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Abstract

Salas, Gomez and Heranańdez [A.Y. Salas S., C.A. Gomez S.,
J.E.C Hernańdez, New abundant solutions for tha Burgers equation,
Computers and Mathematics with Applications 58 (2009) 514 -520]
presented 70 ”new exact solutions” of a ”generalized version” of the
Burgers equation. In this comment we show that all 70 solutions by
these authors are not new and cannot be new.

PACS: 02.30.Jr - Ordinary differential equations
Key words: Nonlinear evolution equations; Exact solution; Burgers

equation; Riccati equation.

1 Introduction

Recently Salas, Gomez and Heranańdez in [1] considered the Burgers equa-
tion in the form

ut + α u ux + β uxx = 0. (1)

The authors [1] believe that they studied a ”generalized version” of the
Burgers equation but they are wrong here. Eq.(1) can be transformed to the
usual form of the Burgers equation [2–4]

ut + u ux = β uxx (2)
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if we use the following transformations

u =
1

α
u′, x = −x′, t = −t′ (3)

(primes in (2) are omitted).
Eq. (2) was firstly introduced in [5]. But this equation became popular

after work [2] for describing turbulence processes. It is well known that the
Burgers equation can be linearized by the Cole—Hopf transformation [6, 7]

u = −2 β
∂ ln z

∂x
(4)

As a result of application of transformation (4), we have

ut + u ux − β uxx = −2 β
∂

∂ x

[

zt − β zxx

z

]

(5)

Thus, solution of the Burgers equation (2) can be expressed via solutions of
the linear heat equation

zt − β zxx = 0 (6)

Solving the Cauchy problem for Eq. (6) we can obtain the solution of the
Cauchy problem for the Burgers equation (2) [8, 9].

2 Analysis of 70 exact solutions of the Riccati

equation by Salas, Gomez and Heranańdez

Taking a ”new modified Exp-function method” into account Salas, Gomez
and Heranańdez in [1] have used the traveling wave ξ = x+λ t for the Burgers
equation (1) and obtained 70 solutions of the nonlinear ordinary differential
equation

λ u′(ξ) + α u(ξ) u′(ξ) + β u′′(ξ) = 0 . (7)

At this stage the authors [1] essentially reduced a class of possible solu-
tions for Eq.(1) because the authors studied the nonlinear ordinary differen-
tial equation (7) but not the partial differential equation (1).

The authors [1] did not note that Eq.(7) can be integrated. Integrating
Eq. (7) with respect to ξ we obtain the famous Riccati equation

− C + λ u(ξ) +
α

2
u(ξ)2 + β u′(ξ) = 0, (8)

where C is a constant of integration.
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Equation (8) was introduced by Italian mathematician Jacopo Francesco
Riccati in 1724. After that Eq. (8) was studied many times (see [10–15]).

The general solution of the Riccati equation is well known and is described
by the formulae ( see for example [9, 13] )

u (ξ) = −λ

α
+

2 β K

α
tanh {K (ξ + C1)} , K =

√
2 Cα + λ2

2β
,

λ2 + C2 6= 0,

(9)

u (ξ) =
2β

α ξ + 2β C1
, C = λ = 0, (10)

where C1 is an arbitrary constant.
These solutions were found more than one century ago and nobody can

find new solutions of Eq. (8).
An alternative form of expression (9) is

u (ξ) =
1

α

(

2 β K − λ − 4 β K

1 + C2 e2 K ξ

)

, (11)

where C2 = e2 K C1 .
Solution (11) follows from the set of identities

u (ξ) = −λ

α
+

2 β K

α
tanh {K (ξ + C1)} =

= −λ

α
+

2 β K

α

(

eK(ξ+C1) − e−K(ξ+C1)

eK(ξ+C1) + e−K(ξ+C1)

)

=

= −λ

α
+

2 β K

α

(

1 − 2 e−K(ξ+C1)

eK(ξ+C1) + e−K(ξ+C1)

)

=

=
1

α

(

2 β K − λ − 4 β K

1 + C2 e2 K ξ

)

.

(12)

Following to the report by one of the referees let us show that all solutions
by Salas, Gomez and Heranańdez in [1] can be reduced to the formulae (9)
or (11).

In [1], the solutions u2m (m = 1, . . . , 35) are obtained from the solutions
u2m−1 by replacing µ by i µ. (There is typographical error in u8:

′x+′ should
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be ′x−′.) Consequently, it is only necessary to show that solutions u2m−1

(m = 1, . . . , 35) are just special cases of (9) or (11). We have
u1 is (11) with K = −µ/2, λ = −β µ, C2 = b2;
u3 is (11) with K = µ/2, λ = β µ, C2 = b2;
u5 is (11) with K = −µ/2, λ = −(β µ + p α), C2 = b2;
u7 is (11) with K = −µ/2, λ = −(β µ + a2

b2
α), C2 = b2;

u9 is (11) with K = µ/2, λ = β µ − a2

b2
α, C2 = b2;

u11 is (11) with K = −µ/2, λ = −(β µ + p α + a2

b2
α), C2 = b2;

u13 is (11) with K = µ/2, λ = β µ − p α − a2

b2
α, C2 = b2;

u15 is (9) with K = µ, λ = −p α, K C1 = i π/2;
u17 is (9) with K = µ, λ = −p α, C1 = 0;
u19 is (9) with K = µ/2, λ = −p α, K C1 = i π/2;
u21 is (9) with K = µ/2, λ = −p α, C1 = 0;
u23 is (9) with K = µ, λ = −a1

b1
α, K C1 = i π/2;

u25 is (9) with K = µ, λ = −a2

b2
α, C1 = 0;

u27 is (9) with K = µ, λ = −
(

p + a1

b1

)

α, K C1 = i π/2;

u29 is (9) with K = µ, λ = −
(

p + a2

b2

)

α, C1 = 0;

u31 is (9) with K = µ/2, λ = −β µ a1

a2

, C1 = 0;

u33 is (9) with K = a2 µ/2, λ = −β µ a1

a2

, K C1 = i π/2;

u35 is (9) with K = µ/2, 2 K C1 = θ0 + i π, where tanh θ0 = p α+λ

β µ
;

u37 is (9) with K = µ/2, 2 K C1 = θ0, where tanh θ0 = p α+λ

β µ
;

u39 is (9) with K = µ/2, λ = −p α, 2 K C1 = θ0+iπ, where tanh θ0 = a0 α
β µ

;

u41 is (9) with K = µ/2, λ = −p α, 2 K C1 = θ0, where tanh θ0 = a0 α
β µ

;

u43 is (11) with K = µ/2, λ = −(−β µ + p α), C2 = b2;
u45 is (9) with K = µ/2, λ = −p α + iβµ b2, K C1 = θ0 + iπ/4, where

tanh θ0 = 1
i b2

;
u47 is (9) with K = µ/2, λ = −p α − iβµ b2, K C1 = −θ0 − iπ/4, where

tanh θ0 = 1
i b2

;

u49 is (9) with K = µ/2, 2 K C1 = θ0 + iπ, where tanh θ0 = λ
β µ

;

u51 is (9) with K = µ/2, 2 K C1 = θ0, where tanh θ0 = λ
β µ

;

u53 is (9) with K = µ/2, 2 K C1 = θ0, where tanh θ0 = a0 α+λ
β µ

;

u55 is (9) with K = µ/2, λ = i β µ b2, K C1 = θ0 + i π/4, where tanh θ0 =
1

i b2
;
u57 is (9) with K = µ/2, λ = −i β µ b2, K C1 = −θ0 − i π/4, where

tanh θ0 = 1
i b2

;
u59 is (9) with K = µ/2, λ = −p α, K C1 = −i π/4;
u61 is (9) with K = µ/2, λ = −p α, K C1 = i π/4;
u63 is (9) with K = µ/2, λ = −p α − β µ a2

a1

, K C1 = −i π/4;
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u65 is (9) with K = µ/2, λ = −p α − β µ a2

a1

, K C1 = i π/4;

u67 is (9) with K = µ/2, λ = −β µ a2

a1

, K C1 = −i π/4;

u69 is (9) with K = µ/2, λ = −β µ a2

a1

, K C1 = i π/4.
In considering u59, u61, u63, u65, u67 and u69 it was used the identities

tanh z − i sech z = coth

(

z − iπ

2

)

− cosech

(

z − iπ

2

)

= tanh

(

z

2
− iπ

4

)

(13)
Thus, the analysis of ’many new solutions’ of the Riccati equation (7)

shows that all 70 exact solutions by Salas, Gomez and Heranańdez [1] can
be found from the general solution (9) of Eq.(7). At first glance we have the
only negative moment of work [1]. However the authors obtained 70 different
forms of the solution of the Riccati equation. Taking the Riccati equation
as the simplest equation in the method discussed in [16, 17] we can imagine
how many methods can be suggested to search for exact solutions of nonlinear
differential equations. Every form of the solution for the Riccati equation can
be used in finding exact solutions of nonlinear ordinary differential equations.
However we hope the researches will not use this dubious idea.

Salas, Gomez and Heranańdez wrote in [1] ”we conclude that the vari-
ant of the Exp - method here used is a very powerful mathematical tool for
solving other nonlinear equations”. However the analysis of the solutions for
the Riccati equation by the paper [1] points clearly to the obvious deficiency
of the Exp - function method in finding exact solutions of nonlinear ordi-
nary differential equations: this method allows us to find many redundant
solutions.

We affirm that Salas, Gomez and Heranańdez in [1] made the errors that
were discussed in works [18–26].

We are grateful to one of referee for the useful remarks and his careful
consideration.
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