—I—gba—z " Van.

n=1

Implications of S-functions Let us define S,(z), « =0,1,..., M, as

0o > —n
So(z) = Z ton2" + too log z — Z =, von,
n=1 n=1
z
Sa(z) = Z tan?" + tao log z + ¢q — Z T'Ucm-
n=1 n=1

Sa(p) can be thereby expressed as
So(p) = So(20(p)),  Sa(p) = Sa(za(p))-



Moreover, the defining equations of S, (p) imply the equations
Ca(p) = S&(Za(p)),

where the prime denotes the derivative with respect to z, and
Qom(p) = aansﬁ(zﬂzzzﬁ(p), 520,1,...,M.

The former is just a restatement of the Laurent expansion of (,(p). The
latter implies that Q,,(p) can be written in several different forms as

© —m
20(p)n - Z 0(2 8Orﬂ)Oma
QOn(p) = @0212 (p)_m (22)
Bons = D = Oonthm, b=1,.... M
m=1
- Z ZO(p)_ a(LnUOmy
m=1 m
Qan(p) = x (p)~™ (23)
5abzb(p)n + Oantp — Z b OanVom, b=1,...,M
m=1

forn=1,2,..., and

o 2 —m
—log zo(p) — Z 0(]2 9a0V0m

Qao(p) = m=1 © (p)~™ (24)
5ab10gzb(p) +8a0¢b_ Z bTaaO'mea b= 1,...,M.
m=1

In particular, since Qo1 (p) = p, we have the identities

[e.e] 2 —m
p=z2{) - 0(]2 90100m,
z —m
p = 0oy — Z %&)wbm, b=1,..., M,

m=1

which imply that the inverse functions p = po(2) and p = py(2) of z = zp(p)
and z = z(p) are given explicitly by

po(z) =2— %301’00771 = 00150(2),
o (26)
po(2) = Bongpp — Y %301%7;1 = 0015 (2)-
m=1

10



Consequently,
da = 00100, Ta = —001Va1- (27)

Substituting p = pg(z) in

aansﬁ(z)‘zzzﬁ(p) = Qom(p)
leads to the Hamilton-Jacobi equations
OanS5(2) = Qan(00158(2)). (28)

F-function The F-function is defined by the equation
Oon F' = Von, OanF' =Uan, n=12,...,

a—1 (29)
Ou0F = — g + tholog(—l), a=1,...,M.

b=1

The last part containing log(—1) is slightly different from the definition of
the Madrid group [6], 5] and the previous paper [10] of the first two authors,
but this is due to arbitrariness of the F-function. With the F-function, the
S-functions can be written as

So(z) = Z tonz" + toolog z — Do(2) F,
! (30)
Sa(z) = Z tan2" + taolog z + ¢g — Da(Z)F,

n=1

where Dy(z) and D,(z) denote the following differential operators:

2 2" 2z
DO(Z) = Z Ta()n, Da(Z) = Z Taan.
n=1 n=1

Generalized Faber polynomials and Grunsky coefficients The Hamil-
tonians Q,,(p) of the Lax equations can also be characterized by the gen-
erating functions

n=t (31)



The left hand sides of these identities are understood to be rewritten

po(2) —q po(2) q
1 =1 log(1—
og . og . + 0g< p0(2)>

and

q—pa(z) _ 10g<1 _ Pa(2) — qa>
qd—{Ga qd—da

log

and expanded to power series of ¢ and (¢ — ¢,) ™!, respectively.
The generalized Grunsky coefficients bgmpn = bpnam are defined by the
generating functions

oo

log ZM = — Z 27w " bomon,,
zZ—Ww
m,n=1

log ZM = — i i 27w " bomans

z
m;} n=0 (32)
log 20(pa(z) ~ Pa(w)) =— Z 27w " baman,
w—=z m,n=0
pa(Z) _pb(w) > -m, —n
log—/——————= = — 27w "bymbn (@ £ D).
© €ab mzn;O ’ ( 7& )
They are related to the F-function as

éaméﬁnF’ = _bamﬁn (Oé, B=0,1,... 7N)7 (33)

where

41 (a<b) 5 _ L0wn (0 #0),
€ab = o> an = 8a0 (’I’L _ 0)

3 Riemann-Hilbert problem and non-degenerate
solutions

Following the work of the Madrid group [5} [6], we now formulate a Riemann-
Hilbert problem. Choose a set of positively oriented simple closed curves
Cy,...,Cy and let Dy, ..., Dy denote their inside domains. The Riemann-
Hilbert data consist of M pairs (f,,94), a = 1,..., M, of holomorphic func-
tions fo = fo(p,t01), 9o = ga(p,to1) of p,to1 (defined in a suitable domain)

12



that satisfy the conditions

oy e 00 05 o
@ 9ot = Op Otor Otg1 Op -

(34)

thus defining two-dimensional canonical transformations. The problem is
to seek M + 1 pairs (24(p),Ca(p)), @ = 0,1,..., M, of functions of p and
t={ton:n=1,2,..  U{ten : a=1,...,M, n=0,1,2,...} that satisfy
the following conditions:

(i) zo(p) and (p(p) are holomorphic functions on C ~\ (D1 U ... U Dyy),
zo(p) is univalent therein (in particular, z|(p) does not vanish) and, as
p — o0,

20(p) =p+ O™,

Golp) = nZ_jl ntonzo(p)" ! + zz(é‘;) +0(p72).

(35)

(ii) z4(p) and (4(p) are holomorphic functions on D, punctured at a point

qa € Dyg, z; 1 (p) is univalent on D, and, as p — qq,

Ta

za(p) = +0(1),

B P —4a
(36)

Galp) = D mtanza(p)" ™!+ 2+ O((p - 00)).
n=1 Za p)

¢q and r, are functions of the time variables to be thus determined.

(iii) For a = 1,..., M, the four functions zy(p), (o(p), 24(p), (a(p) can be
analytically continued to a neighborhood of C, and satisfy the func-
tional equations

za(p) = fa(20(p), Co(P)), Ca(P) = ga(20(p), Co(p)) (37)
therein.

Functions z,(p) satisfying above conditions are solutions of the univer-
sal Whitham hierarchy and {,(p)’s are corresponding Orlov-Schulman func-
tions, as is proved in [6], Theorem 1.

Note that formally we can prove the converse. Namely there exist
Riemann-Hilbert data for each solution of the universal Whitham hierarhcy.

13



Proposition 3.1. Let (z,(p) : « =0,1,...,M) be a solution of the uni-
versal Whitham hierarchy, and ((o(p) : a=0,1,..., M) the corresponding
Orlov-Schulman functions. Fora =1,..., M, there exist functions fq(p,to1)
and gq(p, to1) such that

Za, :fa(ZOy CO)a Ca = ga(ZOy CO)? (38)

and
{fa(p,t01), ga(p, to1)} = 1.

Proof. This is the same as Propositions 4 and 5 of [5], but let us prove it
here in our language as in [9]. Given a solution (z,(p) : a =0,1,..., M) of
the universal Whitham hierarchy, construct the dressing functions ¢, (p) as

Y =o.

given by Proposition 2.1l (Recall that we have put g, ) For any a, let

fa(pstor) = exp (—ad pa(t = 0)) p,
Ga(p,tor) = exp (—ad pa(t =0

where t =t \ {to;}. Notice that

20(p,t = 0) = exp (ad go(t = 0)) p,
Co(p,t = 0) = exp (ad wol(t = 0)) to1,

2, ' (p.t = 0) = exp (ad g4 (t = 0)) p,
(—23¢a)(p,t = 0) = exp (ad @a(t = 0)) to1.

Therefore,

for any a. Now

0
ot Bn

0 =, _ o
Tﬁnfa (Za 17 _zgga) = {Qﬁm fa (za 17 _zgga)} )

fo (20,¢0) = {Qﬁmfo (z07<0)}7

14



and similarly for go (20, ¢o) and o (25!, —22¢,). Therefore,

0 = 0 =
fO(Z())CO) = —ftl Z(;l’_zgga 5
Ot izo  Olpn ( ) =0
~ o _ 2
go (207 CO) = 77 Y9a\%Z, > _ZaCa
atﬁn =0 81&5” ( ) =0
In the same way, one can show that
0 0 = 0 0 =
f()(Z(),C()) = fa za_l,—zgg“a R
8tﬁknk atﬁml =0 8tﬁknk atﬁlnl ( ) i=0
0 o0 . 0 o ., 4 9
go(ZO,C()) = Jda Za 7_Za<a
8tﬁknk atﬁlnl =0 atﬁknk atﬁml ( ) =0

These show that
fo (20, C0) = fa (251, —22a)
Notice that by definition,
{fo(p, t01),§70(p,t01)} =1,
One can solve the equations

fow,tor) = fo (7, —5%01)

for p and £y, which gives

P = fa(p,tor),

This implies B8)). It is also straightforward to show that {f,, 9.} = 1.

90 (20,¢0) = Ja (25", —22¢a) -
{fa(]% to1), Ga (P tm)} =L
Go(p,tor) = Ga (5", —5%t01) ,

tor = ga(ps to1).

O

We now specialize the Riemann-Hilbert problem to the case where the
canonical transformations are defined by generating functions Hg(zo, 24),
a = 1,...,M. The generating functions are assumed to satisfy the non-

degeneracy conditions

Ha,zgza (207 Za) 7& 0.

(39)

Accordingly, the functional equations (B7) connecting the four functions
20(p), Co(p), z4(p), Ca(p) are converted to the generalized string equations

Co(p) = Ha 2 (20(p), 2a(p)),

Ca(p) = —Ha,z, (20(p); 2a(P))- (40)

15



Existence of such generating functions H, under the assumption of non-
degeneracy of f,’s:
Ofa

8t01

can be proved as in [13], §3.4. In fact, under the assumption ({41, we can
solve the equation z, = f,(20,(p) to obtain

£0, (41)

CO = Aa(Z(], za)-

Equivalently,
Za = fa(207Aa(2072a))- (42)

Define B,(zg, z4) so that
Ca = Ba(ZO, Za) = ga(Z07 Aa(Z07 Za))- (43)

Differentiating (42)) with respect to zp and z, and (43]) with respect to zy,
we find that

Ofa
o _Ofa  0fu0Ad  _ 0Ad_ 3
0zyp  0Cp Oz 020 gfa
Co
| 0R0A A 1
0y 0z, 0z, aég
0By 050 09040 OBy _0ma Oz 1
aZO 8Z0 8(0 8Z0 8Z0 aZO 640 g_écg g_écg '

Hence we have 0,, A, = —0,,B,, which implies that there exists H, (20, 24)

satisfying (40) and (39)).
Our goal in the following is to solve the generalized string equations (40Q)
in the language of geometry of the space

Z:={(za(p) : «a=0,..., M) | properties of z4(p)’s in (i), (ii)}

of the M + 1-tuple of functions z,(p), a = 0,1,..., M. This enables us
to understand the universal Whitham hierarchy as a system of integrable
commuting flows on Z, just as achieved in the case of the dispersionless
Toda hierarchy [13].

16



To this end, we define the functions tg,,to,von (n = 1,2,...) and
tansta0sVan (@ =1,..., M, n=1,2,...) on Z as

M
i =357 . Hac o) a0 alp) ),
M
0 =357 . Haaalp) 200tz (449)

M
=30 ) a0 a4 )

and
1
an — S5 Haz ) <a a - a )
nt 2mi 2a(20(P); 2a(P))2a(p) " dza(p)
1
tao = Gy o H, ., (20(p), za(p))dza(p), (45)

Van = % %;a Ha,za (ZO(p)y Za(p))za(p)ndza(p)'

This is just a restatement of the string equations ([{@Q). tgo and t,’s are
automatically constrained as

oo
too = — Z tao-
a=1

The contour integrals on the right hand side of (44]) are derived by continu-
ously deforming a simple closed curve C encircling p = co and separating
it from all D,’s. Notice that since z,(q,) = 00, z,(p) maps the inside of D,
onto the outside of z,(Cy). Therefore,

In the next section, we shall reconstruct 0,,’s as globally defined vector
fields on Z, and show that t,,’s may be thought of as “dual” (local) coor-
dinates on Z with respect to these vector fields. This is the same geometric
situation as observed in the case of the dispersionless Toda hierarchy [13].
The universal Whitham hierarchy is thus realized as a system of commuting
flows on Z. This geometric setting can be cast into the usual setting in the
t space by the inverse of the period map (z4(p) : @ =0,1,..., M) — t. The

17



functions z4(p) and (,(p) on Z are pulled back by this inverse period map
to become a solution of the string equations (40Q), hence a solution of the
universal Whitham hierarchy.

The S-function (in particular ¢,) and the F-function, too, can be pri-
marily defined as a function on Z, then pulled back to the ¢ space. We shall
discussed this issue in later sections.

4 Construction of vector fields d,, on Z

Following [13], we reconstruct d,y,’s as vector fields on Z.

Theorem 4.1. If the vector fields Oy, (n =1,2,...) and Oyp, (a=1,..., M,
n=0,1,2,...) on Z satisfy the equations

Oan?p (p) Oan?0 (p) Q:)m (p)

_ — 46
A0 H®) AR ). 20) 10
on Cy forb=1,..., M, where the primes denote the derivatives with respect
to p, then they act on tg,, (m =0,1,2,...) as
aomtﬁm = a65nm (47)
and on vgy, (m=1,2,...) as
- bom m 0
—mbaosm (n=0

Remark 4.2. (7)) implies that t,,’s may be thought of as a system of local
coordinates on Z. (48)) shows that the vector fields J, correspond to the
time evolutions of the universal Whitham hierarchy.

Remark 4.3. Oanzg(p)’s are uniquely determined by (46). Though this is
an implication of [T) and (@8]), one can directly confirm it as follows. Let
Zy(p), Zo(p) and Wy(p) denote the three terms in (46). Consequently, they
satisfy the equations

Zy(p) — Zo(p) = Wi(p) (49)

for b = 1,...,M in a neighborhood of Cj. As holomorphic functions,
Zy(p), Zo(p) are extended to Dy and CP' < (D1 U---U Djyy) respectively,
and behave as

Zy(p) =0(1) (p—= @), Zolp)=0@p ") (p— o).

18



One can decompose Zy(p) in CP* < (D U---U Dyy) as

1
Z ZOa ZOa ) —% ZO(Q) dQ-
27 Jo, q— P

Zoa(p) is a holomorphic function in CP! \. D,, O(p~!) as p — oo, and can
be continued to a neighborhood of C, by deforming the contour C, inward.
The foregoing equation for Z(p) and Zy(p) can be thereby rewritten as

(Zb(p) -3 ZOa(P)) — Zov(p) = Wi (p)-

a#b

One can consider this equation as splitting W (p) into a sum of holomorphic
functions Wiy (p) and Wi,_ (p) defined in Dy, and in CP! \ Dy, respectively.
In particular,

1 W (q)

7, — Wy (p) = —— 1
0(p) = ~Wp—(p) = —5 4 dg (p € CP" N Dy), (50)

hence

M

a=1
One can find a similar integral formula for Z(p) as well.

Proof of Theorem [{.1 Let us first consider the action of J,, on

M
1
tom = Hy . , —myl )
0 b§:1 Srim Jy, 0 o(20(P), 2(p))20(p) " 24 (p)dp

Applying 0,y to the integrand, we have the identity

Ban (Hp, 2 (20(p), 2(p)) 20 (p) " 20(p))

= 2 (HILZO (Zo(p), Zb(p))Z()(p)_maomzo(p))

dp
+ Hb,zgzb (Z(] (p), zb(p))zé (p)zl/)(p) <aaz2?;()p) _ 80;2;(])9()]9)) 2 (p)—m
= 8% (Hp, 2 (20(p), 26(p)) 20(P) "™ Oanz0(p)) + ()20 (p) ™.
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Note that we have used the assumed equation (46) in the last line. Conse-
quently,

M
1
ontom = Q —mg

1

= 9 g

by deforming C}’s to a simple closed curve Cy, encircling p = oc.

On the other hand, one can deduce from (BI) and the first and the
second equations in ([32) (and the symmetry of bansm) the following Laurent
expansion of Q,,(p)’s with respect to zg(p):

Qon(p) = 20(p)" + Y nbonom20(p) ™",

m=1
Qan(p) = Z nbanomz0(p)”"  (n > 1), (52)
m=1

Qao(p) = —10g 20(p) + Y _ bavom20(p)

Inserting the derivatives

on(p) = 1120 (p)" ™ 20 Z nimbonomz0(p) " 29(p),
m=1
Q, Z nmbanOmZO(p) " 12(,)(]7) (Tl > 1)7
m=1
/ p —m—1_/
a0(p) = o) Z Mbaoom 20(P zo(p)

into the contour integral, we readily obtain (7)) for 5 = 0.
In the same way, the action of J,, on

Vom = Z 2t ), ol (20(p), 2(p))2s(p)" 2 (p)dp

can be expressed as

1

2w §, Don(D)0(p)"dp

8omrUOm =

20



This contour integral, too, can be evaluated by the foregoing Laurent ex-
pansions of 2/ (p). We can thus derive [{g]) for 8 =
Let us now consider the action of 9, on

tom = ﬁ% Hb7zb(20(p)7Zb(p))zb(p)_ng(p)dp,

o= 57 || Hue o). 2040

1

U = 5 Hy, ., (20(p), z5(p))26(p)™ 2, (p)dp
T Ch

As in the previous case, we can deduce that

aomtbm = mdp’
2mim
ontbo = ——— QL dp,
Oantvo = 271- ., n(p)dp (53)
1
aom m = T 5 - Q/ "d )
(% I c, an (p)zb (p) p

We can now use the following Laurent expansion of Q,,(p)’s with respect to
zp(p) derived from (B1]) and the second, third and fourth equations of (32):

QOn(p) = Z nbOnbmzb(p)_m,
m=0
Qa"(p) = 5flbzb(p)n + Z nbanbmzb(p)_m7 (TL > 1)7 (54)
m=0
o(p) = —log epa + D baobmzp(p) ™™ (b # a),
108 24 (P) + Yy bavamza(p) ™™ (b = a).

Inserting their derivatives

on(p) = — Z nmbonems(p) " 23, (p),

m=0

QL (p) = Sapnzp(p)”™ 1 2( Z nMbanbm 26 (P m_lz{,(p) (n>1),

p —m—
aO( ) = 5ab p Z mbaObmzb 12{;(]7)

into the contour 1ntegrals (53), we can confirm the remaining parts of (47))
and (48). This completes the proof of the theorem. O
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5 Construction of ¢,’s

We construct the Phi functions ¢, a = 1,..., M, as follows:

gba - Z tbObaObO + Z Z mt'ym a0ym + Z tro lOg

v=0m=1
Hy(20(p), 2(p))
dp. (55
2mi Zji P~ Ga (55)

Proposition 5.1. The function ¢, defined by (B5) satisfies

Opnba = {”baoﬁ"’ (n#0) (56)

baogo + log €43, (n = 0)

Proof.
5 <Hb(20(17)72b(1?))>
Bn
P—da
H, H,
_ Hyz(20(p), 2(p)) omz0(p) + b (20(P), 2(P)) ()
P —4da P—da
Hy(20(p), 26(p))
08n4a.
(p - Qa)2 7 e
Therefore,
nbaOBna (’I’L 7£ 0)
8 n®Pa — T 5 + T 3 + 9
3n® 1(8,n) +T2(B,n) {baOBO"i'lOgEaﬁ’ (n = 0)
where
Z tboaﬁn a0b0 Z Z mt'ymaﬁn ymaO
v=0m=1
= Z mtOmaﬁnbOmaO + Z <tb086n 060 1 Z mtbmaﬁnbbma0>
b=1 m=1
and
Hy 2 (20(p), 2(p))
Ty(B.n) = o Z 740 (FrololknlED g, )
H p ; H; 7
+ b, b(ZO(p) Zb(p))aﬁnzb(p) + b(Z(](p) zbz(p))aﬁnqa> dp
P —4qa (p - Qa)
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The goal is to show that T1(8,n) + T2(B,n) = 0 for all (8,n). By the
definition of ty,,, we have

00
Z mtom 8ﬁn bOmaO

m=1
27T’L Z?{ H, .20 Z() Zb( ) ZO <Z 8ﬁnb0ma020(p) m> dp.

m=1

Differentiating
—log(p — qa) = Quo(p) = —log 20(p Z boma020(p

with respect to tg,, we have

g Oonla = Z Osnbomaozo(p) ™"

m=1
1 o e
— (Zo(p + Z mbOmaOZO(p) 1) 8ﬁn20(p)
> 1 1
b ma0 < e 0 n<
mzzz 0ma020 (P P z0(p)-
Therefore,
s 1 1 1
anbmaz = 8nQa+ an
m§::1 om0 (v) P—di 0 p—da " o)
and
S 1 M
Z mtomagnbomao :ﬂ Z Hb,zo (ZO(p)7 Zb(p))26(p)x
m=1 T b=1"7Cb
1 1 1
<p—q e T D olp)
:i f:% <Hb ,20 ZO(p)azb(p))ZO(p)aﬁ q
27 — JG P —4q "

+Hb,zo(z0(p)v Zb(p))
P —4a

Ipn 20 (p)> dp.
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In a similar way, the definition of tp,, gives

00
tboaﬁnbaObO + Z mtbmaﬁnbbmao

m=1
1
= 5= ¢ Hpz(20(p),2(p)2 Z 9nbbmaoz(p)~" | dp.
2mi Je, o
Differentiating

—10g(p — ga) = Qa0(p) = dap10g 25(p) + D Dbmaoz(p) ™™ — 108 b

with respect to tg, and comparing it with Q/,(p), we find that

11
2,(P) P — a

a 8ﬁnQa - Z aﬁnbbmaozb(p) m— 8ﬁn b( )

m=0

b

Therefore,

0o
tboaﬁnbaObO + Z mtbmaﬁnbbmao

m=1
1 Hy , s ; Hy ., )
:Tf{ ( b,z (20(p) Zb(p))zb(p)(%nanr bz (20(P) zb(p))aﬁn%(p)> .
Cy P —4ga P —4a
Therefore,
(ﬁv )+T2(57 )
Hy ., (2 A
- Z}{ < b,z (20(P b(p))ZO(p)agnqa
u Cy P—4Ga
N Hy ., (20(p), 26(p)) 2, (P) Dimta — Hb(zo(p%zb;p))aﬁnqa) dp
P—4a (P — qa)
Z}{ <Hb 20(p), 26(p ))) dp X Dgnga = 0.
2m Cy D —(qq
This completes the proof. O
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Define

a—1
Va0 == da + Y _ tyolog(—1)
b=1
M M o~
= Z thobaobo — Z Z mt'ymbaOWm (57)
b=1 y=0 m=1
Lo~ [ Hy(z(p), 2(p))
— Z b\20\P), 2b\D dp.
™ b=1 Cy P—4qa
Then (B6) implies that
- ba n O )
—ba050; (n=0)

6 Construction of the free energy F
Let Jg,1(20,24) and Jg 2(20, 2z4) be defined so that

— 02,J0,1(20: 2a) = 0z Ja,2(20, 2a) = Ha(20, 2a) Ha 2924 (20, 20)-  (59)
We construct the F' function as follows:

1 M 1 M oo
F 25 azz:lta(]’uao—F Ezztomvom

a=0n=1

1

M
#5012, {0 o0 20D 0) + o) o))

(60)

Proposition 6.1. The F' function defined by (60Q) satisfies

agnF = VUpn-

25



Proof. A direct computation shows that

Bon{ Ja (20(p), 2a(2)25 (P) + Ju 2 (20(p); 0 (1)) 24 () |
— o {u o). 20900 + Tua(ao(p): 20 ()0 |
— 2Ha (20(p): 2a(P)) (D3m0 (p) 26(p) = 24(P) Dsnz0(p)
— o {u o). 20 )00 + Tua(ao(p): 20 ()0 |
- 2Ha(z0(p)v za(p))Q/Bn(p)
by using the definition of the vector field (46]). Hence,
OBNF = Il(ﬁ, n) + 12(5, n)
where

(ﬁv Uﬁn + 3 Zt OOBn'UaO + = Z Z tamaﬁnvama

a=0m=1
5(8,n) = —ﬁz $Huo(0).20(p) s )
a=1 a

Now if n # 0, integration by parts shows that

I(8,m) = 47”27! Hal20(p). 7a(0)) 2y (p)dp

4772 Zjé Ha 2, (20(p): 2a(p) 24 (0) 20 (p) dp-

26



If B =0, the first equation in (52)) and the first equation in (54]) show that
| M
[2(07 n) :4—7I'i Z % Ha,zo (20(])), Za(p))zé (p) x
a=1 a

X <Zo(p)" +n Z bOmOnZO(p)_m) dp

m=1
1 M
)Y ¢ e (alp), 20 (9)2(0) %
)
X <TL Z bOnamza(p)_m) dp
m=0
v 1 1 &
0
:777/ + 5 Z nmbomontom + 5 Z nbonaotao
m=1 a=1
1 M oo
+ 5 Z Z nmbonamtam
a=1m=1
v 1 1oL &
:% — 5 Ztaoaon'l)ao — 5 Z Z tamaOn'UOHn7
a=1 a=0m=1

by the definition of t,, (44l 45]) and actions of Juy on vg, (@8], B8)). There-
fore,
OonF' = 11(0,71) + IQ(O,TL) = Uon-

If 8 =5b+#0,n#0, the second equation in (52) and the second equation in
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(B4)) show that

M
Ir(b,n) 24% > 7{} Ha, 2 (20(p), 2a(P)) 20 () %

< abza "+n Z bbnamza ) dp

1 o Up 1
:5 Z nmMbpnomtom + Tn + 3 Z nbpnaotao
a=1

1 M
+ 5 Z Z:l nmbynamtam

a=1

8

M

Ubn 1 M oo
—_— — = Z 400 Va0 — Z Z tamabnvocma

a:O m=1

again by (44l [5]) and (48] (8). Therefore,
Opn F' = Il(b,n) + [Q(b,n) = Upn-

Now if 5 =0b# 0, n =0, we have

/
(p) =~ :
%0 p—

Therefore,

M
_ﬁZ% Ha(Z(](p)yza(p)) ZO(P)dP

47” Z ); Za(p)) dp.

P—q
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On the other hand,

I (b 0 UbO + 3 Zt OabOUaO + 5 Z Z tamabovam

aOml

Z taobaobo — = Z Z Mtambambo,

aOml

by (48], £8). Hence,
L (b,0) + I2(b 0)

Z taObaObO ~ a Z Z mtam amb0

a=0m=1
za (p))
d
4m Z c, P—q P
:@ /Uﬂ =
5 9 b0
because of (B7)). This completes the proof. O

This proposition and the definition of v, (B7]) shows that the F' function
indeed satisfies (29]).

7 Special String Equations

In this section, we consider the special case where the generating functions

H,(20,24), a=1,..., M, have the form
Ho(20,2a) = 25" 25° Vo, Ve € N,

a

so that the string equations (40 become

Co(p) =1020(p)"° " za(p)"2,
Ca(p) = - VaZO(p)VOZa(p)Va_l

for p € C,. These string equations were discussed in [6]. ;From (6I]) and

(I6l), we have

o0
_ 3 -
wz0(p)"° " za(p)" = Z ntonz0(p)" " + 00 + Z 20(p) ™" vom,

(61)

(62)

Uan

o0
_VaZO(p)VOZa(p)Va_l = Z ntanza(p)n_l +
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for p € Cy. The definitions of t,, and v,, [@4) and ({@5]) then become

nton = Z 27T’Lj{ VO -l a( )VadZO(p)a

M
14 vo— Vq
too =) 2_732}'{ 20(p)" ™" 2a(p)" dzo (p), (63)
a=1 @
M
14 — 12
o =) 5 ?!C 20(p)" " 20 (p) 2o (p)
a=1 @
and
v
tan = — v a Va_n_ld a )
han = 32 2o
v n, (pya-t
tao = omi 20(p)"° za(p)"* " dza(p), (64)

v _
tn = 5 0B 2alp) " (),
The functions J, 1(20, z4) and Ju2(20,2,) [BI) can be chosen to be
VO 21/0 1 2ya Va 2v9 2v,—1

Ja,l(z(]vza) = 2 20 Za s Ja72(Zo,Za) = ?ZO Za

The free energy (60) then becomes

Z taoVao + 5 Z Z tanVan

aOnl

16772 Zjé (p)*"0 " 24 (p)** d2o(p) (65)

1 2 2vq—1
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Using (62]) and (G3]), we find that

16m2}{ z0(p 2V0 'z ()2yad20(p)

- 161m' Z}{ (Vozo(p)yo_lza(p)”“) 20(p)"° 24 (p)"*dzo (p)

(66)
~ T6m 27{ (Z ntonzo(p)" " + szm +Zz0 T n)

n=1
X 20(p)" Za(p)" dz0(p)

Similarly, one can show that

1 _ 1 >
167 j({c vazo(p)*° 2a(p)**  dza(p) = — —— <22”t‘mv‘m i tﬁo) D
a n=1

8y,

Therefore, the free energy is given explicitly by

112 St
(R0 IR SIS D 3) ol (B4 [
0 a=1 Va

aOnl
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