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Geometric dynamics of optimization

François Gay-Balmaz1, Darryl D. Holm2, and Tudor S. Ratiu3

Abstract

This paper investigates a family of dynamical systems arising from an evolution-
ary re-interpretation of certain optimal control and optimization problems. We focus
particularly on the application in image registration of the theory of metamorphosis.
Metamorphosis is a means of tracking the optimal changes of shape that are necessary
for registration of images with various types of data structures, without requiring that
the transformations of shape be diffeomorphisms. This is a rich field whose possibilities
are just beginning to be developed. In particular, metamorphosis and its related vari-
ants in the geometric approach to control and optimization can be expected to produce
many exciting opportunities for new applications and analysis in geometric dynamics.
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6 Hamilton-Poincaré and metamorphosis reduction 33

7 Optimization, the Hamiltonian approach 37

8 Examples 39
8.1 Action by representation and advected quantities . . . . . . . . . . . . . . . 39

8.1.1 Heavy top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.1.2 Adjoint representations . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.2 Action by affine representation . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.3 Actions by multiplication on Lie groups . . . . . . . . . . . . . . . . . . . . . 45

8.3.1 The N -dimensional rigid body . . . . . . . . . . . . . . . . . . . . . . 48
8.3.2 Euler fluid equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.3.3 Optimization dynamics of a compressible fluid . . . . . . . . . . . . . 53

8.4 N -dimensional Camassa-Holm equation . . . . . . . . . . . . . . . . . . . . . 54
8.4.1 Left action of diffeomorphisms on embedded subspaces . . . . . . . . 55
8.4.2 Back-to-labels map for fluids . . . . . . . . . . . . . . . . . . . . . . . 58

8.5 Metamorphosis dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.5.1 Subgroup actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.5.2 Example: Metamorphosis equations on SE(2) . . . . . . . . . . . . . 63
8.5.3 Lie-Poisson Hamiltonian formulation of metamorphosis for right action 65

9 Conclusions and outlook 67

References 68

1 Introduction

With the advent of new devices capable of seeing objects and structures not previously
imagined, the realm of science and medicine has been extended in a multitude of different
ways. The impact of this technology has been to generate new challenges associated with
the problems of formation, acquisition, compression, transmission and analysis of images.
These challenges cut across the disciplines of mathematics, physics, computational science,
engineering, biology, medicine, and statistics.

This paper focuses on mathematical issues, particularly on the evolutionary partial differ-
ential equations (PDEs) that are summoned in the dynamical interpretation of the optimal
control and optimization methods that play an important role in the registration of various
types of images. The paper does not perform any applications to image registration, nor
does it develop any numerical algorithms for making such applications. Instead, the paper
re-interprets the endeavor of image registration from a dynamical systems viewpoint. In
particular, as we shall explain, a recent development in the large deformation diffeomorphic
matching methods (LDM) approach for image registration called metamorphosis [55, 61, 41]
introduces a new type of evolutionary equation that we call optimization dynamics. The
geometric mechanics approach provides a framework that informs both optimization and
dynamics.
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1.1 LDM approach, EPDiff, and momentum maps

LDM. The LDM approach is based on minimizing the sum of a time-integrated kinetic
energy metric whose value defines the length of an optimal deformation path, plus a penalty
norm that ensures an acceptable tolerance in image mismatch. (The matching cannot be
exact because of the unavoidable errors that arise in real applications.)

LDM approaches were introduced and systematically developed in Trouvé [59, 60], Dupuis
et al. [21], Joshi and Miller [42], Miller et al. [55, 54], Beg [5], and Beg et al. [6]. The LDM
approaches of those papers are based on Grenander’s deformable template paradigm for image
registration [28]. Grenander’s paradigm, in turn, is a development of a biometric strategy
introduced by D’Arcy Thompson [58] of comparing a template image I0 to a target image
I1 by finding a smooth invertible transformation of coordinates that maps one image to the
other. This transformation is assumed to belong to a Lie group G of diffeomorphisms that
acts on the set of templates containing I0 and I1. The effect of the transformation on the
data structure that is encoded in the set of templates is called the action of the Lie group G
on the set of images. The optimal path in the transformation group is the one that costs the
least in time-integrated kinetic energy for a given tolerance. This concept of optimization
summons a control theory approach for the process of registration of images formulated as
a boundary value problem.

In applications of the LDM approach, the optimal transformation path is often sought by
using a variational optimization method such as the one developed in [21, 59, 60]. Using this
method, the optimal path for the matching transformation in this problem is obtained from
a gradient-descent algorithm based on the Euler-Lagrange equation arising from stationary
balance between kinetic energy and tolerance. This gradient-descent approach successfully
determines an optimal matching path. Moreover, it raises the following potentially interest-
ing question:

What information and perspective might be obtained by interpreting the Euler-
Lagrange equations associated to the LDM approach from a dynamical systems
viewpoint?

The answer to this question may be sought by regarding the variational optimization
method in the LDM approach as a form of Hamilton’s principle. Hamilton’s principle for the
variational construction of optimal paths with minimal kinetic energy for a given tolerance in
image mismatch yields an associated set of Euler-Lagrange equations that may be given an
evolutionary interpretation. The optimal solutions of these equations have been investigated
as evolutionary motion on the Lie group of diffeomorphisms in the absence of additional
penalty terms by Arnold [2, 3], Holm et al. [36, 37], Marsden and Ratiu [48], and for the
particular application to template matching in Miller et al. [54]. The optimal paths in these
cases are geodesics with respect to the metric provided by the kinetic energy. The kinetic
energy for LDM is invariant under right translations on the diffeomorphism group. Reducing
Hamilton’s principle with respect to this symmetry and then invoking the Euler-Poincaré
theory applied to diffeomorphisms produces an evolution equation known as the EPDiff
equation [36, 37], whose derivation in the present context is explained in Section 8.4.

EPDiff. The solution of the EPDiff equation yields the spatial representation of the geodesic
velocity, i.e., the tangent vector to the optimal path of deformations along which the minimal
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distance from one image to another is measured. The geodesics themselves may be obtained
from the solutions of EPDiff for the velocity by a reconstruction process that inverts the
previous reduction by symmetry after the solution to the EPDiff equation for velocity has
been obtained. This is analogous to the reconstruction process in classical mechanics that
recovers the symmetry coordinate conjugate to a conserved momentum as the final step in
the solution, after the other degrees of freedom have been determined in the reduced space.

Composing the evolutionary solutions of EPDiff with the reconstruction process provides
an important representation of diffeomorphisms that relates the endpoint of a geodesic to
the initial value for momentum in the EPDiff equation. This relation is the momentum
representation of the deformation. The long-time existence of this representation is based
on conservation by EPDiff of the kinetic energy norm, which may be chosen so that its
boundedness affords enough smoothness on the velocities to ensure the long-time existence
of solutions of EPDiff. In this case, EPDiff admits emergent weak momentum solutions;
for example, delta-function distributions of momentum that emerge from smooth, spatially
confined initial conditions [15, 34]. This singular behavior is well understood analytically
only in certain one-dimensional cases. In particular, it is understood for the completely
integrable case of the Camassa-Holm equation, see, e.g., [46, 56] and references therein.

Dynamics and optimization are natural partners in computational anatomy. This is
because the optimal paths sought by LDM on the image template space defined on a manifold
M are inherited from the geodesics on Diff(M), the Lie group of diffeomorphisms acting on
the manifold M . Evolution along these optimal paths, in turn, is governed by EPDiff.
Consequently, any solution of the LDM problem for optimal geodesics naturally invokes
EPDiff, whose solution is interpreted dynamically as a momentum density [64]. Conversely,
solving the LDM problem directly produces the optimal path of diffeomorphisms. The
momentum representation arising from its evolutionary interpretation is then available for
analyzing anatomical data sets. In any case, despite the disparate forms that the geodesic
equations may take for the different data structures in the various types of images, all of
them are instances of EPDiff and have their corresponding representations for momentum.

Momentum maps. Previous work has considered the applicability of the concept of mo-
mentum from the theory of dynamical systems to the design of optimal image registration
strategies. For this purpose, one needs the specific representation of momentum for a given
type of image in terms of its data structure. Such a representation is its momentum map.

The momentum maps associated with various image data structures and their dynam-
ics under the EPDiff equation are discussed in Section 8.4. For example, in the case of
landmark data structure, the image momentum is singularly concentrated at points. The
relation between these singular geodesic LDM solutions and evolutionary soliton solutions
called peakons for EPDiff introduced in Camassa and Holm [15], was examined in the con-
text of computational anatomy in Holm et al. [39]. A numerical analysis of the stability
of these equations is also given in McLachlan and Marsland [51]. See also Micheli [52] for
other recent developments involving the curvature of the space of landmark shapes. Holm
and Marsden [34] explain that two independent momentum maps for EPDiff are available
in the case that the image data structure comprises the manifold Emb(S1,R2) of embedded
closed curves (embedded images of S1) in the plane R2. The left action of the group of
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diffeomorphisms Diff(R2) of the plane deforms the curve by a smooth invertible transforma-
tion of the coordinate system in which it is embedded, while leaving the parameterization of
the curve invariant. The right action of the group of diffeomorphisms Diff(S1) of the circle
corresponds to smooth invertible reparameterizations of the domain S1 of the coordinates
of the curve. In this case, one momentum map corresponds to action from the left by the
diffeomorphisms on R2, while the other one corresponds to their action from the right on
the embedded curves. Optimal control and reparameterization methods for matching closed
curves in the plane using these two momentum maps for the space of closed curves in the
plane have recently been developed in Cotter and Holm [20].

In summary, LDM image analysis is based on optimization methods that are formulated
as boundary value problems. However, the interpretation of their governing equations as evo-
lutionary systems by using symmetry reduction of the corresponding Hamilton’s principle
naturally allows the concept of momentum maps from dynamical systems theory to be prof-
itably applied in the solution and interpretation of image registration problems. Thus, the
transfer of concepts and ideas between these two fields in the context of image registration
has the potential to enrich them both. The present paper pursues this natural partnership
further, by developing the geometric mechanics and dynamics of optimization. As might be
expected, the dynamics of optimization has many similarities with constrained mechanics,
but it also has many differences.

1.2 Metamorphosis

The paper focuses on the geometric dynamics interpretation of the optimization problems
designed for image registration. However, rather than concentrating on the development of
solutions of optimization problems, the treatment here focuses on the dynamics that are
produced in applying the method of reduction by Lie group symmetry to families of opti-
mization problems posed in a geometric setting. This is a new arena for geometric dynamics
and several interesting new departures are being taken. Among these new departures is the
investigation of the evolutionary dynamics that arises when distributed or nonlocal penalties
are imposed in Hamilton’s principle, rather than local constraints. This sort of problem is
called distributed optimization. It arises in imaging science in the metamorphosis approach
[55, 61, 41], which is a modification and development of LDM that allows the evolution It
of the image template to deviate from pure deformation. This, in turn, modifies the EPDiff
equation and thereby introduces a wealth of new structure and new examples that we shall
investigate in this paper.

The paper begins by contrasting optimal control problems with distributed optimization
problems in a geometric setting. In particular, we discuss the geometric properties of Lie al-
gebra controls acting on state space manifolds. The latter optimal control approach parallels
the familiar Clebsch constrained variational formulation of dynamical equations for contin-
uum mechanics (e.g., [33]). In fact, continuum mechanics was one of the early paradigms
for image registration [63]. The Clebsch constrained variational formulation of continuum
mechanics has recently been developed and applied in the study of the dynamical aspects
of optimal control problems in a geometric setting (see [25, 32]). Conversely, our concern
here is to continue this parallel development by studying the implications for dynamics of
the geometric approach to distributed optimization problems.
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1.3 Plan and main contributions of the paper

In the remainder of the paper, we compare the dynamical equations that arise from optimal
control problems with those arising from distributed optimization. This comparison provides
several examples of how the two approaches differ and, in particular, how their dynamical
equations differ when their variational problem is regarded as Hamilton’s principle for the
dynamics. Their comparison also identifies the aspects of these approaches that are funda-
mentally the same. Section 2 begins by explaining the dynamical set up for standard optimal
control problems treated by the Pontryagin Maximum Principle. Section 2.2 provides sev-
eral examples illustrating the consequences of applying Lie group controls acting on state
manifolds by using the Clebsch framework for optimal control. These examples introduce
the momentum map for the cotangent-lifted action of the Lie group controls on the state
manifold. The cotangent-lift momentum map is a fundamental concept in the application of
geometric mechanics methods in the Clebsch framework for optimal control. It turns out that
the same momentum map is also the organizing principle for the distributed optimization
dynamics introduced in Section 2.3. After establishing this background for our comparison
of optimization and dynamical systems methods, Section 2.4 provides an overview of the
rest of the paper.

Section 3 begins by reviewing the Clebsch framework for optimal control problems intro-
duced and studied in [25]. A new class of optimization problems is then introduced which
is the subject of study of this paper. The stationarity conditions are obtained and the asso-
ciated equations of motion are determined. Inspired by the extremum problems presented
earlier, Section 4 presents two Lagrangian reduction procedures for Lagrangian functions
defined on T (G × Q), where G is a Lie group acting on the manifold Q. These reduction
methods are used in Section 5 to rederive the equations of motion that were found in Section
3. Hamiltonian reduction is carried out in Section 6. As before, there are two reduction
methods and, in the case of a representation, one of them leads to Lie-Poison equations with
a symplectic cocycle on the dual of a larger semidirect product Lie algebra. In Section 7 we
apply these Hamiltonian reduction methods to the optimization problems introduced earlier.
Section 8, by far the longest of the paper, presents several examples. We begin by studying
examples where G is represented on a vector space. The concrete examples treated are the
heavy top and a class of problems using the adjoint representation. For example, we find
a modification of the pair of double bracket equations studied in [8], [9]. Next, we study
optimization problems associated to affine actions. Actions by group multiplication is the
next topic. The concrete examples include the N -dimensional free rigid body, Euler’s equa-
tions for an ideal incompressible homogeneous and for a barotropic fluid. The N -dimensional
Camassa-Holm equation is presented from this optimization point of view, inspired by the
construction of singular solutions. Finally, the optimization problem is used to obtain the
equations of metamorphosis dynamics for use in computational anatomy. Section 9 briefly
summarizes the paper and provides an outlook for future work.
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2 Review of optimal control problems

2.1 Definitions

Definition 2.1 (Optimal control problems). A standard optimal control problem consists of
[1]:

• a differentiable manifold Q on which state variables n ∈ Q evolve in time t during an
interval I = [0, T ] along a curve n : I → Q from n(0) = n0 to n(T ) = nT , with specified
values n0, nT ∈ Q;

• a vector space U of control variables u ∈ U whose time dependence u : I → U is at our
disposal to affect the evolution n(t) of the state variables;

• a smooth map F : Q× U → TQ such that F (·, u) : Q→ TQ is a vector field on Q for
any u ∈ U whose associated evolution equation1

ṅ = F (n, u) (2.1)

relates the unknown state and control variables (n(t), u(t)) : I → Q× U ;

• a cost functional depending on the state and control variables

S :=

∫ T

0

ℓ(u(t), n(t)) dt, (2.2)

subject to the prescribed initial and final conditions, at n(0) = n0 and n(T ) = nT . The
integrand ℓ : Q× U → R, called the Lagrangian, is assumed to be C1 on Q× U .

The goal of the optimal control problem is to find the evolution (n(t), u(t)) of the state and
control variables such that S is minimal subject to the prescribed dynamics (2.1) and the
prescribed initial and final conditions n(0) = n0, n(T ) = nT .

The coupling between the control and state variables may be made explicit by using the
pairing 〈 ·, ·〉Q : T ∗Q× TQ→ R and a Lagrange multiplier α ∈ T ∗Q that imposes the state
system as a constraint on the cost functional,

Sc :=

∫ T

0

[

ℓ(u, n) + 〈α, ṅ− F (n, u)〉Q

]

dt. (2.3)

This is a consequence of the well-known Pontryagin maximum principle [1, 7, 43].
The variable α ∈ T ∗Q is called a costate variable. We now compute the equations

associated to the variational principle δSc = 0. For simplicity, we suppose here that the state
manifold Q is a vector space, say W . In this case the cotangent space is T ∗W = W ×W ∗

1The over-dot notation in ṅ means time derivative. Several forms of time derivative appear in applications
and the meaning should be clear from the usage. Besides the over-dot notation, we shall use the equivalent
notation d/dt to mean either partial or ordinary time derivative in the abstract formulas, as needed in the
context. For fluids, we shall also use ∂t for the Eulerian time derivative at fixed spatial location. Finally,
the covariant time derivation on a Riemannian manifold will be denoted as D/Dt.
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and the costate variable is of the form α = (n, p) ∈ W ×W ∗. The stationary variations of
the constrained cost function Sc in (2.3) yield

0 = δSc =

∫ T

0

[〈

δℓ

δn
−

(
δF

δn

)T

p− ṗ, δn

〉

W

+

〈

δℓ

δu
−

(
δF

δu

)T

p, δu

〉

U

+ 〈δp, ṅ− F (n, u)〉W

]

dt+ 〈p, δn〉Q

∣
∣
∣

T

0
,

where 〈 · , · 〉U : U∗ × U → R denotes the duality pairing for the control vector space U .
Stationarity in the variations δu gives a relation that determines the controls u in terms

of the state and costate variables, n and α, respectively, while stationarity in the variations
(δn, δα) determines the evolution equations for the state and costate variables that minimize
the cost function S. Since the values of n at the endpoints in time are fixed, δn vanishes at
the endpoints. We thus get the stationarity conditions

δℓ

δu
=

(
δF

δu

)T

p, ṅ = F (n, u), ṗ =
δℓ

δn
−

(
δF

δn

)T

p.

Remark 2.2. Although we shall confine our considerations to the Lagrangian description,
we point out that the relation to the Pontryagin Maximum Principle in the Hamiltonian
description is obtained via the Legendre transformation of the integrand in the cost functional
given by (2.3) which, for each point u in the control space U , defines the corresponding
Hamiltonian Hu : T ∗Q→ R by

Hu(αn) = 〈αn, F (n, u)〉Q − ℓ(n, u). (2.4)

The notation αn for a covector in T
∗Qmeans that it belongs to the fiber T ∗

nQ of the cotangent
bundle. For more information about the Hamiltonian approach to geometric optimal control
theory and the Pontryagin Maximum Principle, see [1, 7, 43].

2.2 Examples: Lie group controls acting on state manifolds

As an example that illustrates the theory developed in this paper, we consider the case of
continuum mechanical systems with advected quantities; see Section 6 in [36]. In this case,
the state manifoldM is some vector subspace V ∗ of T(D)⊗Den(D), the tensor field densities
on a manifold D. We will denote by a ∈ V ∗ these tensor field densities. The group Diff(D)
of all diffeomorphisms of the manifold D acts on V ∗ by pull back, that is,

a 7→ η∗a = a ◦ η, for all η ∈ Diff(D).

It is thus a right representation of Diff(D) on T(D)⊗ Den(D). We consider here the group
Diff(D) of diffeomorphism as an infinite dimensional Lie group (either formally or in some
Fréchet sense) whose Lie algebra is given by vector fields v ∈ X(D). The right action of the
Lie algebra X(D) on V ∗ is given by the Lie derivative

d

dt

∣
∣
∣
∣
t=0

exp(tv)∗a := £va,

where t 7→ exp(tv) denotes the flow of v.
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Example 1. We present a simple example of optimal control problem based on the geomet-
ric formulation of continuum mechanics described above. In this example, the control space
U is the Lie algebra X(D) and thus the control variable is a vector field u := v ∈ X(D).
The state manifold Q is the vector space V ∗ of tensor field densities. The state variable
n := a ∈ V ∗ is constrained to evolve according to the ODE

ȧ = F (a,v) := £va

and one wants to minimize

S :=
1

2

∫ T

0

‖v‖2gdt,

where ‖ · ‖g is an inner product norm on the Lie algebra g = X(D). Note that we are in
the setting of Definition 2.1 with M = V ∗ and U = X(D). This is an example of a Clebsch
optimal control problem, as studied from a geometric point of view in [25]. For this class
of problems, the vector field F is given by the infinitesimal generator associated to a group
action on the state manifold. In the present example, this infinitesimal generator turns out
to be the Lie derivative.

According to (2.3), the constrained cost function in this case is

Sc =

∫ T

0

(
1

2
‖v‖2g +

〈

p, ȧ−£va
〉

V

)

dt,

where p ∈ V is the costate variable. This is nothing else than the Clebsch approach to
continuum mechanics; see, e.g., [33]. The variational principle δSc = 0 gives the control

v = − (p ⋄ a)♯ ∈ g,

where ♯ : g∗ → g is the sharp operator associated to the inner product on g and the bilinear
operator ⋄ : V × V ∗ → g∗ is defined by

〈p ⋄ a,v〉 := −〈£va, p〉, for all p ∈ V, a ∈ V ∗, v ∈ g. (2.5)

The other stationarity conditions are
{
ȧ+£(p⋄a)♯a = 0,

ṗ−£T

(p⋄a)♯p = 0,
(2.6)

where £T

vp ∈ V is defined by
〈
a,£T

vp
〉
= 〈£va, p〉 , for all p ∈ V, a ∈ V ∗, v ∈ g. (2.7)

The Clebsch state-costate equations (2.6) are canonically Hamiltonian with

H(a, p) =
1

2
‖(p ⋄ a)♯‖2g =

1

2

〈

p ⋄ a , (p ⋄ a)♯
〉

g
.

As is well known, [33], using the cotangent-lift momentum map given by Π = − p ⋄ a to
project the equations (2.6) on T ∗M to g∗, yields the (left) Lie-Poisson bracket on the dual
Lie algebra g∗. Explicitly, this Lie-Poisson bracket is given by

Π̇ = ad∗
δh/δΠΠ = ad∗

Π♯Π (2.8)

where the Hamiltonian has the expression

h(Π) =
1

2

〈
Π , Π♯

〉

g
. (2.9)
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Example 2. This example will use the geometric setting of continuum mechanics as de-
scribed before. However, the control vector space will now be given by U := g×V ∗ ∋ (v, ν).
We choose the quadratic Lagrangian

ℓ(v, ν) :=
1

2
‖v‖2g +

1

2σ2
‖ν‖2L2 ,

where ‖ · ‖L2 denotes an L2 norm on V ∗ ⊂ T(D)⊗Den(D). As before, the state manifold Q
is V ∗ and the state variable a ∈ V ∗ is constrained to evolve as

ȧ = F (a,v, ν) := £va+ ν.

Note that the advection law ȧ = £va is not imposed. Instead, the penalty term in the
Lagrangian introduces the additional term ν into the advection law.

Thus, the constrained action (2.3) becomes in this case

Sc =

∫ T

0

(
1

2
‖v‖2g +

1

2σ2
‖ν‖2L2 + 〈p, ȧ−£va− ν〉V

)

dt, (2.10)

whose stationary variation results in

0 = δSc =

∫ T

0

[ 〈
−£T

vp− ṗ, δa
〉

V
+
〈
v♭ + p ⋄ a, δv

〉

g

+

〈
1

σ2
ν♭ − p, δν

〉

V

+ 〈δp, ȧ−£va− ν〉V

]

dt+ 〈p, δa〉V

∣
∣
∣

T

0
,

where the flat operators ♭ : g → g∗ and ♭ : V ∗ → V are associated to the inner products
on g and V ∗, respectively. Here the endpoint terms vanish because the values of a at the
endpoints in time are fixed. According to the variational formula for δSc, the cost functional
in (2.10) is optimized when the controls satisfy

v = − (p ⋄ a)♯ ∈ g and ν = σ2p♯ ∈ V ∗, (2.11)

in which the sharp maps are the inverses of the flat maps defined above. For the controls
(v, ν) ∈ g × V ∗, the state and costate variables (a, p) ∈ V ∗ × V evolve according to the
following closed system {

ȧ+£(p⋄a)♯a = σ2p♯ ,

ṗ−£T

(p⋄a)♯p = 0 .
(2.12)

These are Hamilton’s canonical equations for the Hamiltonian

H(p, a) =
1

2

〈
(p ⋄ a) , (p ⋄ a)♯

〉

g
+
σ2

2

〈
p , p♯

〉

V
. (2.13)

Remark 2.3. Thus, the evolution of the state a and costate p variables occurs by the
corresponding Lie derivative actions of the vector field (p ⋄ a)♯ ∈ g = X(D) calculated by
applying the sharp map ♯ to raise indices on the cotangent momentum map (a, p) ∈ V ∗×V =
T ∗V ∗ 7→ J(a, p) = − p ⋄ a ∈ g∗ of the cotangent-lifted action.
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The evolution of the momentum V ∗ × V → g∗ itself is the last formula to be found, just
as in the Clebsch approach, [33].

Proposition 2.4. Denote the momentum map of the cotangent-lifted action by

Π := − p ⋄ a

and its dual vector field by
v := − (p ⋄ a)♯ = Π♯ .

Then the state and costate equations (2.12) imply the following Euler-Poincaré equation for
the evolution for the momentum map:

Π̇ = −£∗
vΠ− σ2p ⋄ p♯, (2.14)

where the operator £∗
v : g∗ → g∗ is defined by 〈£∗

vΠ,u〉 := 〈Π, [v,u]JL〉 for any u,v ∈ g =
X(D), Π ∈ g∗ = Ω1(D) ⊗ Den(D) and [v,u]JL = £vu denotes the standard Lie bracket of
vector fields.

Proof. The proof proceeds by a direct calculation. In the computation below we use the
standard Jacobi-Lie bracket of vector fields [X, Y ]JL(f) = X(Y (f)) − Y (X(f)) for any
f ∈ C∞(D). For a fixed Lie algebra element Z ∈ g = X(D) we compute,

〈

Π̇, Z
〉

= −〈ṗ ⋄ a+ p ⋄ ȧ, Z〉

= 〈ṗ,£Za〉+ 〈p,£Z ȧ〉

= −
〈
£T

vp,£Za
〉
+ 〈p,£Z£va〉+ σ2

〈
p,£Zp

♯
〉

=
〈
p,£[Z,v]a

〉
+ σ2

〈
p,£Zp

♯
〉

= −〈p ⋄ a, [Z,v]〉 − σ2
〈
p ⋄ p♯, Z

〉

= −〈Π,£vZ〉 − σ2
〈
p ⋄ p♯, Z

〉

= −〈£∗
vΠ, Z〉 − σ2

〈
p ⋄ p♯, Z

〉
,

which proves the Proposition 2.4. �

Remark 2.5 (Lie algebra formulation of the equations). Recall the the Lie algebra bracket
[u,v] = adu v on g is minus the Lie bracket of vector fields, that is,

[u,v] = −[u,v]JL := − (u · ∇v − v · ∇u) .

We may thus identify £∗
v = − ad∗

v and the previous equations can be rewritten as






Π̇ = ad∗
vΠ− σ2p ⋄ p♯ ,

ȧ = −£va+ σ2p♯ ,

ṗ = £T

vp .

(2.15)

These are Lie-Poisson equations with a cocycle for the Hamiltonian

h(Π, a, p) =
1

2

〈
Π , Π♯

〉

g
+
σ2

2

〈
p , p♯

〉

V
, (2.16)
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with respect to the Lie-Poisson bracket given by,







Π̇

ȧ

ṗ






=







ad∗
2
Π a ⋄2 −p ⋄2

−£2a 0 1

£T

2
p −1 0












∂h/∂Π = Π♯ = v

∂h/∂a = 0

∂h/∂p = σ2p♯




 (2.17)

in which the variational derivatives of the Hamiltonian are to be substituted into the cor-
responding places indicated by a box (2). This matrix is identified as the Hamiltonian
operator for the Lie-Poisson bracket dual to the semidirect product Lie algebra gs (V ∗×V )
plus a symplectic 2-cocycle on (a, p) ∈ V × V ∗.

Remark 2.6. This Hamiltonian matrix will block-diagonalize in the Lagrange-Poincaré
formulation discussed in Section 4. Roughly speaking, this amounts to transforming variables
Π → Π̃ := (Π + p ⋄ a) and (a, ν) → (a, ȧ).

Example 3. We now consider an example analogous to the preceding one but in finite
dimensions. We let the orthogonal group G = SO(3) act on R3 by matrix multiplication on
the left and we choose U := so(3)× R3 ∋ (Ω, ν) as control space. As usual, we identify the
Lie algebra so(3) with R3. We choose the quadratic Lagrangian ℓ : so(3)×R3 → R given by

ℓ(Ω, ν) :=
1

2
IΩ ·Ω+

1

2σ2
Kν · ν,

for symmetric positive definite matrices I and K. We impose the evolution equation

Ẋ = −Ω×X+ ν (2.18)

for the state variable X ∈ R3 =: Q. As before, the variational principle δSc = 0 with

Sc =

∫ T

0

(
1

2
IΩ ·Ω+

1

2σ2
Kν · ν +P ·

(

Ẋ+Ω×X− ν
))

dt

yields the controls
IΩ = P×X and Kν = σ2P,

as in (2.11). Note that Ω = I−1(P × X) = (P × X)♯ and K−1P = P♯, by the definition
of the sharp maps. Then the state and costate evolution equations (2.12) take canonical
Hamiltonian form with Hamiltonian function

H(X,P) =
1

2
(P×X) · (P×X)♯ +

σ2

2
P ·P♯ . (2.19)

Intriguingly, the resulting canonical Hamiltonian equations,







Ẋ =
∂H

∂P
= − (P×X)♯ ×X+ σ2P♯ ,

Ṗ = −
∂H

∂X
= − (P×X)♯ ×P ,

(2.20)
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involve the double cross product of the state and costate vectors (X,P) ∈ R3 × R3. The
double cross products correspond to the Lie derivatives in equations (2.12) which for this case
become cross products. For more information about the roots of the Hamiltonian approach
in geometric control theory, see [4].

Upon defining the vector Π := IΩ = P×X, equations (2.20) imply






Π̇ = −Ω×Π− σ2(K−1P)×P ,

Ẋ = −Ω×X+ σ2P♯ ,

Ṗ = −Ω×P,

(2.21)

which recovers the momentum map system (2.15) for this case. Indeed, one may compute
directly that

Π̇ = Ṗ×X+P× Ẋ

= (−Ω×P)×X+P×
(
−Ω×X+ σ2P♯

)

= (P×Ω)×X+ (Ω×X)×P+ σ2P×P♯

= −(X×P)×Ω+ σ2P× (K−1P)

= Π×Ω+ σ2P× (K−1P) ,

from which the result follows.

Remark 2.7 (Lie algebra formulation). The Lie algebra bracket on se(3) ≃ so(3)sR3 may
be written on R3 × R3 as,

ad(Ω,α)(Ω̃, α̃) =
[

(Π,α) , (Ω̃, α̃)
]

=
(

Ω× Ω̃ , Ω× α̃− Ω̃×α
)

Its dual operation is

ad∗
(Ω,α)(Π,P) =

(

−Ω×Π−α×P, −Ω×P
)

.

In terms of the ad∗ operation on se(3)∗, the motion equations for (Π,P) in (2.21) can be
rewritten as

(
Π̇ , Ṗ

)
=
(

−Ω×Π− σ2P♯ ×P , −Ω×P
)

=
(

ad∗
Ω Π+ σ2P ⋄P♯ , −Ω×P

)

= ad∗
(Ω, σ2P♯)

(
Π , P

)
.

The result of the last calculation may be rewritten in Lie-Poisson bracket form as
(
Π̇ , Ṗ

)
= ad∗(

∂h/∂Π,∂h/∂P
)
(
Π,P

)
, (2.22)

with Hamiltonian (2.19) rewritten in these variables as

h(Π,P) =
1

2
Π ·Π♯ +

σ2

2
P ·P♯ , (2.23)



Gay-Balmaz, Holm and Ratiu Geometric optimization dynamics 14

and using the (left) Lie-Poisson bracket defined on the dual Lie algebra se(3)∗. This is the
Hamiltonian and Lie-Poisson bracket for the motion of an ellipsoidal underwater vehicle in
the body representation. See, e.g., [31] for more discussion and references to the literature
about the geometrical approach to the dynamics and control of underwater vehicles.

We have seen that equations (2.20) for the state-costate vectors (X,P) are canonically
Hamiltonian and that the system (2.22) for (Π,P) is Lie-Poisson on the dual of a semidirect
product Lie algebra. Now, it remains to include the dynamics of the coordinate X into a
single structure for the entire system (2.21) for (Π,X,P). We observe that equations (2.21)
may be put into Lie-Poisson form, as





Π̇

Ẋ

Ṗ



 =





Π× X× P×
X× 0 1
P× −1 0









∂h/∂Π
∂h/∂X
∂h/∂P



 =





Π× X× P×
X× 0 1
P× −1 0









Ω
0

σ2P♯



 . (2.24)

This is the Lie-Poisson bracket dual to the semidirect product Lie algebra so(3)s (R3×R3)
plus a symplectic 2-cocycle on (X,P) ∈ R3 × R3.

Remark 2.8. As mentioned earlier, the Lagrange-Poincaré and Hamilton-Poincaré formu-
lations in Sections 4 and 6 will block-diagonalize this Hamiltonian matrix.

Remark 2.9 (Comparison of the examples). The major difference between Example 1 and
Examples 2 and 3 is the following. In Example 1, we impose the advection equation ȧ = £va
as a constraint on the minimization problem. This is done, as usual, by introducing a new
variable p and adding the term 〈p, ȧ−£va〉 in the action functional. In Examples 2 and 3,
the advection law is not imposed exactly, but only up to an error term

ν := ȧ−£va,

whose norm is added to the Lagrangian as a penalty, and needs to be minimized. Of course,
in this case, the relation ν = ȧ−£va is a constraint as seen in the term 〈p, ȧ−£va− ν〉.
As we have seen in Proposition 2.4, this error term implies a modification of the equations
of motion.

One of the aims of the present paper is to transform the control problem corresponding to
the cost function in (2.10) into an optimization problem in which the penalty term ‖ȧ−£va‖

2

appears. This objective motivates the introduction of the distributed optimization problem
in the next section.

2.3 Distributed optimization problems

Definition 2.10 (Distributed optimization problems). A distributed optimization problem
imposes the evolutionary state system in (2.1) as a penalty involving a chosen norm, rather
than as a constraint. The resulting cost functional is thus taken to be of the form

Sd :=

∫ T

0

[

ℓ(u, n) +
1

2σ2
‖ṅ− F (n, u)‖2

]

dt, (2.25)

where the norm is associated to a Riemannian metric on Q. In this cost functional, the state
system dynamics (2.1) is imposed only in a distributed sense; namely, as a penalty enforced
by the norm on Q, not pointwise on Q, as in (2.3). We assume that σ2 > 0.
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We may initially regard this second approach as simply modifying the cost function in
the optimal control problem (2.3) by introducing a penalty based on a norm of the state
system. We will show later that the solutions of the two types of optimization problems
coincide in the limit σ2 → 0.

In the case where Q is a vector space, denoted by W , and the norm is associated to an
inner product, the variations of the distributed cost function Sd in (2.25) now yield

δSd =

∫ T

0

[〈

δℓ

δn
−

(
δF

δn

)T

p− ṗ, δn

〉

W

+

〈

δℓ

δu
−

(
δF

δu

)T

p, δu

〉

V

]

dt+ 〈p, δn〉W

∣
∣
∣

T

0
,

(2.26)
where the momentum variable p obtained from the variation with respect to the vector field
ṅ ∈ W is defined by

σ2p :=
(

ṅ− F (n, u)
)♭

∈ W ∗, (2.27)

and in this case the ♭ map (index lowering) is applied with respect to the inner product on
W .

Let us return the Example 2 above and treat it as distributed optimization problem.

Example. As in §2.2, we consider the geometric setting of continuum mechanics. Contrary
to Example 1 above, we do not impose the advection equation ȧ = £va as a constraint but
as a penalty. The problem is now to minimize the expression

Sd :=

∫ T

0

[
1

2
‖v‖2g +

1

2σ2
‖ȧ−£va‖

2
L2

]

dt,

where ‖ · ‖L2 is a L2 norm on the space of tensor field densities. This problem is clearly
equivalent to that of Example 2 in §2.2. The variational principle δSd = 0 yields the control

v = − (p ⋄ a)♯ ∈ g

and the same equations as before

{
ȧ+£(p⋄a)♯a = σ2p♯,

ṗ−£T
(p⋄n)♯p = 0,

(2.28)

where we have defined the variable p by

p :=
1

σ2
(ȧ−£va)

♭ ∈ V. (2.29)

It is important to observe that in this approach the variable p is not really needed, since it is
defined in terms of the other variables. This is not the case for the Clebsch approach described
in the Examples of §2.2 for which p is an independent variable. For the Clebsch approach,
the relation (2.29) is recovered as a consequence of the variational principle δSc = 0.
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Control problems versus optimization problems. We now make some simple com-
ments concerning the role of the variational principles in control problems and optimization
problems.

Let ℓ = ℓ(u, n) : U × Q → R be a cost function and F a vector field as in the general
Definition 2.1. As we have seen, one associates to these objects the following problems.

(1) The optimal control problem consists of minimizing the integral

S :=

∫ T

0

ℓ(u, n)dt subject to the conditions ṅ = F (n, u)

and the usual endpoint conditions. The resolution of this problem uses the Pontrya-
gin maximum principle which, under sufficient smoothness condition, implies that a
solution of this problem is necessarily a solution of the variational principle

δSc = δ

∫ T

0

(

ℓ(ξ, n) + 〈α, ṅ− F (n, u)〉
)

dt = 0.

Example 1 in §2.2, for which the cost function is a kinetic energy and the vector field
F is given by a Lie derivative, illustrates this method.

(2) The optimization problem with penalty described above consists of minimizing the inte-
gral

Sd :=

∫ T

0

(

ℓ(u, n) +
1

2σ2
‖ṅ− F (n, u)‖2

)

dt

subject to the usual endpoint conditions. Of course, the solutions of this problem are
necessarily solutions of the variational principle

δSd = δ

∫ T

0

(

ℓ(ξ, n) +
1

2σ2
‖ṅ− ξQ(n)‖

2

)

dt = 0.

The examples in here illustrate this point.

Remark 2.11. Despite the analogy between the two variational principles δSc = 0 and
δSd = 0, the origins of these principles are quite different.

In the first problem, the functional S is minimized under a constraint, leading to the
construction of the functional Sc by introducing the costate variable α. The well-known
Pontryagin approach tells us that the solutions of the optimal control problem are necessarily
critical points of Sc.

The variational principle of the second problem is simply the stationarity condition im-
plied by optimization of the functional Sd, without other constraints, except the endpoint
conditions.

2.4 Overview

In [25] a general formulation for a large class of optimal control problems was given. These
problems, called Clebsch optimal control problems, are associated to the action of a Lie group
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G on a manifold Q and to a cost function ℓ : g×Q→ R, where g denotes the Lie algebra of
G. The Clebsch optimal control problem is, by definition,

min
ξ(t)

∫ T

0

ℓ(ξ(t), n(t))dt , (2.30)

subject to the following conditions:

(A) Either ṅ(t) = ξ(t)Q(n(t)) , or (A)′ ṅ(t) = − ξ(t)Q(n(t)) ;

(B) Both n(0) = n0 and n(T ) = nT ,

where ξQ denotes the infinitesimal generator of the G-action, that is,

ξQ(n) :=
d

dt

∣
∣
∣
∣
t=0

Φexp(tξ)(n) .

These optimal control problems comprise abstract formulations of many systems such as
the symmetric representation of the rigid body and Euler fluid equations [9, 32], the dou-
ble bracket equations on symmetric spaces [8], the singular solutions of the Camassa-Holm
equation [15], control problems on Stiefel manifolds [13], and others [7, 12].

Goals of the paper. The first goal of the present paper is to replace the constraints in the
Clebsch optimal control problem with a penalty function added to the cost function and to
obtain in this way a classical (unconstrained) optimization problem. The fundamental idea
is to use the constraints to form a quadratic penalty function in order to get the Lagrangian

∫ T

0

(

ℓ(u, n) +
1

2σ2
‖ṅ∓ ξQ(n)‖

2

)

dt. (2.31)

We first determine necessary and sufficient conditions characterizing the critical points of this
Lagrangian. Taking the time derivative of one of the conditions and using the others leads
directly to certain equations of motion. We then show that these equations are naturally
obtained by Lagrangian reduction and that they are the Lagrange-Poincaré equations of a
Lagrangian function in the material representation that is the sum of the original Lagrangian
plus the square of the norm on the velocity vector. This approach links directly to the
approach used in [41] in the study of the metamorphosis of shapes. From a variational point
of view, one replaces the Hamilton-Pontryagin variational principle in the Clebsch framework

δ

∫ T

0

(ℓ(u, n) + 〈α, ṅ∓ uQ(n)〉) dt = 0 ,

by the principle

δ

∫ T

0

(

ℓ(u, n) +
1

2σ2
‖ṅ∓ uQ(n)‖

2

)

dt = 0 ,

in the framework of distributed optimization.

This paper traces how the dynamical equations change on moving from constraints (op-
timal control), to optimization via imposition of a cost, and then on to metamorphosis.
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Passing from optimal control to optimization preserves the momentum map, but this pas-
sage modifies the reconstruction relation. The evolution is no longer only for the momentum
map of the reduced Lagrangian. Instead, the momentum canonically conjugate to the veloc-
ity on the configuration manifold becomes coupled to the momentum map equations (which
are the Euler-Poincaré equations), with coupling constant σ2.

Another feature of the paper, directly related to the dynamics of our optimization prob-
lem, is the description of the equations of motion by Lagrangian and Hamiltonian reduction.
In particular, we carry out a certain type of Lagrangian reduction adapted to the problem,
that we naturally call metamorphosis reduction, since it was directly inspired by the example
of the metamorphosis approach to image dynamics [41]. This Lagrangian reduction leads
to the expression of the associated variational principles and Hamiltonian structures. In
metamorphosis, the optimization problem involves Riemannian structures induced by Lie
group actions on themselves and on Lie subgroups by group homomorphisms. This is a rich
field whose possibilities are still being developed. In particular, metamorphosis and related
variants of the geometric approach to control and optimization can be expected to produce
opportunities for new applications and analysis in geometric dynamics.

3 Distributed optimization

In this section we begin with a quickly review the Clebsch optimal control problem studied
in [25]. Then we introduce the class of optimization problems investigated in this paper,
obtained by adding to the cost function a penalty given by the norm of the constraints in
the previous approach.

3.1 Review of Clebsch optimal control

Clebsch optimal control formulation and main results. We recall from [25] some
facts concerning Clebsch optimal control problems. Let Φ : G × Q → Q be a left (resp.
right) action of a Lie group G on the manifold Q and let ℓ : g×Q → R be a cost function.
The Clebsch optimal control problem for the curves ξ(t) ∈ g and n(t) ∈ Q is

min
ξ(t)

∫ T

0

ℓ(ξ(t), n(t))dt (3.1)

subject to the following conditions:

(A) Either ṅ(t) = ξ(t)Q(n(t)) , or (A)′ ṅ(t) = −ξ(t)Q(n(t)) ;

(B) Both n(0) = n0 and n(T ) = nT ,

where ξQ denotes the infinitesimal generator of the G-action associated to ξ ∈ g, that is,

ξQ(q) :=
d

ds

∣
∣
∣
∣
s=0

Φexp(sξ)(q), q ∈ Q.
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If condition (A) is assumed, then by applying the Pontryagin maximum principle, we
obtain that an extremal curve n(t) ∈ Q is necessarily the projection of a curve α(t) ∈ T ∗Q
that is a solution of the equations [25]

δℓ

δξ
= J(α), α̇ = ξT ∗Q(α) + Verα

∂ℓ

∂n
. (3.2)

Here J : T ∗Q→ g∗ denotes the momentum map associated to the cotangent-lifted action of
G on T ∗Q. Recall that J is given by [48]

〈J(αq), ξ〉 = 〈αq, ξQ(q)〉.

〈J(αq), ξ〉 = 〈αq, ξQ(q)〉 = −〈αq ⋄ q, ξ〉 , when ξQ(q) = £ξq

The expression δℓ
δξ

∈ g∗ denotes the usual functional derivative of ℓ(·, n) for each fixed n ∈ Q

whereas ∂ℓ
∂n

:= dℓ(ξ, ·) ∈ T ∗
nQ denotes the differential of the function ℓ(ξ, ·) : Q→ R for each

fixed ξ ∈ g. For α, β ∈ T ∗
qQ, the map Verα β denotes the vertical lift of β ∈ T ∗

qQ relative to
α ∈ T ∗

qQ, defined by

Verα β :=
d

ds

∣
∣
∣
∣
s=0

(α + sβ) ∈ Tα(T
∗Q).

In (3.2), ξT ∗Q denotes the infinitesimal generator of the cotangent-lifted action of G on T ∗Q.
Note that the vector field ξT ∗Q(α)+Verα

∂ℓ
∂n

on T ∗Q is the Hamiltonian vector field associated
to the Hamiltonian

αn ∈ T ∗Q 7→ 〈αn, ξQ(n)〉 − ℓ(ξ, n) ∈ R,

in which the Lie algebra element ξ ∈ g is regarded as a parameter. Using these equations,
we determine that the optimal control ξ is the solution of the equations

d

dt

δℓ

δξ
= − ad∗

ξ

δℓ

δξ
+ J

(
∂ℓ

∂n

)

, resp.
d

dt

δℓ

δξ
= ad∗

ξ

δℓ

δξ
+ J

(
∂ℓ

∂n

)

. (3.3)

If condition (A)′ is assumed, then (3.2) is replaced by

δℓ

δξ
= −J(α), α̇ = − ξT ∗Q(α) + Verα

∂ℓ

∂n
(3.4)

and the optimal control ξ is the solution of the equations

d

dt

δℓ

δξ
= ad∗

ξ

δℓ

δξ
− J

(
∂ℓ

∂n

)

, resp.
d

dt

δℓ

δξ
= − ad∗

ξ

δℓ

δξ
− J

(
∂ℓ

∂n

)

. (3.5)

We refer to [25] for proofs of these statements and further discussion.

Variational principle. We shall prove that equations (3.2) or (3.4), together with the
constraint ṅ = ± ξQ(n) follow from the variational principle

δ

∫ T

0

(
ℓ(ξ, n) + 〈α, ṅ∓ ξQ(n)〉

)
dt = 0 , (3.6)
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for curves t 7→ ξ(t) ∈ g and t 7→ α(t) ∈ T ∗
n(t)Q. The variations δξ are free, whereas

the variations δα are such that the induced variations δn vanish at the endpoints, that is,
δn(0) = δn(T ) = 0.

To see this, let ξs ∈ g and αs ∈ T ∗
ns
Q be curves whose infinitesimal variations at s = 0

are δξ ∈ g and δα ∈ T ∗
nQ. We have

δ

∫ T

0

(
ℓ(ξ, n)+〈α, ṅ∓ ξQ(n)〉

)
dt =

∫ T

0

〈
δℓ

δξ
, δξ

〉

dt+

∫ T

0

〈
∂ℓ

∂n
, δn

〉

dt

+
d

ds

∣
∣
∣
∣
s=0

∫ T

0

〈αs, ṅs〉 dt∓
d

ds

∣
∣
∣
∣
s=0

∫ T

0

〈J(αs), ξs〉 dt. (3.7)

A direct computation in canonical coordinates, using δn(0) = δn(T ) = 0 in an integration
by parts, shows that

d

ds

∣
∣
∣
∣
s=0

∫ T

0

〈αs, ṅs〉 dt =

∫ T

0

Ωcan(α̇, δα)dt, (3.8)

where Ωcan denotes the canonical symplectic form on T ∗Q. In addition, using the definition
of the momentum map J : T ∗Q→ g∗ we have

d

ds

∣
∣
∣
∣
s=0

〈J(αs), ξs〉 = 〈TαJ(δα), ξ〉+ 〈J(α), δξ〉 = Ωcan (ξT ∗Q(α), δα) + 〈J(α), δξ〉 . (3.9)

Using relations (3.8) and (3.9) in formula (3.7) yields (3.2) and (3.4).

Alternative form of the stationarity conditions. Note that the equations

α̇ = ± ξT ∗Q(α) + Verα
∂ℓ

∂n
(3.10)

imply the constraint ṅ = ± ξQ(n). To see this, it suffices to apply the tangent map Tπ to
(3.10), where π : T ∗Q → Q is the projection, and recall that ξT ∗Q and ξQ are π-related. By
introducing a Riemannian metric g on Q, it is possible to rewrite the stationarity condition
in a more explicit way, as we show in the following lemma.

Lemma 3.1. Suppose that Q is endowed with a Riemannian metric g and denote by ∇ and
D/Dt the associated Levi-Civita covariant derivatives.

Then the equation α̇ = ± ξT ∗Q(α) + Verα
∂ℓ
∂n

in (3.10) is equivalent to the system






ṅ = ± ξQ(n),

D

Dt
α = ∓〈α,∇ξQ(n)〉+

∂ℓ

∂n
.

(3.11)

Proof. We begin by recalling the definition and main property of the connector K : TTQ→
TQ associated to a Riemannian manifold (Q, g). A general detailed treatment for connectors
associated to linear connections can be found in [53], Section 13.8. In infinite dimensions
we need to assume that the given weak Riemannian metric has a smooth geodesic spray
S ∈ X(TQ). In natural local charts of TTQ, the intrinsic map K is defined by

Kloc(x, e, u, v) = (x, v + Γ(x)(e, u)), (3.12)
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where Γ(x) is the Christoffel map defined by the quadratic form in the fourth component
of the geodesic spray S(x, u) = (x, u, u,−Γ(x)(u, u)). In finite dimensions, the Christoffel
map has the familiar expression Γ(x)(e, u)i = Γi

jk(x)e
iuk, where Γi

jk are usual the Christoffel
symbols associated to the metric g. The relation between the connector and the Levi-Civita
covariant derivative is given for all X, Y ∈ X(Q) by

∇YX = K ◦ TX ◦ Y. (3.13)

The connector K induces an intrinsic map, also denoted by K : TT ∗Q → T ∗Q defined in
natural local charts by

Kloc(x, β, u, γ) = (x, γ − β(Γ(x)(u, ·))). (3.14)

The associated covariant derivative

∇Xα := K ◦ Tα ◦X (3.15)

on T ∗Q recovers the Levi-Civita connection on one-forms α ∈ Ω1(Q). Although the same
notation is used for the connector on TQ and on T ∗Q, it will be clear from the context which
one is meant.

The proof of Lemma 3.1 begins by recalling the vector bundle isomorphism TT ∗Q →
T ∗Q⊕ TQ⊕ T ∗Q given by

X 7→ (σT ∗Q(X), Tπ(X), K(X)) ,

where σT ∗Q : TT ∗Q→ T ∗Q is the projection. Therefore, to prove the equivalence it suffices
to apply the maps Tπ and K to the equation α̇ = ± ξT ∗Q(α) + Verα

∂ℓ
∂n
. As we have seen

before, applying Tπ yields the first equation in the system (3.11). The definition (3.14) of
K and (3.15) immediately imply the equalities

K(α̇) =
D

Dt
α and K

(

Verα
∂ℓ

∂n

)

=
∂ℓ

∂n
.

Thus, to finish the proof, it suffices to compute K (ξT ∗Q(α)). Given vn ∈ TnQ, αn ∈ T ∗
nQ,

and ξ ∈ g, we have 〈

T ∗Φ−1
exp(sξ)(αn), TΦexp(sξ)(vn)

〉

= 〈αn, vn〉 .

Taking the s-derivative at s = 0 yields

〈K (ξT ∗Q(αn)) , vn〉+ 〈αn, K (ξTQ(vn))〉 = 0. (3.16)

Noting the equalities K(ξTQ(vn)) = K(TξQ(vn)) = ∇vnξQ(n), we obtain the formula

K (ξT ∗Q(αn)) = −〈αn,∇ξQ(n)〉 ,

which proves Lemma 3.1, that the stationarity conditions (3.10) and (3.11) are equivalent
for a Riemannian manifold. �

System (3.11) may also be obtained directly from the variational principle δSc = 0,

Sc =
∫ T

0

(
ℓ(ξ, n) + 〈α, ṅ ∓ ξQ(n)〉

)
dt, by using a Riemannian metric on Q. However, we

have chosen to derive the stationarity conditions (3.2) or (3.4) together with the constraint
ṅ = ± ξQ(n) for the functional Sc without introducing a Riemannian metric; see (3.7)–(3.9)
above.
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Lagrangian and Hamiltonian approach. Equations (3.3) and (3.5) can be obtained
via Euler-Poincaré reduction for the G-invariant function L : TG × Q → R induced by ℓ.
More precisely, upon fixing q ∈ Q and defining the Lagrangian Lq(ug) := L(ug, q) on TG,
one finds that the equations (3.3) and (3.5) are equivalent to the Euler-Lagrange equations
for Lq by invoking a generalization of the Euler-Poincaré reduction theorem. We refer to [26]
for a proof of this assertion and for applications to systems with broken symmetry. If Q is a
representation space of G, one recovers the Euler-Poincaré reduction theorem for semidirect
products; see [36, 37].

If the Legendre transform ξ ∈ g 7→ δℓ
δξ

∈ g∗ is a diffeomorphism, we can form the
associated Hamiltonian h : g∗ ×Q→ R defined by

h(µ, n) := 〈µ, ξ〉 − ℓ(ξ, n), where
δℓ

δξ
= µ .

In this case, the Lagrangian L is hyperregular on TG, the variable q ∈ Q being considered
as a parameter, and we can form the Hamiltonian H : T ∗G×Q→ R. More precisely, fixing
q ∈ Q, we define

Hq := Eq ◦ FL
−1
q ,

where Eq is the energy associated to the Lagrangian Lq : TG → R and FLq : TQ → T ∗Q is
the classical Legendre transform of Lq. The function H : T ∗G × Q → R is then defined by
H(αg, q) := Hq(αg). Equations (3.3) and (3.5) can be written in Hamiltonian form as







µ̇ = ∓ ad∗
δh
δµ

µ− J

(
∂h

∂n

)

,

ṅ =

(
δh

δµ

)

Q

(n),

(3.17)

and 





µ̇ = ± ad∗
δh
δµ

µ+ J

(
∂h

∂n

)

,

ṅ = −

(
δh

δµ

)

Q

(n),

(3.18)

respectively. They are obtained by Poisson reduction of Hamilton’s equations for H on
T ∗G×Q, where Q is endowed with the zero Poisson structure.

In terms of h, the equations (3.2) or (3.4) read

µ = J(α), α̇ =

(
δh

δµ

)

T ∗Q

(α)− Verα
∂h

∂n
, (3.19)

and

µ = −J(α), α̇ = −

(
δh

δµ

)

T ∗Q

(α)− Verα
∂h

∂n
. (3.20)

As in Lemma 3.1, by introducing a Riemannian metric g on Q, these equations can be
rewritten as

µ = ±J(α), ṅ = ±

(
δh

δµ

)

Q

(n),
D

Dt
α = ∓

〈

α,∇

(
δh

δµ

)

Q

(n)

〉

−
∂h

∂n
. (3.21)
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3.2 Optimization using penalties

As before, we consider a left (resp. right) action Φ : G × Q → Q and a cost function
ℓ : g × Q → R. We suppose that the manifold Q is endowed with a Riemannian metric g.
The basic idea is to treat the condition (A) or (A)′ as a penalty rather than a constraint.
Therefore, in the case of condition (A) above, we consider the minimization problem

min
ξ,n

∫ T

0

(

ℓ(ξ, n) +
1

2σ2
‖ṅ− ξQ(n)‖

2

)

dt, (3.22)

and if condition (A)′ holds, we consider

min
ξ,n

∫ T

0

(

ℓ(ξ, n) +
1

2σ2
‖ṅ+ ξQ(n)‖

2

)

dt. (3.23)

These two problems are subject to the condition

n(0) = n0 and n(T ) = nT ,

for given n0, nT ∈ Q. Here the norm is taken with respect to the Riemannian metric g on Q
and σ 6= 0.

Stationarity conditions. In order to find the critical curves, we consider the variational
principle

δ

∫ T

0

(

ℓ(ξ, n) +
1

2σ2
‖ṅ∓ ξQ(n)‖

2

)

dt = 0 (3.24)

for the two curves (ξ, n) : [0, T ] 7→ g×Q, where n has fixed endpoints. That is, the variation
δξ is free and the variation δn vanishes at the endpoints.

We will treat condition (A) and (A)′ simultaneously. In all the expressions below, the
upper sign refers to condition (A) and the lower sign refers to condition (A)′. The ξ-variation
yields the condition

δℓ

δξ
= ±

1

σ2
J(ν♭n), where νn := ṅ∓ ξQ(n), (3.25)

and ν♭n := g(n)(νn, ·) ∈ T ∗
nQ . We now compute the variations of n, where we denote by ∇

and D/Dt the covariant derivatives associated to the Levi-Civita connection of the metric
g. For δn = d

ds

∣
∣
s=0

ns, we have

∫ T

0

(〈
∂ℓ

∂n
, δn

〉

+
1

σ2

〈

ν♭n,
D

Ds

∣
∣
∣
∣
s=0

ṅ∓
D

Ds

∣
∣
∣
∣
s=0

ξQ(ns)

〉)

dt

=

∫ T

0

(〈
∂ℓ

∂n
, δn

〉

−
1

σ2

〈
D

Dt
ν♭n, δn

〉

∓
1

σ2

〈
ν♭n,∇δnξQ(n)

〉
)

dt.

Upon exchanging the order of derivatives, D
Dt

d
ds

= D
Ds

d
dt

(which is allowed because the Levi-
Civita connection has no torsion) one finds the equation

D

Dt
ν♭n = ∓g(νn,∇ξQ) + σ2 ∂ℓ

∂n
. (3.26)
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Consequently, (ξ, n) is a solution of (3.24) if and only if (3.25) and (3.26) hold. In what
follows, equations (3.25) and (3.26) will be called the stationarity conditions.

Note that here, in contrast to the argument in §3.1, specific use of the Riemannian metric
is made in computing the stationarity equations from the condition δSd = 0, where

Sd :=

∫ T

0

(

ℓ(ξ, n) +
1

2σ2
‖ṅ∓ ξQ(n)‖

2

)

dt. (3.27)

This is natural, because a Riemannian metric is provided by the penalty term in the problem
statement. Using the notation

π :=
1

σ2
ν♭n =

1

σ2
(ṅ∓ ξQ(n))

♭ ∈ T ∗Q ,

enables the stationarity conditions (3.25) and (3.26) to be written as

δℓ

δξ
= ±J(π), ṅ = ± ξQ(n) + σ2π♯,

D

Dt
π = ∓〈π,∇ξQ〉+

∂ℓ

∂n
. (3.28)

These equations should be compared with the other stationarity conditions (3.2) and (3.11),

δℓ

δξ
= ±J(α), ṅ = ± ξQ(n),

D

Dt
α = ∓〈α,∇ξQ〉+

∂ℓ

∂n
, (3.29)

associated to the Clebsch optimal control problem. These two sets of stationarity condi-
tions are analogous. However, the corresponding variables α and π have different origins.
Namely, the costate variable α was introduced as the Lagrange multiplier in formulating the
constrained Clebsch variational principle (3.6), whereas the variable π arises as a canonical
momentum, dual to the penalty variable νn in the unconstrained variational principle (3.24).

Recall from Lemma 3.1 that the last two stationarity conditions of the system (3.29) are
equivalent to

α̇ = ± ξT ∗Q(α) + Verα
∂ℓ

∂n
.

An analogous result concerning the stationarity conditions of the distributed optimal control
problem is given by the following lemma. Let ♯ := ♭−1 : T ∗Q→ TQ.

Lemma 3.2. The system of two equations







ṅ = ± ξQ(n) + σ2π♯ ,

D

Dt
π = ∓〈π,∇ξQ(n)〉+

∂ℓ

∂n
,

(3.30)

is equivalent to the single equation

π̇ = ± ξT ∗Q(π) + Verπ
∂ℓ

∂n
+ σ2S(π),

where S ∈ X(T ∗Q) is the Hamiltonian vector field associated to the kinetic energy of the
Riemannian metric.
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Proof. It suffices to observe that the vector field S verifies the properties

K(S(α)) = 0 and Tπ(S(α)) = α♯,

for all α ∈ T ∗Q. Then the proof is similar to that of Lemma 3.1. �

Remark 3.3. In terms of the Hamiltonian h associated to ℓ, the stationarity conditions
(3.25) and (3.26) read

ṅ = ±

(
δh

δκ

)

Q

(n) + σ2π♯,
D

Dt
π = ∓

〈

π,∇

(
δh

δκ

)

Q

(n)

〉

−
∂h

∂n
,

or, equivalently,

π̇ = ±

(
δh

δκ

)

T ∗Q

(π)− Verπ
∂h

∂n
+ σ2S(π).

These equations should be compared to their analogues in (3.19) – (3.21).

Equations of motion associated to the stationarity conditions. We now compute
the differential equation associated to condition (3.25), that is, the analogue of equations
(3.3), (3.5). The formulation will involve the following g∗-valued (1, 1) tensor field.

Definition 3.4. Consider a Lie group G acting on a Riemannian manifold (Q, g). We
define the g∗-valued (1, 1) tensor field F∇ : T ∗Q × TQ → g∗ associated to the Levi-Civita
connection ∇ by

〈
F∇(αq, uq), η

〉
:=
〈
αq,∇uqηQ(q)

〉
, (3.31)

for all uq ∈ TqQ, αq ∈ T ∗
qQ, and η ∈ g.

The main properties of the tensor field F∇ are given in the following lemmas.

Lemma 3.5. For all αq ∈ T ∗
qQ, uq ∈ TqQ, and ξ ∈ g,

〈
F∇(αq, uq), ξ

〉
= 〈αq, K(ξTQ(uq))〉 = −〈K(ξT ∗Q(αq)), uq〉 ,

where K denotes the connectors of the covariant derivatives on TQ and T ∗Q, respectively
(see formulas (3.12)-(3.15)).

Proof. It suffices to use formula (3.16) in the proof of Lemma 3.1. �

The following important property of F∇ is valid when G acts by isometries.

Lemma 3.6. If G acts by isometries, then F∇ is antisymmetric, that is

F∇(αq, uq) = −F∇(u♭q, α
♯
q),

for all uq ∈ TqQ, αq ∈ T ∗
qQ.

Proof. Since G acts by isometries, £ξQg = 0 which implies (∇ξQ)
T = −∇ξQ. �

We also need the following preparatory lemma, valid for any action.
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Lemma 3.7. Let J : T ∗Q → g, 〈J(αq), ξ〉 = 〈αq, ξQ(q)〉 be the momentum map of the
cotangent-lifted action of G on T ∗Q and let g be a Riemannian metric on Q. Then for a
curve α(t) ∈ T ∗

q(t)Q we have

d

dt
J(α(t)) = J

(
D

Dt
α(t)

)

+ F∇(α(t), q̇(t))),

where D/Dt and ∇ denote the Levi-Civita covariant derivatives associated to g.

Proof. For all η ∈ g, we have

d

dt
〈J(α(t)), η〉 =

d

dt
〈α(t), ηQ(q(t))〉 =

〈
D

Dt
α(t), ηQ(q(t))

〉

+

〈

α(t),
D

Dt
ηQ(q(t))

〉

=

〈

J

(
D

Dt
α(t)

)

, η

〉

+
〈

α(t),∇q̇(t)ηQ(q(t))
〉

.

Using the definition of F∇ implies the required formula. �

Note that this proof of Lemma 3.7 did not assume that the metric is G-invariant and
that the formula is valid for left and right actions.

Lemma 3.7, and equations (3.25), (3.26) enable one to compute the motion equations
associated to the minimization problems (3.22), (3.23) as follows:

d

dt

δℓ

δξ
= ±

d

dt

1

σ2
J(ν♭n) = ±

1

σ2
J

(
D

Dt
ν♭n

)

±
1

σ2
F∇(ν♭n, ṅ)

= ±J

(
∂ℓ

∂n

)

−
1

σ2
J
(
〈ν♭n,∇ξQ〉

)
±

1

σ2
F∇(ν♭n, νn) +

1

σ2
F∇(ν♭n, ξQ(n))

= ±J

(
∂ℓ

∂n

)

±
1

σ2
F∇(ν♭n, νn) + (∓)

1

σ2
ad∗

ξ J(ν
♭
n)

= ±J

(
∂ℓ

∂n

)

±
1

σ2
F∇(ν♭n, νn)± (∓) ad∗

ξ

δℓ

δξ
,

where in (∓) one chooses − (resp. +) when G acts on Q by a left (resp. right) action; so in
the last term there are four choices of sign. Thus, when the penalty is given by ‖ṅ− ξQ(n)‖

2

(condition (A)), the critical curves of the variational principle (3.24) are solutions of







d

dt

δℓ

δξ
= ∓ ad∗

ξ

δℓ

δξ
+ J

(
∂ℓ

∂n

)

+
1

σ2
F∇(ν♭n, νn) ,

D

Dt
ν♭n = −〈ν♭n,∇ξQ〉+ σ2 ∂ℓ

∂n
, νn := ṅ− ξQ(n) .

(3.32)

When the penalty ‖ṅ+ ξQ(n)‖
2 (condition (A)′) is chosen instead, one finds,







d

dt

δℓ

δξ
= ± ad∗

ξ

δℓ

δξ
− J

(
∂ℓ

∂n

)

−
1

σ2
F∇(ν♭n, νn) ,

D

Dt
ν♭n = 〈ν♭n,∇ξQ〉+ σ2 ∂ℓ

∂n
, νn := ṅ+ ξQ(n) .

(3.33)
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Remark 3.8. The motion equations (3.32) and (3.33) should be compared to the analo-
gous motion equation (3.3) and (3.5), respectively, obtained by the Clebsch optimal control
approach. Note that the term F∇(ν♭n, νn) is an additional force term that is due to the
presence of the quantity νn. The variable νn = ṅ ± ξQ(n) measures the inexact matching
and evolves according to the second equation D

Dt
ν♭n = ±g(νn,∇ξQ) + σ2 ∂ℓ

∂n
. We shall return

to the discussion of inexact matching for images in Section 8.5.

Thanks to Lemma 3.6 we obtain the following important result, when G acts by isome-
tries.

Theorem 3.9. Let G be a Lie group acting on a manifold Q and let ℓ : g × Q → R be
a cost function. We consider the two associated Clebsch optimal control and distributed
optimization problems. Suppose that the Riemannian metric used in the penalty term is
G-invariant. Then the two problems yield the same equations of motion.

Proof. It suffices to use Lemma 3.6, and to compare equations (3.33), (3.32) with equations
(3.3), (3.5). �

For completeness we rewrite below the equations (3.32) and (3.33) in the particular case
where G acts by isometries. Using F∇(ν♭n, νn) = 0 and ∇ξTQ = −∇ξQ, for this case yields







d

dt

δℓ

δξ
= ∓ ad∗

ξ

δℓ

δξ
+ J

(
∂ℓ

∂n

)

D

Dt
νn = ∇νnξQ + σ2 ∂ℓ

∂n

♯

, νn := ṅ− ξQ(n)

(3.34)

and 





d

dt

δℓ

δξ
= ± ad∗

ξ

δℓ

δξ
− J

(
∂ℓ

∂n

)

D

Dt
νn = −∇νnξQ + σ2 ∂ℓ

∂n

♯

, νn := ṅ+ ξQ(n).

(3.35)

Remark 3.10. The remainder of the present paper will investigate these equations as dynam-
ical systems, rather than as optimal control problems. See [39], in which a similar approach
is taken.

4 Lagrange-Poincaré and metamorphosis reduction

In this section, we present two Lagrangian reduction approaches that will be useful in under-
standing the geometry of the equations (3.33), (3.32) associated to the minimization problem
(3.23), (3.22).

Let G act on the left (resp. right) on Q. Let L : T (G × Q) → R be a left (resp.
right)-invariant Lagrangian under the action of G given by

(ug, uq) 7→ (hug, huq) resp. (ug, uq) 7→ (ugh, uqh).

Two reduction processes are discussed. The first uses Lagrangian reduction (see [17]) and
the second is a formulation of the reduction used for metamorphosis in [41].
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Theorem 4.1 (Lagrange-Poincaré reduction). Let g ∈ G and q ∈ Q be two curves and define
the curves n := g−1q ∈ Q and ξ := g−1ġ ∈ g (resp. n := qg−1 ∈ Q and ξ := ġg−1 ∈ g).

Then (g, q) is a solution of the Euler-Lagrange equations for L if and only if (n, ξ) is a
solution of the Lagrange-Poincaré equations






d

dt

δℓLP
δξ

= ad∗
ξ

δℓLP
δξ

,

D

Dt

∂ℓLP
∂ṅ

−
∂ℓLP
∂n

= 0,
d

dt
n = ṅ,

resp.







d

dt

δℓLP
δξ

= − ad∗
ξ

δℓLP
δξ

,

D

Dt

∂ℓLP
∂ṅ

−
∂ℓLP
∂n

= 0,
d

dt
n = ṅ,

(4.1)

where the Lagrange-Poincaré Lagrangian ℓLP = ℓLP (n, ṅ, ξ) : TQ × g → R is induced from
L by the quotient map

T (G×Q) → TQ× g, (ug, uq) 7→ (n, ṅ, ξ) := (νn − ξQ(n), ξ) (4.2)

for n := g−1q, νn := g−1uq, ξ := g−1ug (resp. n := qg−1, νn := uqg
−1, ξ := ugg

−1).
These equations are equivalent to the variational principle

δ

∫ T

0

ℓLP (n, ṅ, ξ)dt = 0,

for arbitrary variations δn and constrained variations δξ = η̇ + [ξ, η] (resp. δξ = η̇ − [ξ, η]).
In the Lagrange-Poincaré equations, D/Dt and ∂ℓLP/∂n denote the covariant derivative

and the partial derivative associated to a fixed torsion free connection ∇ on Q.

Proof. We treat the case of a left action and apply the results of [17]. The projection
associated to the G-action reads π : G × Q → Q, π(q, g) = g−1q. Thus, by taking the
tangent map, we find Tπ(ug, uq) = (g−1ug − (g−1ug)Q(g

−1q)). The adjoint bundle Ad(G×Q)
can be identified with the trivial vector bundle Q × g via the identification [(g, q), ξ] ≃
(g−1q,Adg−1 ξ). Using the principal connection A(ug, uq) := ugg

−1, the diffeomorphism
(T (G × Q))/G ∼= TQ × g is given by [ug, uq] 7→ (g−1uq − (g−1ug)Q(g

−1q), g−1ug). Thus,
the Lagrange-Poincaré reduction map has the required expression (4.2). Since the chosen
principal connection is flat, we obtain the Lagrange-Poincaré equations (4.1). �

For the same G-invariant Lagrangian L : T (G × Q) → R as before, we define another
reduced Lagrangian ℓM = ℓM(νn, ξ) : TQ× g → R associated to the quotient map

T (G×Q) → TQ×g, (ug, uq) 7→ (νn, ξ) := (g−1uq, g
−1ug), resp. (νn, ξ) := (uqg

−1, ugg
−1).

This reduced Lagrangian differs from the Lagrange-Poincaré Lagrangian ℓLP defined above,
but one can pass from the one to the other by the vector bundle isomorphism

TQ× g → TQ× g, (νn, ξ) 7→ (νn − ξQ(n), ξ), (4.3)

that is, we have
ℓLP (n, ṅ, ξ) = ℓM(n, ṅ+ ξQ(n), ξ),

for both the left and right cases. The reduction associated to this quotient map will be called
metamorphosis reduction, since it is the abstract framework underlying the metamorphosis
dynamics described in [41].
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Theorem 4.2 (Metamorphosis reduction). Let g ∈ G and q ∈ Q be two curves and define
the curves νn := g−1q̇ ∈ TQ and ξ := g−1ġ ∈ g (resp. νn := q̇g−1 ∈ TQ and ξ := ġg−1 ∈ g).

Then (g, q) is a solution of the Euler-Lagrange equations associated to L if and only if
(ν, ξ) is solution of the equations







d

dt

δℓM
δξ

= ± ad∗
ξ

δℓM
δξ

− J

(
∂ℓM
∂n

)

−F∇

(
∂ℓM
∂νn

, νn

)

,

D

Dt

∂ℓM
∂νn

=

〈
∂ℓM
∂νn

,∇ξQ

〉

+
∂ℓM
∂n

,
d

dt
n = νn − ξQ(n) ,

(4.4)

where + (resp. −) occurs when G acts on Q by a left (resp. right) action, and F∇ is the
g∗-valued (1, 1) tensor field defined in (3.31). In (4.4), ∂ℓM/∂n and ∂ℓM/∂νn denote the
horizontal and fiber derivatives, respectively.

These equations are equivalent to the variational principle

δ

∫ T

0

ℓM(ν, ξ)dt = 0,

with variations δξ = η̇ + [ξ, η] (resp. δξ = η̇ − [ξ, η]) and δν = D
Dt
ω +∇ωξQ −∇νηQ.

The proof will use the following lemma.

Lemma 4.3. Consider the two reduced Lagrangians ℓLP and ℓM . Then we have the relations

δℓLP
δξ

=
δℓM
δξ

+ J

(
∂ℓM
∂νn

)

,
∂ℓLP
∂n

=
∂ℓM
∂n

+

〈
∂ℓM
∂νn

,∇ξQ

〉

,
∂ℓLP
∂ṅ

=
∂ℓM
∂νn

. (4.5)

Proof. Using the relation ℓLP (n, ṅ, ξ) = ℓM(n, ṅ + ξQ(n), ξ), we easily obtain the first and
third expression. For the second we recall that partial derivatives ∂ℓLP

∂n
, ∂ℓM

∂n
are defined with

the help of a connection ∇ on Q. Let c(t) ∈ Tm(t)Q be a smooth horizontal curve covering a
curve m(t) ∈ Q and such that c(0) = ṅ, ṁ(0) = un ∈ TnQ. By using the decomposition of
TTQ into its vertical and horizontal part, we have
〈
∂ℓLP
∂n

(n, ṅ, ξ), un

〉

=
d

dt

∣
∣
∣
∣
t=0

ℓLP (c(t), ξ) =
d

dt

∣
∣
∣
∣
t=0

ℓM(c(t) + ξQ(m(t)), ξ)

= dTQℓM(n, ṅ, ξ)

(
d

dt

∣
∣
∣
∣
t=0

c(t) +
d

dt

∣
∣
∣
∣
t=0

ξQ(m(t))

)

=

〈
∂ℓM
∂n

(ṅ+ ξQ(n), ξ), Tπ

(
d

dt

∣
∣
∣
∣
t=0

c(t) +
d

dt

∣
∣
∣
∣
t=0

ξQ(m(t))

)〉

+

〈
∂ℓM
∂νn

(ṅ+ ξQ(n), ξ), K

(
d

dt

∣
∣
∣
∣
t=0

c(t) +
d

dt

∣
∣
∣
∣
t=0

ξQ(m(t))

)〉

=

〈
∂ℓM
∂n

(ṅ+ ξQ(n), ξ), un

〉

+

〈
∂ℓM
∂νn

(ṅ+ ξQ(n), ξ),∇unξQ

〉

,

where K : TTQ→ TQ denotes the connector map associated to ∇. Here dTQ is the exterior
derivative on TQ and the fourth equality is a general formula valid for linear connections
that links the total derivative to the horizontal and vertical derivatives. �
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Proof of Theorem 4.2. We treat simultaneously the case of a left and right action. Using
the second equation in (4.1) and Lemma 4.3, we directly obtain the equations

D

Dt

∂ℓM
∂νn

−
∂ℓM
∂n

=

〈
∂ℓM
∂νn

,∇ξQ

〉

,
d

dt
n = νn − ξQ(n).

By Lemma 3.7, for any η ∈ g, we have
〈
d

dt
J

(
∂ℓM
∂νn

)

, η

〉

=

〈

J

(
D

Dt

∂ℓM
∂νn

)

, η

〉

+

〈
∂ℓM
∂νn

,∇ṅηQ(n)

〉

=

〈

J

(
∂ℓM
∂n

)

, η

〉

+

〈
∂ℓM
∂νn

,∇ηQξQ(n)

〉

+

〈
∂ℓM
∂νn

,∇νnηQ(n)

〉

−

〈
∂ℓM
∂νn

,∇ξQηQ(n)

〉

=

〈

J

(
∂ℓM
∂n

)

, η

〉

+

〈

F∇

(
∂ℓM
∂νn

, νn

)

, η

〉

∓

〈

J

(
∂ℓM
∂νn

)

, [η, ξ]

〉

,

where we use the equalities ∇ηQξQ −∇ξQηQ = [ηQ, ξQ] = ∓[η, ξ]Q. We thus obtain

d

dt
J

(
∂ℓM
∂νn

)

= J

(
∂ℓM
∂n

)

+ F∇

(
∂ℓM
∂νn

, νn

)

± ad∗
ξ J

(
∂ℓM
∂νn

)

.

Inserting the formula δℓLP

δξ
= δℓM

δξ
+ J

(
∂ℓM
∂νn

)

in the first equation of (4.1) and using the

previous expression for d
dt
J
(

∂ℓM
∂νn

)

, we get the required equation

d

dt

δℓM
δξ

= ± ad∗
ξ

δℓM
δξ

− J

(
∂ℓM
∂n

)

−F∇

(
∂ℓM
∂νn

, νn

)

. �

Left (right) reduction and right (left) action. In some applications, we need to con-
sider left-invariant (resp. right-invariant) Lagrangians whereas G acts on Q by a right (resp.
left) action. We quickly present here the situation, by giving the main formulas in this case.
Let G act on the left (resp. right) on Q. We consider here the case of a right (resp. left)
invariant Lagrangian L : T (G×Q) → R under the action of G given by

(ug, uq) 7→ (ugh, h
−1uq) resp. (ug, uq) 7→ (hug, uqh

−1).

The Lagrange-Poincaré Lagrangian ℓLP : TQ× g → R is now induced by the quotient map

T (G×Q) → R, (ug, uq) 7→ (n, ṅ, ξ) := (νn + ξQ(n), ξ), (4.6)

for n := gq, νn := guq, ξ := ugg
−1 (resp. n := qg, νn := uqg, ξ := g−1ug). The Lagrange-

Poincaré equations are now given by







d

dt

δℓLP
δξ

= − ad∗
ξ

δℓLP
δξ

,

D

Dt

∂ℓLP
∂ṅ

−
∂ℓLP
∂n

= 0,
d

dt
n = ṅ,

resp.







d

dt

δℓLP
δξ

= ad∗
ξ

δℓLP
δξ

,

D

Dt

∂ℓLP
∂ṅ

−
∂ℓLP
∂n

= 0,
d

dt
n = ṅ.

(4.7)



Gay-Balmaz, Holm and Ratiu Geometric optimization dynamics 31

Note the change in the sign when compared to (4.1). Note that we now have the relation
ℓLP (n, ṅ, ξ) = ℓM(ṅ− ξQ(n), ξ). Therefore, the conclusions of Lemma 4.3 should be replaced
by

δℓLP
δξ

=
δℓM
δξ

− J

(
∂ℓM
∂νn

)

,
∂ℓLP
∂n

=
∂ℓM
∂n

−

〈
∂ℓM
∂νn

,∇ξQ

〉

,
∂ℓLP
∂ṅ

=
∂ℓM
∂νn

.

Thus, equations (4.4) are replaced by






d

dt

δℓM
δξ

= ∓ ad∗
ξ

δℓM
δξ

+ J

(
∂ℓM
∂n

)

+ F∇

(
∂ℓM
∂νn

, νn

)

,

D

Dt

∂ℓM
∂νn

= −

〈
∂ℓM
∂νn

,∇ξQ

〉

+
∂ℓM
∂n

,
d

dt
n = νn + ξQ(n),

(4.8)

where − (resp. +) occurs when G act on Q by a left (resp. right) action.

Alternative form of the equations. For completeness, we give here an alternative form
for the second and third equations in systems (4.4), (4.8). This alternative form is analogous
to that given in Lemmas 3.1, 3.2, and reads

d

dt

∂ℓM
∂νn

= ± ξT ∗Q

(
∂ℓM
∂νn

)

+Ver ∂ℓM
∂νn

∂ℓM
∂n

+Hor ∂ℓM
∂νn

νn, (4.9)

where, for αn ∈ T ∗
nQ, Horαn : TnQ → TαnT

∗Q denotes the horizontal lift associated to the
Levi-Civita connection on T ∗Q. Note that we have the formula Horν♭n νn = S(νn), where as
before, S ∈ X(T ∗Q) is the Hamiltonian vector field associated to the kinetic energy of the
Riemannian metric.

5 Optimization, the Lagrangian approach

In this section, we show how to obtain the motion equations associated to the distributed
optimization problem by using Lagrangian reduction. More precisely, we will use the meta-
morphosis reduction, starting from the unreduced Lagrangian associated to ℓ, augmented by
the square of the norm of the velocity vector.

Let G act on the left (resp. right) on Q and consider a cost function ℓ := ℓ(ξ, n) on g×Q.
Let L : TG×Q → R be the associated G-invariant Lagrangian on TG×Q. The definition
of L depends on the condition ((A) or (A)′) we want to impose.

• If (A) holds, we suppose that L is invariant under the right (resp. left) action

(ug, q) 7→ (ugh, h
−1q), resp. (ug, q) 7→ (hug, qh

−1), (5.1)

i.e., we define L(ug, q) := ℓ(ugg
−1, gq), resp. L(ug, q) := ℓ(g−1ug, qg).

• If (A)′ holds, we suppose that L is invariant under the left (resp. right) action

(ug, q) 7→ (hug, hq), resp. (ug, q) 7→ (ugh, qh), (5.2)

i.e., we define L(ug, q) := ℓ(g−1ug, g
−1q), resp. L(ug, q) := ℓ(ugg

−1, qg−1).
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Definition of the unreduced Lagrangian. TheG-invariant Lagrangian L : TG×Q→ R

produces the function ℓ by reduction. We now want to modify L in order to obtain, by
reduction, the integrand

ℓ(ξ, n) +
1

2σ2
‖ṅ± ξQ(n)‖

2 (5.3)

of the distributed optimization problem. This will be done by constructing, from L, a G-
invariant Lagrangian L defined on the tangent bundle T (G × Q). Of course, the definition
of L depends on the condition ((A) or (A)′) we want to impose.

• If (A) holds, we define L : T (G×Q) → R by

L(ug, uq) := L(ug, q) +
1

2σ2
‖guq‖

2, resp. L(ug, uq) := L(ug, q) +
1

2σ2
‖uqg‖

2. (5.4)

• If (A)′ holds, we define L : T (G×Q) → R by

L(ug, uq) := L(ug, q) +
1

2σ2
‖g−1uq‖

2, resp. L(ug, uq) := L(ug, q) +
1

2σ2
‖uqg

−1‖2.

(5.5)

Of course, the norm appearing in the second term of the Lagrangian is the same as the norm
used in the integrand (5.3) of the distributed optimization problem. It is associated to a
Riemannian metric on the manifold Q. The presence of the group action in the second term
is needed in order to make the Lagrangian G-invariant.

In the particular case where the Riemannian metric is G-invariant, the Lagrangian L is
simply given by

L(ug, uq) := L(ug, q) +
1

2σ2
‖uq‖

2

and the associated Euler-Lagrange equations for L read

D

Dt
q̇ = σ2∂L

∂q
,

d

dt

∂L

∂ġ
−
∂L

∂g
= 0,

where D/Dt denotes the covariant derivative associated to the Riemannian metric on Q.

Lagrangian reduction. Using the quotient maps (4.6) and (4.2) associated to Lagrange-
Poincaré reduction, we can compute the reduced Lagrangian associated to L. When the
G-invariance (5.1) (condition (A)) holds, we get

ℓLP (n, ṅ, ξ) = ℓ(ξ, n) +
1

2σ2
‖ṅ− ξQ(n)‖

2,

and when the G-invariance (5.2) (condition (A)’) holds, we get

ℓLP (n, ṅ, ξ) = ℓ(ξ, n) +
1

2σ2
‖ṅ+ ξQ(n)‖

2.

We have thus obtained the integrand of the distributed optimization problem by Lagrange-
Poincaré reduction. However, in order to compute the associated equations of motion, it
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will be more appropriate to use metamorphosis reduction. For this approach, the reduced
Lagrangian is readily seen to be

ℓM(νn, ξ) = ℓ(ξ, n) +
1

2σ2
‖νn‖

2,

in all cases.
We now compute the reduced equations of motions. Since the functional derivatives of

ℓM are
δℓM
δξ

=
δℓ

δξ
,

∂ℓM
∂νn

=
1

σ2
ν♭n, and

∂ℓM
∂n

=
∂ℓ

∂n
,

the reduced equations (4.8) (associated to condition (A)) and (4.4) (associated to condition
(A)′) become, respectively







d

dt

δℓ

δξ
= ∓ ad∗

ξ

δℓ

δξ
+ J

(
∂ℓ

∂n

)

+
1

σ2
F∇

(
ν♭n, νn

)
,

D

Dt
ν♭n = −〈ν♭n,∇ξQ〉+ σ2 ∂ℓ

∂n
, ṅ = νn + ξQ(n),

(5.6)

and 





d

dt

δℓ

δξ
= ± ad∗

ξ

δℓ

δξ
− J

(
∂ℓ

∂n

)

−
1

σ2
F∇

(
ν♭n, νn

)
,

D

Dt
ν♭n = 〈ν♭n,∇ξQ〉+ σ2 ∂ℓ

∂n
, ṅ = νn − ξQ(n).

(5.7)

These are exactly the equation (3.32) and (3.33) that are verified by the extremals of the
distributed optimization problem, obtained here by metamorphosis reduction.

Remark 5.1. The fact that metamorphosis reduction recovers the motion equations verified
by the extremals of the distributed optimization problem is natural in the following sense.
The extremals are given by the unconstrained variational principle

0 = δSd = δ

∫ T

0

(

ℓ(ξ, n) +
1

2σ2
‖ṅ± ξQ(n)‖

2

)

dt;

this gives the stationarity conditions (3.25), (3.26). These imply (but are not equivalent
to) the metamorphosis equations (3.32) and (3.33) obtained form the same action Sd under
constrained variations.

6 Hamilton-Poincaré and metamorphosis reduction

In this section, we present the Hamiltonian side of the two Lagrangian reduction approaches
described in Section 4.

As before, we let G act on the left (resp. right) on Q. We consider a left (resp. right)-
invariant Hamiltonian H : T ∗(G×Q) → R under the action of G given by

(αg, αq) 7→ (hαg, hαq) resp. (αg, αq) 7→ (αgh, αqh).

As before, there are two reduction processes. The first uses Hamilton-Poincaré reduction (see
[16]) and the second is the Hamiltonian version of the metamorphosis reduction described
in Section 4.
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Theorem 6.1 (Hamilton-Poincaré reduction). Let αg ∈ T ∗G and αq ∈ T ∗Q be two curves
and define the curves πn := g−1αq ∈ T ∗Q and µ := g−1αg + J(g−1αq) ∈ g∗ (resp. πn :=
αqg

−1 ∈ T ∗Q and µ := αgg
−1 + J(αqg

−1) ∈ g∗).
Then (αg, αq) is a solution of the canonical Hamilton equations for H on T ∗G× T ∗Q if

and only if (πn, µ) is a solution of the Hamilton-Poincaré equations







d

dt
µ = ad∗

δhHP
δµ

µ ,

d

dt
n =

∂hHP

∂π
,

d

dt
π = −

∂hHP

∂n
,

resp.







d

dt
µ = − ad∗

δhHP
δµ

µ ,

d

dt
n =

∂hHP

∂π
,

d

dt
π = −

∂hHP

∂n
,

(6.1)

where the Hamilton-Poincaré Hamiltonian hHP = hHP (πn, µ) : T ∗Q × g∗ → R is induced
from H by the quotient map

T ∗(G×Q) → T ∗Q× g∗, (αg, αq) 7→ (πn, µ) := (πn, κ+ J(πn)) (6.2)

for n := g−1q, πn := g−1αq, κ := g−1αg, (resp. n := qg−1, πn := αqg
−1, κ := αgg

−1).
In the Hamilton-Poincaré equations (6.1), the second equation is written in Darboux

coordinates. One can write it intrinsically as

d

dt
πn = XhHP

(πn),

where XhHP
is the Hamiltonian vector field of hHP viewed as a function on T ∗Q, the variable

µ ∈ g∗ being considered as a parameter.

Proof. We treat the case of a left action and apply the results in [16]. The coadjoint bundle
Ad∗(G × Q) can be identified with the trivial vector bundle Q × g∗ via the identification
[(g, q), µ] ≃ (g−1q,Ad∗

g µ). Using the principal connection A(ug, uq) := ugg
−1, the diffeomor-

phism (T ∗(G×Q))/G ∼= T ∗Q×g∗ is given by [αg, αq] 7→ (g−1αq, g
−1αg + J(g−1αq)). Indeed,

the horizontal-lift associated to A reads Hor(g,q) : TnQ→ TgG× TqQ, Hor(g,q) vn = (0g, gvn),

its dual map is
[
Hor(g,q)

]∗
(αg, αq) = g−1αq, and the momentum map J : T ∗(G×Q) → g∗ is

J(αg, αq) = αgg
−1+J(αq). Thus, the Hamilton-Poincaré reduction map has the required ex-

pression (6.2). Since the chosen principal connection is flat, we obtain the Hamilton-Poincaré
equations (6.1). �

It is convenient to write the equations of motion (6.1) in matrix form, namely

d

dt





µ

πn



 =





± ad∗
2
µ 0

0 Ω♯
can(πn)









δhHP

δµ

dT ∗QhHP



 (6.3)

where dT ∗Q is the exterior derivative on T ∗Q.

For the same G-invariant Hamiltonian H : T ∗(G×Q) → R as before, we define another
reduced Hamiltonian hM = hM(πn, κ) : T

∗Q× g∗ → R associated to the quotient map

T ∗(G×Q) → T ∗Q× g∗,
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(αg, αq) 7→ (πn, κ) := (g−1αq, g
−1αg), resp. (πn, κ) := (αqg

−1, αgg
−1).

This reduced Hamiltonian differs from the Hamilton-Poincaré Hamiltonian hHP defined
above, but one can pass from the one to the other by the vector bundle isomorphism

T ∗Q× g∗ → T ∗Q× g∗, (πn, µ) 7→ (πn, µ− J(πn)). (6.4)

That is, we have
hHP (πn, κ+ J(πn)) = hM(πn, κ),

for both the left and right cases. As one may expect, the isomorphism (6.4) is the dual map
to (4.3).

As on the Lagrangian side, we fix a Riemannian metric g on Q. This allows us to write
the reduced Hamilton equation a bit more explicitly. Note, however, that it is possible to
write the reduced Hamilton equations without the help of a metric; see (6.6) below.

Theorem 6.2 (Metamorphosis reduction). Let αg ∈ T ∗G and αq ∈ T ∗Q be two curves and
define the curves πn := g−1αq ∈ T ∗Q and κ := g−1αg ∈ g∗ (resp. πn := αqg

−1 ∈ T ∗Q and
κ := αgg

−1 ∈ g∗).
Then (αg, αq) is a solution of the canonical Hamilton equations for H on T ∗G× T ∗Q if

and only if (πn, κ) is a solution of the equations







d

dt
κ = ± ad∗

δhM
δκ

κ+ J

(
∂hM
∂n

)

−F∇

(

πn,
∂hM
∂πn

)

,

d

dt
πn = −

(
δhM
δκ

)

T ∗Q

(πn) +XhM
(πn) ,

(6.5)

where XhM
is the Hamiltonian vector field associated to hM viewed as a function of πn.

Proof. We treat simultaneously the case of left and right actions and apply Poisson reduc-
tion. The reduced Poisson structure on T ∗Q× g∗ associated to the quotient map (αg, αq) 7→
(g−1αg, g

−1αq), resp. (αg, αq) 7→ (αgg
−1, αqg

−1) is given for any f, g ∈ C∞(T ∗Q× g∗) by

{f, g}T ∗Q×g∗ = ∓

〈

µ,

[
δf

δµ
,
δg

δµ

]〉

−

〈

J (df(πn)) ,
δg

δµ

〉

+

〈

J (dg(πn)) ,
δf

δµ

〉

+ {f, g}T ∗Q ,

where J : T ∗(T ∗Q) → g∗ is the cotangent bundle momentum map and the last term is the
canonical Poisson bracket on T ∗Q; see Proposition 10.3.1 in [47]. Consequently, the reduced
Hamilton’s equation are







d

dt
κ = ± ad∗

δhM
δκ

κ+J (dhM(πn)) ,

d

dt
πn = −

(
δhM
δκ

)

T ∗Q

(πn) +XhM
(πn) .

(6.6)

Now it suffices to decompose the derivative dhM into the vertical (fiber) and horizontal
partial derivatives and use Lemma 3.5 to write

J (dhM(πn)) = J

(
∂hM
∂n

)

−F∇

(

πn,
∂hM
∂πn

)

. (6.7)
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This proves the result. �

Equations (6.5) can be conveniently written in matrix form

d

dt





κ

πn



 =





± ad∗
2
κ J

− (2)T ∗Q (πn) Ω♯
can(πn)









δhM
δκ

dT ∗QhM



 (6.8)

where in the (1,2) entry one uses formula (6.7). We shall see in Section 8.1 that if Q is a
representation space of G, this formula gives rise to a Lie-Poisson equation on a semidirect
product with a cocycle.

Left (right) reduction and right (left) action. We quickly present here the equations
arising when the Hamiltonian H : T ∗(G×Q) → R is invariant under the action of G given
by

(αg, αq) 7→ (αgh, h
−1αq) resp. (αg, αq) 7→ (hαg, αqh

−1).

The Hamilton-Poincaré Hamiltonian hHP : T ∗Q × g∗ → R is now induced by the quotient
map

T ∗(G×Q) → R, (αg, αq) 7→ (πn, µ) := (πn, κ− J(πn)), (6.9)

for n := gq, πn := gαq, κ := αgg
−1 (resp. n := qg, πn := αqg, κ := g−1ug). The resulting

Hamilton-Poincaré equations are given by






d

dt
µ = − ad∗

δhHP
δµ

µ ,

d

dt
n =

∂hHP

∂π
,

d

dt
π = −

∂hHP

∂n
,

resp.







d

dt
µ = ad∗

δhHP
δµ

µ ,

d

dt
n =

∂hHP

∂π
,

d

dt
π = −

∂hHP

∂n
.

(6.10)
Note the change in the sign when compared to (6.1). Note that we now have the relation
hHP (πn, κ− J(πn)) = hM(πn, κ).

Likewise, equations (6.5) are replaced by






d

dt
κ = ∓ ad∗

δhM
δκ

κ− J

(
∂hM
∂n

)

+ F∇

(

πn,
∂hM
∂πn

)

,

d

dt
πn =

(
δhM
δκ

)

T ∗Q

(πn) +XhM
(πn),

(6.11)

where − (resp. +) occurs when G acts on Q by a left (resp. right) action. As in (6.3) and
(6.8), equations (6.10) and (6.11) may be re-expressed in matrix form as

d

dt





µ

πn



 =





∓ ad∗
2
µ 0

0 Ω♯
can(πn)









δhHP

δµ

dT ∗QhHP



 , (6.12)

d

dt





κ

πn



 =





∓ ad∗
2
κ −J

(2)T ∗Q (πn) Ω♯
can(πn)









δhM
δκ

dT ∗QhM



 . (6.13)
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Remark 6.3 (Link with the untangling map). Recall that the vector bundle isomorphism

(ξ, νn) ∈ g× TN 7→ (ξ, νn ± ξQ(n)) = (ξ, n, ṅ) ∈ g× TN

allows one to pass from the metamorphosis reduced equation to the Lagrange-Poincaré equa-
tions. Its dual map

(µ, πn) ∈ g∗ × T ∗N 7→ (µ± J(πn), πn) = (κ, πn) ∈ g∗ × T ∗N,

naturally passes from the Hamilton-Poincaré description to the metamorphosis approach.
The inverse of this map is known as the untangling map in applications ([29]) since it trans-
forms the Hamiltonian structure of the metamorphosis equation into the direct sum of the
Lie-Poisson bracket on g∗ and the canonical Poisson bracket on T ∗N ; see (6.1)-(6.8) and
(6.12)-(6.13). Recent theoretical developments and new applications of the untangling map
appear in [26].

Legendre transformation and alternative formulation. When the Hamiltonian H
comes from a Lagrangian L by Legendre transformation, then we have the following relations
between the reduced objects:

hM(πn, κ) = 〈πn, νn〉+ 〈κ, ξ〉 − ℓM(νn, ξ), κ =
δℓM
δξ

, πn =
∂ℓM
∂νn

.

The partial derivatives with respect to n are related by the formula

∂hM
∂n

= −
∂ℓM
∂n

.

In this case, the reduced equations on the Lagrangian and Hamiltonian side ((4.4), (4.8) and
(6.5), (6.11)) are readily seen to be equivalent. To see this, it suffices to use the formula

Xh(αn) = Horαn

∂h

∂αn

− Verαn

∂h

∂n

for the Hamiltonian vector field, together with the alternative formulation (4.9) for the
reduced equations on the Lagrangian side. This also shows that the second equation of the
systems (6.5) and (6.11) can be equivalently written as

D

Dt
πn = ∓

〈

πn,∇

(
δhM
δκ

)

Q

(n)

〉

−
∂hM
∂n

,
d

dt
n = ±

(
δhM
δκ

)

Q

(n) +
∂hM
∂πn

.

7 Optimization, the Hamiltonian approach

Suppose we are given a left (resp. right) action of G on Q and a cost function ℓ = ℓ(ξ, q) on
g × Q. Let the map ξ 7→ δℓ

δξ
be a diffeomorphism and consider the associated Hamiltonian

h : g∗ ×Q→ R defined by

h(µ, q) := 〈µ, ξ〉 − ℓ(ξ, q),
δℓ

δξ
= µ.
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As in Section 5 for ℓ, the function h induces a G-invariant function H : T ∗G × Q → R.
Of course, H can be obtained from L by a Legendre transformation, the variable q being
considered as a parameter. Recall that given a Riemannian metric g on Q, we associated to
L a G-invariant Lagrangian on T (G×Q) by adding to L a G-invariant expression involving
the norm of the vector in TQ; see (5.4), (5.5). For example, in the case of condition (A)′

and if G acts on the left we have defined

L(ug, uq) := L(ug, q) +
1

2σ2
‖g−1uq‖

2.

Taking the Legendre transformation of this hyperregular Lagrangian yields the G-invariant
Hamiltonian H on T ∗(G×Q) given by

H(αg, αq) = H(αg, q) +
σ2

2
‖g−1αq‖

2.

The reduced Hamiltonian associated to metamorphosis reduction reads

hM(πn, κ) = h(κ, n) +
σ2

2
‖πn‖

2.

When condition (A)′ is assumed, the reduced Hamilton-Poincaré Hamiltonian reads

hHP (πn, µ) = hM(πn, µ− J(πn)) = h(µ− J(πn), n) +
σ2

2
‖πn‖

2.

In the case of condition (A), we have

hHP (πn, µ) = hM(πn, µ+ J(πn)) = h(µ+ J(πn), n) +
σ2

2
‖πn‖

2.

Using the relations
∂hM
∂πn

= σ2π♯
n and

∂hM
∂n

=
∂h

∂n
,

the reduced equations (6.5) and (6.11) become, respectively






d

dt
κ = ± ad∗

δh
δκ

κ+ J

(
∂h

∂n

)

,

d

dt
πn = −

(
δh

δκ

)

T ∗Q

(πn)− Verπn

∂h

∂n
+ σ2S(πn) ,

(7.1)

and 





d

dt
κ = ∓ ad∗

δh
δκ

κ− J

(
∂h

∂n

)

,

d

dt
πn =

(
δh

δκ

)

T ∗Q

(πn)− Verπn

∂h

∂n
+ σ2S(πn),

(7.2)

where S ∈ X(T ∗Q) is the Hamiltonian vector field associated to the kinetic energy

1

2
‖πn‖

2 =
1

2
g(π♯

n, π
♯
n) .

These equations recover the motion equations associated to the distributed optimization, in
Hamiltonian form, cf. Remark 3.3.
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8 Examples

In this section we apply the general theory to various group actions.

8.1 Action by representation and advected quantities

Let G be a Lie group acting by left (resp. right) representation on the dual vector space
Q = V ∗. Given a Lie algebra element ξ, we denote by ξV ∗(a) = ξa (resp. ξV ∗(a) = aξ) the
associated infinitesimal generator. Using the diamond operator ⋄ : V × V ∗ → g∗ defined for
p ∈ V and a ∈ V ∗ by 〈p ⋄ a, ξ〉 := −〈ξa, p〉, (resp. 〈p ⋄ a, ξ〉 := −〈aξ, p〉), for any ξ ∈ g, the
cotangent bundle momentum map is J(a, p) = − p ⋄ a.

Metamorphosis reduction and Lie-Poisson formulation with cocycles. Assume
that V is a left representation space of G and that reduction has been performed on the left.
The other cases have similar formulations. In view of the identities above, equations (4.4)
become 





d

dt

δℓM
δξ

= ad∗
ξ

δℓM
δξ

+
δℓM
δa

⋄ a+
δℓM
δν

⋄ ν

d

dt

δℓM
δν

= −ξ
δℓM
δν

+
δℓM
δa

,
d

dt
a = −ξa+ ν,

where ℓM = ℓM(ξ, a, ν) : g × V ∗ × V ∗ → R is the reduced Lagrangian. Performing the
Legendre transformation hM(κ, a, π) := 〈κ, ξ〉+ 〈π, ν〉 − ℓM(ξ, a, ν) where

δℓM
δξ

= κ,
δℓM
δν

= π,

one finds the corresponding Hamilton equations for hM = hM(κ, a, π) : g∗ × V ∗ × V → R as







d

dt
κ = ad∗

δhM
δκ

κ−
δhM
δa

⋄ a+ π ⋄
δhM
δπ

,

d

dt
π = −

δhM
δκ

π −
δhM
δa

,
d

dt
a = −

δhM
δκ

a+
δhM
δπ

.

(8.1)

These equations recover (6.5) for the case of a left G-representation.
Note that the inverse Legendre transformation (assuming it is a diffeomorphism) is given

by δhM/δκ = ξ, δhM/δπ = ν and that δhM/δa = −δℓM/δa.
The proof of the following theorem is a direct verification.

Theorem 8.1. The equations of motion (8.1) are Lie-Poisson on (gs (V × V ∗))∗ with the
cocycle C : (V × V ∗) × (V × V ∗) → R given by the canonical symplectic structure Ωcan on
T ∗V = V ×V ∗, where the g-left representation on V ×V ∗ is given by (ξ, v) 7→ ξv, (ξ, ν) 7→ ξν,
for ξ ∈ g, v ∈ V , ν ∈ V ∗. Thus these equations can be written in matrix form as

∂

∂t





κ
a
π



 =





ad∗
2
κ −2 ⋄ a π ⋄2

−2 a 0 1
−2π −1 0









δhM/δκ
δhM/δa
δhM/δπ



 . (8.2)



Gay-Balmaz, Holm and Ratiu Geometric optimization dynamics 40

The Clebsch optimal control approach. Given a cost function ℓ : g × V ∗ → R, the
Clebsch optimal control problem with condition (A)′ yields (for left representation) the
stationarity conditions

δℓ

δξ
= −J(a, p) = p ⋄ a, ȧ = − ξa, ṗ = − ξp+

∂ℓ

∂a
. (8.3)

For a representation on the right, one replaces ξa, ξp by aξ, pξ. These equations imply the
Euler-Poincaré equations of motion

d

dt

δℓ

δξ
= ± ad∗

ξ

δℓ

δξ
+
∂ℓ

∂a
⋄ a .

When condition (A) is assumed, we get the stationarity conditions

δℓ

δξ
= J(a, p) = −p ⋄ a, ȧ = ξa, ṗ = ξp+

∂ℓ

∂a
(8.4)

and the motion equations
d

dt

δℓ

δξ
= ∓ ad∗

ξ

δℓ

δξ
−
∂ℓ

∂a
⋄ a.

These are the Euler-Poincaré equations for semidirect products, useful for the study of phys-
ical systems with advected quantities; see [36, 37].

Note that when the Lagrangian ℓ is given by the kinetic energy associated to an inner
product on g, the control is given by ξ = ±(p ⋄ a)♯, where ♯ : g∗ → g is associated to the
inner product on g. We get the equations

ȧ+ (p ⋄ a)♯a = 0, ṗ+ (p ⋄ a)♯p = 0.

This is the abstract formulation of the double bracket equations ; see §8.1.2 below.

The distributed optimization approach. In order to state the optimization problem
with penalty, we endow V ∗ with a inner product. The corresponding functional is thus

ℓ(ξ, a) +
1

2σ2
‖ȧ± ξa‖2.

The Levi-Civita covariant derivative∇ is the ordinary derivative; therefore we have∇bξV ∗(a) =
ξb (resp. ∇bξV ∗(a) = bξ), for all a, b ∈ V ∗. We thus obtain the expression F∇((a, v), (a, b)) =
−v ⋄ b. If condition (A)′ is assumed, the motion equations (3.33) read







d

dt

δℓ

δξ
= ad∗

ξ

δℓ

δξ
+
δℓ

δa
⋄ a+

1

σ2
ν♭ ⋄ ν

d

dt
ν♭ − σ2 δℓ

δa
= −ξν♭, ν = ȧ+ ξa,

resp.







d

dt

δℓ

δξ
= − ad∗

ξ

δℓ

δξ
+
δℓ

δa
⋄ a+

1

σ2
ν♭ ⋄ ν

d

dt
ν♭ − σ2 δℓ

δa
= −ν♭ξ, ν = ȧ+ aξ,

(8.5)
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where ♭ : V ∗ → V is the flat isomorphism associated to the inner product on V ∗. When
condition (A) is assumed, we have (see (3.32))







d

dt

δℓ

δξ
= − ad∗

ξ

δℓ

δξ
−
δℓ

δa
⋄ a−

1

σ2
ν♭ ⋄ ν

d

dt
ν♭ − σ2 δℓ

δa
= ξν♭, ν = ȧ− ξa,

resp.







d

dt

δℓ

δξ
= ad∗

ξ

δℓ

δξ
−
δℓ

δa
⋄ a−

1

σ2
ν♭ ⋄ ν

d

dt
ν♭ − σ2 δℓ

δa
= ν♭ξ, ν = ȧ− aξ,

(8.6)
As we have seen in the general theory, these motion equations arise by metamorphosis
reduction associated to the Lagrangian L(ug, a) +

1
2σ2‖ȧ‖

2. They can be obtained by the
stationarity conditions (3.25), (3.26). In our case, for a left representation they read

δℓ

δξ
= ±

1

σ2
ν♭ ⋄ a, ȧ = ∓ξa+ ν, ν̇♭ = ∓ξν♭ + σ2 ∂ℓ

∂a
.

As usual, to compare these conditions with the stationarity conditions (8.3), (8.4) given by
the Clebsch optimal control approach, we define

p :=
1

σ2
ν♭ ∈ V,

and we get
δℓ

δξ
= ± p ⋄ a , ȧ = ∓ ξa+ σ2p♯ , ṗ = ∓ ξp+

∂ℓ

∂a
. (8.7)

For a right representation one simply replaces ξa, ξp by aξ, pξ.
When the Lagrangian ℓ is given by the kinetic energy associated to the inner product on

g, the control is given by ξ = ±(p ⋄ a)♯, and we get the equations

ȧ+ (p ⋄ a)♯a = σ2p♯, ṗ+ (p ⋄ a)♯p = 0.

This is the abstract formulation of the double bracket equations, modified by the extra term
σ2p♯; see §8.1.2 below. Note that in the formula above, there are two different sharp opera-
tors, ♯ : g∗ → g and ♯ : V → V ∗, associated to the inner products on g and V ∗, respectively.

Note that, consistently with Theorem 3.9, if the inner product is G-invariant, then ν♭⋄ν =
0. This has already been noticed in the Remark 2.6 of the introduction, for the case of an
isotropic inner product.

8.1.1 Heavy top

Consider the evolution equations for a state system in the frame of a rotating body

Ẋ = X×Ω (8.8)

for vector state and control variables X,Ω ∈ R3 related to the rotation matrix O ∈ SO(3)
by X = O−1ẑ and Ω× = O−1Ȯ ∈ so(3). These vectors are, respectively, the vertical spatial
axis as seen from the rotating body and the body angular velocity vector.
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We choose to optimize a cost functional consisting of the difference between the rotational
kinetic energy and the gravitational potential energy, subject to a penalty imposed by the
state system (8.8). This cost function is

Sd =

∫ T

0

(

ℓ(Ω,X) +
1

2σ2

∥
∥Ẋ+Ω×X

∥
∥
2
)

dt (8.9)

=

∫ T

0

(
1

2
IΩ ·Ω− mgχ ·X+

1

2σ2

∥
∥Ẋ+Ω×X

∥
∥
2
)

dt, (8.10)

where m is the total mass of the body, g is the value of the gravitational acceleration, I is
the real positive definite symmetric matrix of moments of inertia in the body, χ is the center
of mass vector in the body, and σ is a real constant. The variation with respect to Ẋ defines
the Legendre transform relation (costate variable)

σ2P♯ := Ẋ+Ω×X. (8.11)

The variation of the cost functional is given by

δS =

∫ T

0

[(

IΩ+X×P
)

· δΩ−
(

Ṗ+Ω×P+mgχ
)

· δX

]

dt+
[

P · δX
]T

0
. (8.12)

The general system (8.7) takes in this case the following double cross form, involving the
double cross product of vectors (X,P) ∈ R3 × R3, cf. equations (2.20),







Ẋ− (X×P)♯ ×X = σ2P♯ ,

Ṗ− (X×P)♯ ×P = −mgχ ,
(8.13)

with
Ω = I

−1(P×X) = (P×X)♯.

These equations correspond to the three equations in the general system (8.7), with the
upper sign chosen. After denoting the angular momentum vector Π ∈ R3 by

Π := IΩ = P×X , (8.14)

substitution of equations (8.14) into (8.13) yields

Π̇ = Π×Π♯ −mgχ×X+ σ2P×P♯ and Ẋ+Π♯ ×X = σ2P♯ , (8.15)

which can be written in matrix form as





Π̇

Ẋ

Ṗ



 =





Π× X× P×
X× 0 1
P× −1 0









∂hM/∂Π
∂hM/∂X
∂hM/∂P



 =





Π× X× P×
X× 0 1
P× −1 0









Π♯

mgχ
σ2P♯



 . (8.16)

where

hM(Π,X,P) =
1

2
Π ·Π♯ +mgχ ·X+

σ2

2
P ·P♯, (8.17)

which suggests that one might regard the system (8.16) physically as a model of the motion
of an ellipsoidal underwater vehicle, influenced by an external gravitational torque. These
are equations (8.2) in this particular case.
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Remark 8.2. The analogous extremal problem for compressible fluids is given by

min
u,ρ

∫ T

0

(

ℓ(u, ρ) +
1

2σ2
‖ρ̇+ div(ρu)‖2

)

dt,

where u is the Eulerian velocity and ρ is the fluid density in spatial representation. The
advection law ρ̇+div(ρu) = 0 (exact matching) is no longer imposed. Instead its expression
‖ρ̇+div(ρu)‖2L2 (inexact matching) is used as a penalty. Since this can be treated in a more
general case, we defer this discussion to §8.3.3.

8.1.2 Adjoint representations

We let G act on on the right on its Lie algebra g by the adjoint representation. The
infinitesimal generator is thus ξg(x) = [x, ξ], the diamond operator is ⋄ : g∗× g → g∗, p ⋄x =
− ad∗

x p and the momentum map is J(x, p) = ad∗
x p.

The Clebsch optimal control approach. The Clebsch optimal control (with condition
(A), that is, ẋ = [x, ξ]) associated to a cost function ℓ = ℓ(ξ, x) yields the (generalized)
Euler-Poincaré equations

d

dt

δℓ

δξ
= ad∗

ξ

δℓ

δξ
+ ad∗

x

∂ℓ

∂x
.

We suppose that g is endowed with a bi-invariant inner product γ. This allows us to identify
the dual Lie algebra with itself and to write ad∗

x p = −[x, p]. In this case, the motion
equations are

d

dt

δℓ

δξ
=

[
δℓ

δξ
, ξ

]

+

[
∂ℓ

∂x
, x

]

.

These equations are obtained from the stationarity conditions

δℓ

δξ
= [p, x], ẋ = [x, ξ], ṗ = [p, ξ] +

∂ℓ

∂x
.

If the Legendre transform associated to ℓ is a diffeomorphism, we can write ξ = δh
δ[p,x]

and
the equations take the form

ẋ =

[

x,
δh

δ[p, x]

]

, ṗ =

[

p,
δh

δ[p, x]

]

+
∂ℓ

∂x
.

In the particular case where ℓ is given by the kinetic energy of a bi-invariant inner product,
one obtains the control ξ = [p, x] and the double bracket equations

ẋ = [x, [p, x]], ṗ = [p, [p, x]].

More generally, the Lagrangian ℓ(ξ, x) = 1
2
‖ξ‖2 − V (x) implies the motion equation ξ̇ =

[
x, δV

δx

]
; see [9]. An interesting example is provided by the potential V (x) = −1

2
‖ [x, n] ‖2;

see [14]. For more discussion of the history, theoretical developments and other examples of
double bracket equations, see, e.g., [25].
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The distributed optimization approach. The penalty functional is defined on g× Tg
and reads

ℓ(ξ, x) +
1

σ2
‖ẋ− [x, ξ]‖2 ,

where the norm is associated to a inner product on the Lie algebra g. The associated
equations of motion read

d

dt

δℓ

δξ
= ad∗

ξ

δℓ

δξ
+ ad∗

x

∂ℓ

∂x
+

1

σ2
ad∗

ν ν
♭.

As above, we now suppose that g is endowed with a bi-invariant inner product γ and we
use it to identify the dual Lie algebra g∗ with g. In this case, the above equations become

d

dt

δℓ

δξ
=

[
δℓ

δξ
, ξ

]

+

[
∂ℓ

∂x
, x

]

.

These equations are obtained from the stationarity conditions

δℓ

δξ
=

1

σ2
[ν, x], ẋ = [x, ξ] + ν, ν̇ = [ν, ξ] + σ2 ∂ℓ

∂x
.

As usual, we define the variable p := 1
σ2ν in order to rewrite these conditions as

δℓ

δξ
= [p, x], ẋ = [x, ξ] + σ2p, ṗ = [p, ξ] +

∂ℓ

∂x
.

As before, if the Legendre transform associated to ℓ is a diffeomorphism, we get

ẋ =

[

x,
δh

δ[p, x]

]

+ σ2p, ṗ =

[

p,
δh

δ[p, x]

]

+
∂ℓ

∂x
.

If the Lagrangian ℓ is given by the kinetic energy of a bi-invariant inner product, we get the
control ξ = [p, x]. Now the double bracket equations are modified by an extra term:

ẋ = [x, [p, x]] + σ2p, ṗ = [p, [p, x]].

Further investigation of this class of equations will be pursued in future research.

8.2 Action by affine representation

We now consider the more general case where G acts on V ∗ by a left affine representation,
a 7→ ga + c(g), where c : G → V ∗ is a group one-cocycle. In this case, the infinitesimal
generator is

ξV ∗(a) = ξa+ dc(ξ)

and the cotangent bundle momentum map is

J(a, v) = −v ⋄ a+ dcT (v).

Affine representations play an important role for a comprehensive approach to the Hamilto-
nian dynamics of complex fluids. We quickly give below the main equations arising in that
case, in order to understand the influence of the cocycle.
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The Clebsch optimal control approach. The Clebsch optimal control problem (with
condition (A)′) yields the affine Euler-Poincaré equations

d

dt

δℓ

δξ
= ad∗

ξ

δℓ

δξ
+
δℓ

δa
⋄ a− dcT

(
δℓ

δa

)

.

These equations appear naturally in the study of spin systems and complex fluids; see [24].

The distributed optimization approach. The penalty function in the case of an affine
representation is ‖ȧ+ ξa+dc(ξ)‖2. The presence of the cocycle c does not modify the tensor
field F∇ and one finds the motion equations







d

dt

δℓ

δξ
= ad∗

ξ

δℓ

δξ
+
δℓ

δa
⋄ a− dcT

(
δℓ

δa

)

+
1

σ2
ν♭ ⋄ ν,

d

dt
ν♭ − σ2 δℓ

δa
= −ξν♭, ν = ȧ+ ξa+ dc(ξ).

(8.18)

As before, these equations can be obtained either by metamorphosis reduction, or by the
stationarity conditions

δℓ

δξ
=

1

σ2

(
ν♭ ⋄ a− dcT (ν♭)

)
, ȧ = −ξa− dc(ξ) + ν, ν̇♭ = −ξν♭ + σ2 δℓ

δa
.

Defining the variable p := 1
σ2ν

♭, we can write

δℓ

δξ
= p ⋄ a− dcT (p), ȧ = −ξa− dc(ξ) + σ2p♯, ṗ = −ξp+

δℓ

δa
.

When the affine term is not present, one recovers (8.7). If the Lagrangian ℓ is given by the
kinetic energy associated to an inner product, then the control is given by

ξ = (p ⋄ a− dcT (p))♯,

and we get the equations

ȧ+ (p ⋄ a− dcT (p))♯a+ dc
(
(p ⋄ a− dcT (p))♯

)
= σ2p♯,

ṗ+ (p ⋄ a− dcT (p))♯p = 0.

8.3 Actions by multiplication on Lie groups

We now specialize to the case where Q = H is a Lie group, containing G as a subgroup. We
will then apply the results to the rigid body and ideal fluids.

Suppose that G acts on H by left (resp. right) multiplication. Given a Lie algebra
element ξ ∈ g, the infinitesimal generator is

ξH(h) = TRhξ =: ξh, resp. ξH(h) = TLhξ =: hξ,

and the cotangent bundle momentum map J : T ∗H → g∗ is

J(αh) = i∗(T ∗Rhαh) = i∗(αhh
−1) resp J(αh) = i∗(T ∗Lhαh) = i∗(h−1αh),

where i∗ : h∗ → g∗ is the dual map to the Lie algebra inclusion i : g → h.
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The Clebsch optimal control approach. Given a cost function ℓ = ℓ(ξ, h), and assum-
ing the constraint (A)′, that is, ḣ = −ξh (resp. ḣ = −hξ), the Clebsch optimal control
problem yields the (generalized) Euler-Poincaré equations

d

dt

δℓ

δξ
= ad∗

ξ

δℓ

δξ
− i∗

(
∂ℓ

∂h
h−1

)

, resp.
d

dt

δℓ

δξ
= − ad∗

ξ

δℓ

δξ
− i∗

(

h−1 ∂ℓ

∂h

)

.

If the constraint (A) is assumed, that is ḣ = ξh (resp. ḣ = hξ), the equations are

d

dt

δℓ

δξ
= − ad∗

ξ

δℓ

δξ
+ i∗

(
∂ℓ

∂h
h−1

)

, resp.
d

dt

δℓ

δξ
= +ad∗

ξ

δℓ

δξ
+ i∗

(

h−1 ∂ℓ

∂h

)

.

These equations are obtained by inserting the expression of the momentum map in equations
(3.3) and (3.5).

The distributed optimization approach. The penalty functional is defined on g×TH
and reads

ℓ(ξ, h) +
1

2σ2
‖ḣ± ξh‖2, resp. ℓ(ξ, h) +

1

2σ2
‖ḣ± hξ‖2,

relative to a Riemannian metric on H. We will restrict to the case of an H-invariant metric.
More precisely, given an inner product γ on h, we consider the associated left (resp. right)-
invariant Riemannian metric γh on H, that is, we have γh(uh, vh) := γ(h−1uh, h

−1vh), resp.
γh(uh, vh) := γ(uhh

−1, vhh
−1).

Since G acts by isometries, the motion equation are given by (3.34) and (3.35). To
compute these equations in our particular case, we need the concrete expression of the Levi-
Civita connection associated to the Riemannian metric γh on H. It is written in terms of
the isomorphism ψ : F(H, h) → X(H) given by ψ(f)(h) = TLh(f(h)) (resp. ψ(f)(h) =
TRh(f(h))). For a vector field X ∈ X(H), the Levi-Civita covariant derivative associated to
the left (resp. right)-invariant extension of γ to H is given by

∇vhX(h) = TLh

(

df(vh)−
1

2
ad†

v f(h)−
1

2
ad†

f(h) v +
1

2
[v, f(h)]

)

,

resp. ∇vhX(h) = TRh

(

df(vh) +
1

2
ad†

v f(h) +
1

2
ad†

f(h) v −
1

2
[v, f(h)]

)

,

where v := h−1vh (resp. v := vhh
−1), f = ψ−1(X), and ad†

ξ is the transpose of adξ with
respect to the inner product γ on h, see [44], Section 46.5.

We now specialize these formulas to the case where the vector field X is given by the
infinitesimal generator ξH . In the case of multiplication in the left, we have X(h) = ξH(h) =
ξh and f(h) = Adh−1 ξ. Thus we obtain

∇vhξH(h) = TLh

(

−[h−1vh, f(h)]−
1

2
ad†

v f(h)−
1

2
ad†

f(h) v +
1

2
[v, f(h)]

)

= −
1

2
TLh

(

[v, f(h)] + ad†
v f(h) + ad†

f(h) v
)

.
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For right-invariant metrics, we have ξH(h) = hξ, f(h) = Adh ξ and the previous formula
becomes

∇vhξH(h) =
1

2
TRh

(

[v, f(h)] + ad†
v f(h) + ad†

f(h) v
)

.

When condition (A)′ is assumed, the motion equations are (see (3.35))






d

dt

δℓ

δξ
= ad∗

ξ

δℓ

δξ
− i∗

(
∂ℓ

∂h
h−1

)

, νh = ḣ+ ξh

D

Dt
νh − σ2 ∂ℓ

∂h

♯

=
1

2
TLh

(

[ν, f(h)] + ad†

f(h) ν + ad†
ν f(h)

)

∈ ThH

(8.19)

resp.






d

dt

δℓ

δξ
= − ad∗

ξ

δℓ

δξ
− i∗

(

h−1 ∂ℓ

∂h

)

, νh = ḣ+ hξ

D

Dt
νh − σ2 ∂ℓ

∂h

♯

= −
1

2
TRh

(

[ν, f(h)] + ad†

f(h) ν + ad†
ν f(h)

)

∈ ThH,

(8.20)

and the stationarity condition (3.25) is

δℓ

δξ
= −

1

σ2
i∗
(
ν ♭
hh

−1
)
, νh = ḣ+ ξh, resp.

δℓ

δξ
= −

1

σ2
i∗
(
h−1ν ♭

h

)
, νh = ḣ+ hξ.

If the constraint (A) is assumed, then we have (see (3.34))






d

dt

δℓ

δξ
= − ad∗

ξ

δℓ

δξ
+ i∗

(
∂ℓ

∂h
h−1

)

, νh = ḣ− ξh

D

Dt
νh − σ2 ∂ℓ

∂h

♯

= −
1

2
TLh

(

[ν, f(h)] + ad†

f(h) ν + ad†
ν f(h)

)

∈ ThH

(8.21)

resp.






d

dt

δℓ

δξ
= ad∗

ξ

δℓ

δξ
+ i∗

(

h−1 ∂ℓ

∂h

)

, νh = ḣ− hξ

D

Dt
νh − σ2 ∂ℓ

∂h

♯

=
1

2
TRh

(

[ν, f(h)] + ad†

f(h) ν + ad†
ν f(h)

)

∈ ThH,

(8.22)

and the stationarity condition (3.25) is

δℓ

δξ
=

1

σ2
i∗
(
ν ♭
hh

−1
)
, νh = ḣ− ξh, resp.

δℓ

δξ
=

1

σ2
i∗
(
h−1ν ♭

h

)
, νh = ḣ− hξ.

From the general theory developed in Section 5, these equations can be obtained by metamor-

phosis reduction, starting from the G-invariant Lagrangian L = L
(

g, ġ, f, ḟ
)

: T (G×H) →

R given by

L
(

g, ġ, f, ḟ
)

= L (g, ġ, f) +
1

2σ2
‖ḟ‖2,

where L : TG×H → R is the G-invariant function associated to ℓ. One can pass from the
Lagrangian variables (g, f) to the reduced variables (ξ, νh) via the map

(

g, ġ, f, ḟ
)

→ (ξ, νh) :=
(

g−1ġ, g−1ḟ
)

,

for example. Note the relation h = g−1f .
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Remark 8.3. Note that if the inner product γ on h is bi-invariant, then ad† = − ad and
the equations above simplify.

8.3.1 The N-dimensional rigid body

We now apply the above results to the Lie groups G = SO(N) and H = GL(N) in order to
obtain the distributed optimization approach for the N -dimensional rigid body. Of course,
the more interesting case happens for N = 3. We let SO(N) act on GL(N) by multiplication
on the right. Given Q ∈ GL(N) and U ∈ so(N), the associated infinitesimal generator
is given by UGL(N)(Q) = QU . The Lagrangian of the rigid body is of the form ℓ(U) =
1
4
〈J (U), U〉, where J : so(N) → so(N) is a symmetric positive definite operator of the form

J (U) = UJ + JU,

where J is a diagonal matrix verifying Ji + Jj > 0 for all i 6= j.

The Clebsch optimal control approach. Using the constraint Q̇ = QU , the Clebsch
optimal control problem yields the motion equations

Ṁ = [M,U ], M =
δℓ

δU
=

1

2
J (U)

of the N -rigid body, where we identified the dual Lie algebra so(N)∗ with so(N) via the
pairing 〈P, V 〉 := Tr(P TV ). Of course, when N = 3 and identifying so(3) with (R3,×), we
recover the classical Euler equations Ṁ = M×U. Using the same pairing as above to identify
the tangent and cotangent spaces, we obtain the expression J(Q,P ) = 1

2

(
QTP − P TQ

)
for

the momentum map. This yields the stationarity conditions

U = J −1
(
QTP − P TQ

)
, Q̇ = QU, Ṗ = PU. (8.23)

The two last equations are referred to as the symmetric representation of the rigid body ; see
[9], [8], [10], and [25].

Note that one can also let SO(N) act on the vector space gl(N) instead of the group
GL(N), with the same results.

The distributed optimization approach. The penalty term reads ‖Q̇ − QU‖2, where
the norm is associated to a Riemannian metric on GL(N), and one needs to minimize the
functional ∫ T

0

(
1

4
〈J (U), U〉+

1

2σ2
‖Q̇−QU‖2

)

dt.

If the Riemannian metric on GL(N) is right-invariant, the associated stationary conditions
and equations of motion can be computed with the help of the general formula derived
above. In particular, one needs to use equation (8.22). Since the resulting equations are
complicated, we do not pursue this approach here and leave it for the interested reader.
This route will be taken for the ideal fluid equations below.

An alternative approach is to consider the action of SO(N) on the vector space gl(N)
instead of the Lie group GL(N). In this case we can apply the results of §8.1 and we suppose
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that the norm involved in the penalty term is associated to a inner product on gl(N), but is
not necessarily right-invariant. The minimization problem is the same and one obtains the
stationary conditions

1

2
J (U) = −

1

σ2
ν♭ ⋄Q, Q̇ = QU + ν, ν̇♭ = ν♭U,

where the diamond operator is given by P ⋄ Q = −J(Q,P ) = −1
2

(
QTP − P TQ

)
. Here,

♭ : gl(N) → gl(N)∗ ≃ gl(N) is the flat isomorphism associated to the inner product on
gl(N). Recall that the dual space gl(N)∗ is identified with gl(N) via the pairing Tr(P TV ),
but the inner product can be different from this pairing. As usual, we define the variable

P :=
1

σ2
ν♭

and we rewrite the above conditions as

U = J −1
(
QTP − P TQ

)
, Q̇ = QU + σ2P ♯, Ṗ = PU.

These equations should be compared to the symmetric representation of the rigid body
(8.23). The equations of motion for M take the form

Ṁ = [M,U ]− σ2P ⋄ P ♯.

Thus we get the system of equations






Ṁ = [M,U ]− σ2P ⋄ P ♯ ,

Ṗ = PU ,

Q̇ = QU + σ2P ♯,

(8.24)

which is analogous to the system (8.2) for a right action and left reduction. Therefore
this system is Lie-Poisson on the dual of the Lie algebra so(N)s (gl(N) × gl(N)), with a
symplectic 2-cocycle on the latter product. See also (2.17) and (2.24).

8.3.2 Euler fluid equations

Hamilton’s principle for ideal fluid flow might be summarized by saying that water moves
as well as possible to get out of its own way [57]. The question pursued in [32] was whether
Euler’s fluid equations represent optimal control, or only optimization. As it turned out,
the geodesic flow represented by the Euler’s fluid equations was found to arise from either
formulation. An optimization method used in image-processing (metamorphosis) is found to
imply Euler’s equations for incompressible flow of an inviscid fluid, without requiring that the
Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field.
That is, an optimal control formulation and an optimization formulation for incompressible
ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel
dynamics are different. This is a result of the gauge freedom in the definition of the fluid
pressure for an incompressible flow, in combination with the symmetry of fluid dynamics
under relabeling of their Lagrangian coordinates.
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We apply here the result of this section to the Lie group H = Diff(D) of all diffeo-
morphisms of the manifold D and its subgroup G = Diffvol(D) of volume preserving diffeo-
morphisms. We shall recover and extend the approach given in [32]. Recall that a curve
ηt ∈ Diffvol(D) represents the Lagrangian motion of an ideal fluid in the domain D, that
is, the curve ηt(x) in D is the trajectory of the fluid particle located at x at time t = 0,
assuming that η0 is the identity; ηt is referred to as the forward map. The Lie algebra of
G consists of divergence free vector fields on D parallel to the boundary and is denoted by
g = Xvol(D). The curve ηt is the flow of the Eulerian velocity ut ∈ Xvol(D), that is, we
have η̇t = ut ◦ ηt. The curve lt := η−1

t is called the back-to-labels map. (See, e.g., [19] where
the name “back-to-labels” was introduced and the map was used as a sufficient variable to
describe and analyze the incompressible Euler equations.) The back-to-labels map is related
to the Eulerian velocity ut via the relation l̇t + T lt ·ut = 0.

As is well known, a curve ηt ∈ Diffvol(D) is a geodesic with respect to the L2 right
invariant Riemannian metric if and only if ut is a solution of the Euler fluid equations

∂tu+ u·∇u = − grad p.

In other words, the Euler fluid equation is given by the Euler-Poincaré equation on Xvol(D)
associated to the Lagrangian ℓ(u) = 1

2

∫

D
‖u‖2dx.

First approach - composition on the left: We let the group G = Diffvol(D) act onH = Diff(D)
by composition on the left. The infinitesimal generator is thus given by uDiff(D)(ϕ) = u ◦ ϕ,
for ϕ ∈ Diff(D).

The Clebsch optimal control approach. Using the Lagrangian ℓ(u, ϕ) = ℓ(u) =
1
2

∫

D
‖u‖2dx = 1

2
‖u‖2L2 and the constraint ϕ̇ = u ◦ ϕ, the Clebsch optimal control problem

yields the Euler equations
∂tu+∇uu = − grad p.

Note that here there is no dependence of ℓ on the variable ϕ, therefore the Clebsch approach
yields the standard Euler-Poincaré equations. The stationarity conditions are

u♭ = J(ϕ, π) = P(Jϕ−1(π ◦ ϕ−1)), ϕ̇ = u ◦ ϕ, π̇ = −(T ∗u ◦ ϕ) · π, (8.25)

where P : Ω1(D) → Ω1
div(D) is the Hodge projector and Jϕ is the Jacobian determinant of ϕ.

Here we have chosen the L2 pairing between one-forms and vector fields on D and ♭ denotes
the index lowering operation defined by the Riemannian metric on D.

The distributed optimization approach. The penalty term is ‖ϕ̇ − u ◦ ϕ‖2L2 , where
the norm is taken with respect to the left-invariant L2 metric on Diff(D), and one needs to
minimize the functional

∫ T

0

(
1

2
‖u‖2L2 +

1

2σ2
‖ϕ̇− u ◦ ϕ‖2L2

)

dt

among all curves u(t), ϕ(t) in Xdiv(D)×Diff(D). The stationarity condition (3.25) reads

δℓ

δu
=

1

σ2
P(Jϕ−1(ν♭ϕ ◦ ϕ−1)) =

1

σ2
Jϕ−1(ν♭ϕ ◦ ϕ−1)− dk,
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where P : Ω1(D) → Ω1
div(D) is the Hodge projector onto divergence free forms. In our case,

the equations of motion are given by (8.21) and we get







∂tu+∇uu = − grad p, ϕ̇ = u ◦ ϕ+ νϕ

D

Dt
νϕ + Tϕ ◦ ∇ϕ∗uν = −Tϕ ◦ F(ϕ∗u, ν)

(8.26)

where ν := Tϕ−1 ◦ νϕ and F(v, ν) = 1
2
(grad g(v, ν) + ν div v + v div ν). To see this, we

compute the right hand side

−
1

2
TLh

(

[ν, f(h)] + ad†

f(h) ν + ad†
ν f(h)

)

of the second equation in (8.21). We have

[ν, v] + ad†
v ν + ad†

ν v = ∇vν −∇νv +∇vTν +∇vν + ν div v +∇νTv +∇νv + v div ν

= grad g(v, ν) + 2∇vν + ν div v + v div ν

since ad†
um = ∇uTm + ∇um + m div u. By choosing ν := TLϕ−1(νϕ) = Tϕ−1 ◦ νϕ and

v := Adϕ−1 u = Tϕ−1 ◦ u ◦ ϕ = ϕ∗u, we obtain the result. Note that ϕ∗u is an analogue of
the convective velocity, but recall that ϕ is not the flow of u.

As usual, the stationarity conditions can also be expressed in terms of the variable π :=
1
σ2ν

♭
ϕ. They can alternatively be written as

u♭ = J(ϕ, π) = P(Jϕ−1(π ◦ ϕ−1)), ϕ̇ = u ◦ ϕ+ σ2π♯, π̇ = −(T ∗u ◦ ϕ) · π + σ2S(π),

in order to be compared to (8.25), where S denotes the geodesic spray of the left invariant
Riemannian metric. Here ♯ := ♭−1.

The equations (8.26) can be obtained by metamorphosis reduction for the Lagrangian
defined on (uη, uf ) ∈ T (Diffvol(D)×Diff(D)) by

1

2
‖uη‖

2
L2 +

1

2σ2
‖uf‖

2
L2 ,

where the L2 norms are associated to the right and left invariant extension of the L2 inner
product, respectively. This Lagrangian is invariant under the tangent lift of the right Diffvol-
action given by

(η, f) 7→ (η ◦ h, h−1 ◦ f).

The link between the Lagrangian variables (η, η̇, f, ḟ) and the reduced variables (u, νϕ) is
given by the reduction map

(η, η̇, f, ḟ) 7→ (u, νϕ) := (η̇ ◦ η−1, T η ◦ ḟ).

In particular, we have ϕ = η ◦ f .
Note that the operator D/Dt denotes the covariant derivative with respect to the left-

invariant L2 Riemannian metric on Diffvol(D) and does not have a simple expression, in
general, contrary to the covariant derivative associated to the right-invariant L2 Riemannian
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metric, which is simply given by functorial lift. As we will see below, for the penalty approach
to the Euler equations, it is more convenient to work with the back-to-labels map.

Note that instead of H = Diff(D), one can use the subgroup H = Diffvol(D) of volume
preserving diffeomorphisms. In this case, the second equation in (8.26) simplifies to

D

Dt
νϕ + Tϕ ◦ ∇ϕ∗uν = 0.

Second approach - composition on the right: We now let the group G = Diffvol(D) act on
H = Diff(D) by composition on the right. The infinitesimal generator is thus given by
uDiff(D)(l) = T l ◦ u. Recall that the back-to-label map l is related to the Eulerian velocity u

by the formula l̇ = −T l ◦ u; therefore, we need to impose condition (A)′.

Clebsch optimal control approach. Using the same Lagrangian ℓ(u) = 1
2

∫

D
‖u‖2dx

as before, and imposing the condition l̇ = −T l ◦ u, (condition (A)′), the Clebsch optimal
control problem yields the Euler-Poincaré equations on Xvol(D). We thus recover the Euler
fluid equations

∂tu+ u·∇u = − grad p.

The associated stationarity conditions are, [32]

u♭ = −P (π ◦ T l) , l̇ = −T l ◦ u, π̇ = −Tπ ◦ u. (8.27)

In analogy with equations (8.23) for the rigid body, these equations are referred to as the
symmetric representation of the Euler fluid equations.

The distributed optimization approach. The penalty term reads ‖l̇+ T l ◦ u‖2L2 where
the norm is taken relative to the right-invariant L2 metric on the group of diffeomorphisms.
Therefore, we minimize the functional

∫ T

0

(
1

2
‖u‖2L2 +

1

2σ2
‖l̇ + T l ◦ u‖2L2

)

dt,

among all curves u(t), l(t) in Xdiv(D)×Diff(D). The stationarity condition (3.25) reads

δℓ

δu
= −

1

σ2
P
(
ν♭l ◦ T l

)
= −

1

σ2
ν♭l ◦ T l − dk,

where νl := l̇ + T l ◦ u and the associated equations of motion are






∂tu+∇uu = − grad p,

D

Dt
νl +∇uνl = − (grad q) ◦ l.

(8.28)

These equations are obtained by computations similar to those above, but using (8.20)
instead of (8.21). In particular, the right hand side of the second equation of (8.20) becomes

− (∇vν) ◦ l − (grad q) ◦ l = −∇uνl − (grad q) ◦ l, q =
1

2
g
(
l∗u, νϕ ◦ l−1

)
,
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since we need to choose ν := νl ◦ l
−1 and v = Adl u = l∗u. Note that v is the convective

velocity of the fluid. As usual, the stationarity conditions can also be expressed in terms of
the variable π := 1

σ2ν
♭
l . They can alternatively be written as

u♭ = −J(l, π) = −P (π ◦ T l) , l̇ = −T l ◦ u+ σ2π♯, π̇ = −Tπ ◦ u+ σ2S(π),

in order to be compared to (8.27), where S denotes the geodesic spray of the right invariant
Riemannian metric.

The equations of motion (8.28) can be obtained by metamorphosis reduction of the
Lagrangian defined on (uη, uf ) ∈ T (Diffvol(D)×Diff(D)) by

1

2
‖uη‖L2 +

1

2σ2
‖uf‖

2
L2 ,

where the L2 norms are associated to the right invariant extension of the L2 inner product.
This Lagrangian is invariant under the tangent lift of the right Diffvol-action given by

(η, f) 7→ (η ◦ h, f ◦ h).

The link between the Lagrangian variables (η, η̇, f, ḟ) and the reduced variables (u, νl) is
given by the reduction map

(η, η̇, f, ḟ) 7→ (u, νl) := (η̇ ◦ η−1, ḟ ◦ η−1).

In particular, we have l = f ◦ η−1.
Working with H = Diffvol(D) instead of the whole diffeomorphism group, yields the

second equation of (8.28) in the simpler form

D

Dt
νl +∇uνl = 0.

These results recover Theorem 10 in [32].

8.3.3 Optimization dynamics of a compressible fluid

For the compressible fluid, we choose to minimize the functional

Sd =

T∫

0

(

ℓ(u, ρ) +
1

2σ2
1

‖l̇ + T l ◦ u‖2L2 +
1

2σ2
2

‖ρ̇+ div(ρu)‖2L2

)

dt

over all curves u(t), l(t), ρ(t) in X(D) × Diff(D) × Dens(D). This minimization involves
penalties and tolerances at two levels. We seek the stationarity conditions implied by opti-
mization of the functional Sd, subject to homogeneous endpoint and boundary conditions.
We introduce the notation,

m :=
δℓ

δu
∈ Ω1(D), ̟ :=

δℓ

δρ
∈ C∞(D), (8.29)

π :=
1

σ2
1

(l̇ + T l ◦ u)♭ ∈ T ∗
l Diff(D), φ :=

1

σ2
2

(
ρ̇+ div ρu

)
∈ C∞(D), (8.30)
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then write the stationarity conditions as:

δu : m+ π ◦ T l − ρdφ = 0;

δl : π̇ + div(πu) = 0;

δρ : φ̇+ dφ ◦ u−̟ = 0 . (8.31)

Combining these equations into Hamiltonian form yields (in index notation for clarity) ex-
plicitly, in terms of indices and differential operators,

∂

∂t









mi

ρ
φ

lA

πA









= −B










δhM/δmj = uj

δhM/δρ = −̟
δhM/δφ = σ2

2φ

δhM/δl
B = 0

δhM/δπB = σ2
1π

♯B










(8.32)

where

B =










mj∂i + ∂jmi ρ∂i −φ,i −lB,i πB∂i

∂jρ 0 −1 0 0

φ,j 1 0 0 0

lA,j 0 0 0 −1

∂jπA 0 0 1 0










. (8.33)

Here, the summation convention is enforced on repeated indices. Upper Latin indices refer to
the spatial components of the inverse map, lower Latin indices refer to the spatial reference
frame, and subscript-comma notation is used for spatial derivatives. The partial derivative
∂j = ∂/∂xj, say, acts to the right on all terms in a product by the chain rule. The Hamiltonian
whose variations are taken in (8.32) is given by

hM(m, ρ, φ, l, π) = h(m, ρ) +
σ2
1

2
‖γ‖2 +

σ2
2

2
‖φ‖2.

8.4 N-dimensional Camassa-Holm equation

In this section we apply the distributed optimization method to the N -dimensional Camassa-
Holm equations

v̇ + u·∇v +∇uT ·v + v div u = 0 , v := (1− α2∆)u ,

which are the spatial representation of the geodesic spray on the group Diff(D) of all dif-
feomorphisms of D, relative to a Sobolev H1 metric; see [34]. They are thus obtained by
Euler-Poincaré reduction and represent a particular case of the well known EPDiff equations,
to which the approach described here generalizes easily. For simplicity, we assume that D
has no boundary.

By analogy with the Euler equations, we shall give two approaches, namely, by compo-
sition on the left and on the right. However, in the case of the Camassa-Holm equations it
is convenient to slightly generalize the previous setting by letting the diffeomorphism group
act on a space of embeddings. More precisely, we first consider the left action of Diff(D)
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on the space of embeddings Emb(S,D) of a manifold S into D and obtain the distributed
optimization for the cost function

∫ T

0

(
1

2
‖u‖2H1 +

1

2σ2
‖Q̇− u ◦Q‖2

)

dt, Q ∈ Emb(S,D).

Then, we let Diff(D) acts on the right on the space of embeddings Emb(D,M) of a manifold
D into a manifold M and obtain the cost function

∫ T

0

(
1

2
‖u‖2H1 +

1

2σ2
‖q̇+ Tq ◦ u‖2

)

dt, q ∈ Emb(D,M).

8.4.1 Left action of diffeomorphisms on embedded subspaces

Consider the left action of the configuration diffeomorphism group G = Diff(D) on Q =
Emb(S,D). The infinitesimal generator associated to a Lie algebra element u ∈ X(D) reads
uEmb(S,D)(Q) = u ◦Q and belongs to the tangent space TQ Emb(S,D).

The Clebsch optimal control approach. Using the Lagrangian ℓ(u,Q) = ℓ(u) =
1
2

∫

D
‖u‖2H1dx and the constraint Q̇ = u ◦ Q, the Clebsch optimal control problem yields

the N -Camassa-Holm equation; see Section 4 in [25]. Note that here there is no dependence
of ℓ on the variable Q, therefore the Clebsch approach yields the standard Euler-Poincaré
equations. The stationarity conditions are

δℓ

δu
= J(Q,P) =

∫

S

P(s)δ(x−Q(s))ds ∈ Ω1(D), Q̇ = u ◦Q, Ṗ = −(T ∗u ◦Q) ·P.

The last equation can also be written as

D

Dt
P = −

(
(∇u)T ◦Q

)
·P,

where D/Dt denotes the covariant derivative associated to the Riemannian metric on D.

The distributed optimization approach. The proposed associated cost function is

Sd =

∫ T

0

(

ℓ(u) +
1

2σ2
‖Q̇− u ◦Q‖2L2

)

dt . (8.34)

For definiteness, we rewrite this expression more explicitly as

Sd =

∫ T

0

(

ℓ(u) +
1

2σ2

∫

S

|Q̇(t, s)− u(t,Q(t, s))|2ds
)

dt , (8.35)

in which, for simplicity, | · |2 denotes the norm of vectors in TD defined by the Riemannian
metric on D and ds denotes the volume form on S. There could also be a sum on integrations
over some finite number of embedded submanifolds of various dimensions, but this possibility
is unimportant in the subsequent reasoning, so it will be suppressed in the notation.

The choice of the reduced Lagrangian ℓ(u) will be left unspecified, except that sufficient
smoothness will be assumed for the variational calculations manipulations to make math-
ematical sense, at least in terms of weak solutions. With these assumptions we have the
following result.



Gay-Balmaz, Holm and Ratiu Geometric optimization dynamics 56

Theorem 8.4. The extremals of Sd in (8.35) are given by

δℓ

δu
(x) =

∫

S

P(t, s)δ(x−Q(t, s))ds, Q̇ = u◦Q+σ2P♯,
D

Dt
P = −

(

(∇u)T ◦Q
)

·P, (8.36)

where Q ∈ Emb(S,D), P♯ ∈ TQ Emb(S,D), and D/Dt is the covariant derivative of the
Levi-Civita connection on D.

Proof. We can obtain these conditions directly from the general equations (3.28). However,
it is also instructive to derive them directly from the variational principle.

Consider the variations ε 7→ uε and ε 7→ Qε and define P♯ by

σ2P♯ := Q̇− u ◦Q .

For δu = d
dε

∣
∣
ε=0

uε and δQ = d
dε

∣
∣
ε=0

Qε, we have

δSd =

∫ T

0

〈
δℓ

δu
, δu

〉

dt

+

∫ T

0

∫

S

〈

P(t, s),
D

Dε

∣
∣
∣
∣
ε=0

Q̇ε(t, s)− δu(t,Q(t, s))−
D

Dε

∣
∣
∣
∣
ε=0

u(t,Qε(t, s))

〉

dsdt

=

∫ T

0

〈
δℓ

δu
, δu

〉

dt+

∫ T

0

∫

S

〈

P(t, s),
D

Dt

d

dε

∣
∣
∣
∣
ε=0

Qε(t, s)

〉

dsdt

−

∫ T

0

∫

D

∫

S

〈P(s)δ(x−Q(t, s)), δu(t, x)〉 dsdxdt−

∫ T

0

∫

S

〈P(t, s),∇δQu(t, s)〉 dsdt

=

∫ T

0

〈
δℓ

δu
−

∫

S

P(s)δ(x−Q(t, s))ds, δu

〉

dt−

∫ T

0

〈
D

Dt
P+

(
(∇u)T ◦Q

)
·P, δQ

〉

dt

+
[

〈P, δQ〉
]T

0
.

The stationarity conditions follow immediately, upon noting that δQ(0, s) = 0 = δQ(T, x),
so that temporal endpoint terms arising under integrations by parts may be ignored. �

Suppose the reduced Lagrangian defines a velocity norm, ℓ(u) = 1
2
‖u‖2 = 1

2
〈u,Qop(u)〉.

For example, let the norm be a Sobolev H1 norm, so that it makes sense for its variational
derivative in u to result in a singular distribution defined on an embedded subspace. Then,
the density equation

δℓ

δu
(t, x) =

∫

S

P(t, s)δ(x−Q(t, s))ds =: (Qopu)(t, x) (8.37)

has a natural dual solution for the velocity, given by

u(t, x) =

∫

S

P♯(t, s)G(x−Q(t, s))ds (8.38)

where G is the Green’s function for the positive L2 self-adjoint operator Qop, that is,

QopG(x−Q(t, s)) = δ(x−Q(t, s)). (8.39)

In this situation, we have enough assumptions to obtain a coupled system of equations for
the momentum densities P(t, s) and m(t, x).
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Theorem 8.5. The system of variational equations (8.36) for the minima of S in (8.35)
implies the following dynamics for the momentum densities P(t, s) and m(t, x),

∂tv +∇uv +∇uT ·v + v div(u) = −σ2 Div

∫

S

P♯ ⊗P♯(t, s)δ(x−Q(t, s))ds (8.40)

D

Dt
P+

(

(∇u)T ◦Q
)

·P = 0, (8.41)

where Div denotes the divergence of a contravariant two-tensor field on D. The remaining
decoupled equation

Q̇ = u ◦Q+ σ2P♯

allows reconstruction of the Lagrangian coordinates Q(t, s) on the embedded surface(s) from
the dynamics of the coupled equations for the momentum densities m(t, x) and P(t, s).

Proof. Substitution of equations (8.36) and definitions (8.38)-(8.39) into the definition of
the momentum m in equation (8.37) verifies its evolution by (8.40), upon pairing with a
smooth test function and integrating appropriately by parts.

Alternatively, one can use the abstract formulation of the dynamical equations given in
(3.32). As recalled before, the Euler-Poincaré part of these equations gives the N -Camassa-
Holm equation

v̇ +∇uv +∇uT · v + v div(u) = 0 .

Thus, it remains to compute the expression of the tensor F∇. Let P♯ ∈ TQ Emb(S,D) and
u ∈ X(D), and choose X ∈ X(D) such that P♯(s) = X(Q(s)). Using the fact that the
covariant derivative on Emb(S,D) is the functorial lift of the covariant derivative on D,
using (3.31) we get

〈
F∇(P,P♯), u

〉
=
〈
P,∇P♯uEmb(S,D)(Q)

〉
=

∫

S

g
(
P♯(s),∇P♯(s)u(Q(s))

)
ds

=

∫

S

∫

D

g
(
X(x),∇X(x)u(x)

)
δ(x−Q(s))dxds

= −

∫

D

g

(∫

S

Div
(
X(x)⊗X(x)δ(x−Q(s))

)
, u(x)

)

dxds,

where we make use of the identity
∫

D

g(X,∇Y u)dx = −

∫

D

g(Div(Y ⊗X), u)dx, for all X, Y, u ∈ X(D),

where Div(T )j = ∇iT
ij, where T = T ij ∂

∂xi ⊗
∂

∂xj is a contravariant two-tensor on D. We
thus obtain the formula

F∇(P,P♯) = −

∫

S

Div
(
X(x)⊗X(x)δ(x−Q(s))

)
ds

= −Div

∫

S

X(Q(s))⊗X(Q(s))δ(x−Q(s))ds

= −Div

∫

S

(
P♯(s)⊗P♯(s)δ(x−Q(s))

)
ds

as required. �
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Remark 8.6. Equations (8.40) and (8.41) represent a new dynamical system, whose explo-
ration has only just begun and we expect will be a subject of future research.

8.4.2 Back-to-labels map for fluids

We next present the optimal control derivation of the Camassa-Holm equation using the
back-to-labels map. This means that we shall use the right action of Diff(D) on Emb(D,M).

Recall that particles frozen into an ideal fluid flow are represented by time-dependent
vector labels lt whose components each satisfy the advection law obtained from the time
derivative of the back-to-labels map, lt(x) := η−1

t (x) = l(t, x), and hence it satisfies the
equation

l̇ + T l ◦ u = 0, (8.42)

where u is the Eulerian velocity of the fluid.
We shall slightly generalize the back-to-labels map by considering embeddings q : D →

M , where M is a given Riemannian manifold, instead of diffeomorphisms l : D → D.

The Clebsch approach. We recall from [25] how one can obtain the Camassa-Holm
equation by Clebsch optimal control via a generalization of the back-to-labels map.

Let the group G = Diff(D) acts freely on the right on the manifold Emb(D,M). The
associated infinitesimal generator reads uEmb(D,M)(Q) = Tq◦u. Using the Lagrangian ℓ(u) =
1
2
‖ut‖

2
H1 and the constraint q̇+ Tq ◦ u = 0 we get the stationarity conditions

δℓ

δu
= −p · Tq, q̇+ Tq ◦ u = 0, ṗ+ Tp ◦ u = 0.

These equations produce the Camassa-Holm equation if one uses the Hamiltonian

H(q,p) =
1

2

∫∫

p(x)·Tq(x)G(x− x′)p(x′)·Tq(x′)dxdx′.

Distributed optimization. As opposed the Clebsch approach, we do not impose q̇t +
Tqt ◦ ut = 0. Instead we use ‖q̇t + Tqt ◦ ut‖

2
L2 as a penalty, that is, we consider the cost

functional given by

Sd =

T∫

0

(

ℓ(u) +
1

2σ2
‖q̇+ Tq ◦ u‖2L2

︸ ︷︷ ︸

Penalty

)

dt . (8.43)

Thus we need to minimize Sd subject to spatial boundary conditions, endpoint conditions
(q(0, x) and q(T, x) are prescribed), and penalize for the error in the L2 norm,

‖q̇+ Tq ◦ u‖2L2 =

∫

D

|q̇(x) + Tq(u(x))|2dx (8.44)

in which, for simplicity, | · |2 denotes the norm of vectors in TM defined by a Riemannian
metric on M . It is important to note that the L2 Riemannian metric used in the penalty is
not invariant under the right Diff(D)-action on itself.
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Remark 8.7 (An alternative penalty term). If M = D, the quantity

v := −l̇ ◦ l−1 = T l ◦ u ◦ l−1 = l∗u = Adl u

is called the convective velocity [35] of the fluid. This is analogous to the relation Ω = AdO−1ω
for O ∈ SO(3) satisfied by body angular velocity Ω and spatial angular velocity ω for rigid
body motion in R3, both viewed as elements of so(3). Penalizing in (8.43) for ‖v −Adlu‖

2
L2

is an interesting alternative approach, which will be presented, in general, in §8.5.1.

Let σ2 > 0 and choose the reduced Lagrangian to be a norm ℓ(u) = 1
2
‖u‖2. Then, when

extremals of (8.43) exist, they will be minima.

Later we shall specialize the reduced Lagrangian to the norm ℓ(u) = 1
2
‖u‖2H1 . For the

moment, however, we leave the choice arbitrary, only assuming that sufficient smoothness is
present for all functions to exist locally and be differentiable in space and time. With these
assumptions we have the following result.

Theorem 8.8. The extremals of Sd in (8.43) are given by

δℓ

δu
+ π ◦ Tq = 0,

Dπ

Dt
+Div(πu) = 0, q̇+ Tq ◦ u =: σ2π♯, (8.45)

where the expression Div(πu) ∈ T ∗
q Emb(D,M) is defined by

Div(πu) := (div u)π +∇uπ, with ∇uxπ :=
D

Dε

∣
∣
∣
∣
ε=0

π(c(ε))

for ux ∈ TxD, ε 7→ c(ε) a curve such that d
dε

∣
∣
ε=0

c(ε) = ux, and
D
Dε

is the covariant derivative
of the Levi-Civita connection of the Riemannian metric on M .

Note that if M = Rn endowed with the Riemannian metric given by the dot product
then Div(πu)i = div(πiu).

Proof. Define π ∈ Tq Emb(D,M) by σ2π := q̇+ Tq ◦ u. For variations ε 7→ uε and ε 7→ qε,
we compute

δSd =

∫ T

0

〈
δℓ

δu
, δu

〉

dt+

∫ T

0

〈

π,
D

Dε

∣
∣
∣
∣
ε=0

(q̇ε + Tqε ◦ uε)

〉

=

∫ T

0

〈
δℓ

δu
, δu

〉

dt+

∫ T

0

〈

π,
D

Dt
δq+ Tq ◦ δu+∇uδq

〉

=

∫ T

0

〈
δℓ

δu
+ π ◦ Tq, δu

〉

−

∫ T

0

〈
D

Dt
π +Div(πu), δq

〉

,

where in the last equality, we used integration by parts and the definition of Div. �

Theorem 8.9. The system of variational equations (8.45) for the minima of Sd yields the
following dynamical system for the momentum π and momentum 1-form v♭ := δℓ/δu =
−π ◦ Tq,

∂tv +∇uv +∇uT ·v + v div(u) = σ2(∇π)T ·π♯ (8.46)

∂tπ +Div(πu) = 0, (8.47)

where Div(πu) is defined above. The decoupled equation σ2π♯ = q̇ + Tq ◦ u allows recon-
struction of the labels q from the dynamics of the coupled equations for v and π.
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Proof. One can directly obtain these equations from the stationarity condition given in
(8.45). We shall however use the abstract formulation (3.33) and compute the tensor field F∇

defined in (3.31). Given π ∈ T ∗
q Emb(D,M), u ∈ X(D), and a curve ε 7→ qε ∈ Emb(D,M)

such that d
dε

∣
∣
ε=0

qε = π♯, we have

〈
F∇(π, π♯), u

〉
=
〈
π,∇π♯uEmb(D,M)(q)

〉
=

∫

D

g

(

π♯(x),
D

Dε

∣
∣
∣
∣
ε=0

Tqε(u(x))

)

dx

=

∫

D

g
(
π♯(x),∇uπ(x)

)
dx =

〈
(∇πT )·π♯, u

〉

which proves (8.46). Equation (8.47) is part of the system (8.45). �

Remark 8.10 (Two-component Camassa-Holm equation). If D = R, M = R, and we
assume appropriate decay properties at infinity such that all boundary terms appearing in
integration by parts vanish, specializing the reduced Lagrangian to

ℓ(u) =
1

2
‖u‖2H1 =

1

2

∫

R

(
u2 + α2u2x

)
dx,

with homogeneous boundary conditions on the infinite real line or on a periodic spatial
interval, yields variational derivative (δℓ/δu)♯ = v = u− α2uxx, for a length scale α. In this
case, equations (8.46), (8.47) recover the two-component Camassa-Holm equations,

∂tv + (uv)x + vux = σ2ππx , (8.48)

∂tπ + (uπ)x = 0 . (8.49)

This system forms a completely integrable Hamiltonian system with soliton solutions asso-
ciated to an isospectral linear eigenvalue problem, so it may be solved analytically by using
the inverse scattering transform method [18, 45]. These equations are also known to be the
spatial representation of geodesics on the semidirect product Diff(R)sF(R); see [40], [38],
[27].

8.5 Metamorphosis dynamics

Consider a Lie group G acting on the left on a manifold N . The Lie group G is the group of
deformations and the manifold N contains what are called “deformable objects”. In imaging
applications we take G to be the group of diffeomorphisms of N .

Definition 8.11. A metamorphosis ([61, 41]) is a pair of curves (gt, ηt) ∈ G×N parame-
terized by time t, with g0 = id. Its image is the curve nt ∈ N defined by the action nt = gtηt
denoted by concatenation from the left. The quantities gt and ηt are called, respectively, the
deformation part of the metamorphosis, and its template part. When ηt is constant,
the metamorphosis is said to be a pure deformation. In the general case, the image is a
combination of a deformation and template variation.

A metamorphosis may be determined as an optimal curve (gt, ηt) with gt ∈ G and ηt ∈ N
with respect to a metric that is invariant under the right action of G on G×N defined by

(g, η)h =
(
gh, h−1η

)
(8.50)
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for any g, h ∈ G and η ∈ N . More specifically, a metamorphosis (g, η) may be obtained by
seeking a stationary point δS = 0 of a right-invariant cost function S on T (G × N). This
general situation has been considered in detail in the first sections of the paper.

The present conventions are those of equations (3.32) with the upper sign chosen. Recall
in particular, that we start from a right G-invariant Lagrangian of the form

L(g, ġ, η, η̇) = L(g, ġ, η) +
1

2σ2
‖gη̇‖2,

where the norm involved in the penalty is associated to a Riemannian metric g on N . The
corresponding reduced Lagrangians on g× TN read

ℓEP (u, νn) = ℓ(u, n) +
1

2σ2
‖νn‖

2, ℓM(u, n, ṅ) = ℓ(u, n) +
1

2σ2
‖ṅ− uN(n)‖

2,

where the reduced variables are

u = ġg−1 ∈ g, n = gη ∈ N, νn = gη̇ ∈ TnN

with g ∈ G, η ∈ N .

8.5.1 Subgroup actions

We shall discuss in this paragraph the particular case in which N is also a Lie group that
contains G as subgroup and on which G acts by multiplication on the left. We also assume
that the Riemannian metric g on N is left invariant (relative to left translations by elements
of N). In this case, one can make use of left trivialization of the tangent bundle TN to get
the diffeomorphism

g× TN → g×N × n, (u, n, ṅ) 7→ (u, n, n−1ṅ) =: (u, n, ζ).

The reduced Lagrangian in terms of the new variables is denoted ℓL and reads

ℓL(u, n, ζ) = ℓ(u, n) +
1

2σ2
‖ζ − Adn−1 u‖2

since we have the relations

n−1νn = n−1(ṅ− uN(n)) = n−1(ṅ− un) = ζ − Adn−1 u.

We now rewrite the stationarity conditions relative to these new variables. Consider varia-
tions ε 7→ uε and ε 7→ nε of the curves u and n. We have as usual

δζ = Σ̇ + [ζ,Σ] (8.51)

where Σ = n−1δn. Likewise,

δ(Adn−1u) = Adn−1

(
δu+ [u, δnn−1]

)
= Adn−1 (δu+ [u,AdnΣ])

= Adn−1δu+ [Adn−1 u,Σ] .



Gay-Balmaz, Holm and Ratiu Geometric optimization dynamics 62

For simplicity, we suppose that ℓ does not depend on n. Substituting these relations into
the variation of the action integral we get

δSd = δ

∫ T

0

ℓL(u, n, ζ)dt = δ

∫ T

0

(

ℓ(u) +
1

2σ2
‖ζ − Adn−1 u‖2

)

dt

=

∫ T

0

(〈
δℓ

δu
, δu

〉

+ 〈π, δζ − δ(Adn−1u)〉

)

dt

=

∫ T

0

(〈
δℓ

δu
, δu

〉

+
〈

π, Σ̇ + adζΣ− Adn−1δu− ad(Adn−1u)Σ
〉)

dt

=

∫ T

0

(〈
δℓ

δu
− Ad∗

n−1π, δu

〉

−
〈

π̇ − ad∗
ζπ + ad∗

(Adn−1u)π,Σ
〉)

dt+
[

〈π,Σ〉
]T

0
,

where π ∈ n∗ is the image momentum dual to the left-invariant image velocity ζ ∈ n, that
is,

π :=
δℓL
δζ

=
1

σ2
(ζ − Adn−1 u)♭ =

1

σ2

(
n−1ν ♭

n

)
=

1

σ2
n−1

(
ν ♭
n

)
=∈ n∗.

Stationarity δS = 0 and Σ(0) = Σ(T ) = 0 then implies

δℓ

δu
= Ad∗

n−1π and π̇ = ad∗
ζπ − ad∗

(Adn−1u)
π = ad∗

σ2π♯π = σ2ad∗
π♯π. (8.52)

From the general theory, since the G-action on N is by isometries it follows that F∇ = 0,
and thus these equations imply the Euler-Poincaré equations. It is also instructive to obtain
them directly. Taking the time derivative and using general results relating the Ad∗ and ad∗

operations yields

d

dt

δℓ

δu
=

d

dt

(

Ad∗
n−1π

)

= Ad∗
n−1

(

π̇ − ad∗
ζπ
) (

with ζ = n−1ṅ
)

by (8.52b) = −Ad∗
n−1ad∗

(Adn−1u)π

= − ad∗
u

(

Ad∗
n−1π

)

by (8.52a) = − ad∗
u

δℓ

δu
.

In turn, the Euler-Poincaré equation implies the conservation law,

0 = Ad∗
g

(
d

dt

δℓ

δu
+ ad∗

u

δℓ

δu

)

=
d

dt

(

Ad∗
g

δℓ

δu

)

=
d

dt

(
Ad∗

gAd
∗
n−1π

)

(

since Ad∗
g−1Ad∗

h−1 = Ad∗
(gh)−1

)

=
d

dt

(
Ad∗

η−1π
)

= Ad∗
η−1

(

π̇ − ad∗
υπ
)

,

where υ := η−1η̇ is the left-invariant template velocity.
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Remark 8.12 (Interpretation of the equations).

1. The conservation laws for Ad ∗
g(δℓ/δu) and Ad ∗

η−1π provide the interpretations of the
momentum dynamics. Namely, the momentum δℓ/δu (resp. π) undergoes coadjoint
motion with respect to g (resp. η−1).

2. The peculiar form of the momentum equation (8.52b) is then understood, because the
template velocity υ is proportional to image momentum π by a factor of the penalty
constant, which also maps it from the dual of the Lie algebra, back to Lie algebra,
namely,

υ := η−1η̇ = n−1νn = σ2π♯.

Perhaps not unexpectedly, when σ2 → 0 the template velocity vanishes and the re-
maining image motion reduces to a pure deformation governed by the Euler-Poincaré
equation.

3. The metamorphosis (gt, ηt) is determined as an initial value problem, as follows. Given
the Lagrangian l(u), the Euler-Poincaré equation

d

dt

δℓ

δu
+ ad∗

u

δℓ

δu
= 0 ,

determines the velocity u = ġg−1 which then yields gt by reconstruction from solving
ġt = utgt. Next, the relations

π̇ = ad∗

(ζ−Adn−1u)π and σ2π♯ = ζ − Adn−1u ,

with ζ = n−1ṅ and ṅ = un + νn need to be negotiated to obtain the image curve
nt. Finally, the template curve is obtained from ηt = g−1

t nt. This process is worth
discussing in an example.

8.5.2 Example: Metamorphosis equations on SE(2)

In SE(2) the manifold of “deformable objects” N = R2 is acted upon by the Lie group of
“deformations” G = SO(2) on the left. The situation simplifies in this case because N is a
vector space and we recover the setting described in §8.1. Hence,

ℓM(u, n, ν) = ℓ(u) +
1

2σ2
‖ν‖2 = ℓ(u) +

1

2σ2
‖ṅ− un‖2 = ℓLP (u, n, ṅ)

and the cost function becomes

Sd =

∫ T

0

(

ℓ(u) +
1

2σ2
‖ν‖2

)

dt =

∫ T

0

(

ℓ(u) +
1

2σ2
‖ṅ− un‖2

)

dt ,

where the se(2) Lie algebra action un may be written on R2 as a cross product of vectors
[31]

un = uẑ × n.
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Consequently, the SDP metamorphosis equations (see (8.7))

δl

δu
+ π ⋄ n = 0,

π̇ − uπ = 0,

ṅ− un = σ2π♯ = ν,

may be written in vector form as,

δl

δu
ẑ + π × n = 0,

π̇ − uẑ × π = 0,

ṅ− uẑ × n = σ2π = ν.

One may compare this sytem with equations (8.13) and (8.14).
A few statements may be made about the qualitative properties of the solutions of this

system.

1. Substituting the second and third equations into the time derivative of the first one
yields the conservation law,

d

dt

δℓ

δu
= 0,

for the planar motion. The other two equations are closed provided one may solve
δℓ/δu for u, which of course we shall assume is possible.

2. Since δℓ/δu is constant, u is also constant. This means that |π| is constant as well; so
π executes circular motion in the plane at constant rotation frequency π× π̇/|π|2 = uẑ.

3. It remains to determine the effects of σ2 6= 0 on the dynamics of n. A short computation
shows that:

d

dt
|π|2 = 0 ,

d

dt
(π · n) = σ2|π|2 and

d

dt
|n|2 = 2σ2(π · n),

so |n|2(t) increases quadratically with scaled time σ2t and the motion may be visualized
as taking place in R3 with coordinates (x1, x2, x3) = (|π|2, |n|2, π ·n) along the parabolas
formed by intersections of level sets of the two integrals of motion |π|2 = constant and

|π × n|2 = |π|2|n|2 − (π · n)2 = constant.

The rotation frequency of n is found as

n× ṅ

|n|2
= ẑ

(

u+
σ2

|n|2
δl

δu

)

.

As σ2t → ∞, the directions of the vectors π and n tend toward a state of alignment,
rotating together at frequency uẑ. In contrast, for σ2 = 0, the vectors π and n keep
their magnitudes and rotate together at frequency uẑ with constant relative orientation.
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8.5.3 Lie-Poisson Hamiltonian formulation of metamorphosis for right action

In this example we particularize the system of motion equations (4.8) to the case of a
representation but without imposing the endpoint condition at t = 1. The resulting equations
are obtained by metamorphosis reduction from an arbitrary Lagrangian L : T (G× V ) → R,
where V is a vector space. Thus, the equations below are more general that those obtained
in the penalty approach.

As explained in Section 5, the variational problem optimizes over metamorphoses (gt, ηt)

by minimizing S =
∫ 1

0
Ldt, for a Lagrangian L of the form

L(gt, ġt, ηt, η̇t) = L(gt, ġt, ηt) +
1

2σ2
‖gtη̇t‖

2,

with fixed boundary conditions for the initial and final images n0 and n1, with image nt = gtηt
for template ηt and g0 = idG; thus only the images are constrained at the endpoints.

For the concrete metamorphosis example, the group G of diffeomorphisms Diff(D) ∋ g
of the domain D is taken to act on the space of smooth maps (images) V = F(D) ∋ η by
the left action gη := η ◦ g−1 of G on V . Therefore, the right action (8.50) of G on G× V is
given in this case by (g, η)h := (g ◦ h, η ◦ h) for g, h ∈ Diff(D) and η ∈ F(D). The reduced
Lagrangians ℓLP (ut, nt, ṅt) and ℓM(ut, nt, νt) are defined on the space g×V ×V . In imaging
applications, ut = ġtg

−1
t is the velocity along the optimal path gt sought between two images;

nt := gtηt is the path in the image space; and νt := gtη̇t is the image velocity.
From a visual point of view, image metamorphoses are similar to what is usually called

“morphing” in computer graphics. The evolution of the image over time, t 7→ nt, is a combi-
nation of deformations and image intensity variation. Algorithms and experimental results
for the solution of the boundary value problem (minimize the time-integrated Lagrangian
between two images) can be found in [55, 22].

From the general metamorphosis equations (4.8) (with the minus sign corresponding to
the right action of G on G× V ) we obtain the dynamical system







∂

∂t

δℓM
δu

+ ad∗
ut

δℓM
δu

+
δℓM
δn

⋄ nt +
δℓM
δν

⋄ νt = 0 ,

∂

∂t

δℓM
δν

− ut
δℓM
δν

−
δℓM
δn

= 0 ,

ṅt = νt + utnt ,

δℓM
δu

(1) +
δℓM
δν

(1) ⋄ n1 = 0 ,

(8.53)

where for n ∈ V , a ∈ V ∗, and u ∈ X(D) = g, the infinitesimal actions and the diamond
operators are given by

un = −dn · u ∈ V = F(D) ,

ua = div(au) ∈ V ∗ = F(D)∗ ∼= F(D) ,

n ⋄ a = − adn ∈ g∗ = Ω1(D).
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Even though we fixed the standard volume form on D ⊂ Rn so densities on D are identified
with functions and one-form densities with one-forms, we recall that one should think of ua
as a density and n ⋄ a as a one-form density.

In contrast to earlier sections, fixed endpoints at t = 1 are not assumed in metamorphosis.
This difference leads to the last equation in the system (8.53). For details of the derivation
of the system (8.53) and discussions of the regularity of its solutions, see [41].

System (8.53) describes coadjoint motion

∂

∂t

(
δℓM
δu

+
δℓM
δν

⋄ n

)

+ ad∗
ut

(
δℓM
δu

+
δℓM
δν

⋄ n

)

= 0 , (8.54)

or, equivalently,

∂

∂t

(

Ad∗
gt

(
δℓM
δu

+
δℓM
δν

⋄ n

))

= 0 , (8.55)

so that (
δℓM
δu

+
δℓM
δν

⋄ n

)∣
∣
∣
∣
t

= Ad∗

g−1

t

(
δℓM
δu

+
δℓM
δν

⋄ n

)∣
∣
∣
∣
t=0

, (8.56)

for the coadjoint action of the Lie group G on the dual of its Lie algebra g.

Hamiltonian formulation

One passes from the Euler-Poincaré metamorphosis equations on the Lagrangian side to
their Lie–Poisson Hamiltonian formulation via the Legendre transformation; see the
presentation and general formulas at the end of Section 6. The Legendre transformation of
the reduced Lagrangian ℓM(u, n, ν) : g × V × V → R in its variables u and ν defines the
Hamiltonian,

h(µ, n, β) = 〈µ, u〉+ 〈β, ν〉 − ℓM(u, n, ν), (8.57)

on g∗ × V × V ∗, where

µ =
δℓM
δu

and β =
δℓM
δν

(8.58)

are given by the Legendre transformation. The variational derivatives of the Hamiltonian h
are

δh

δµ
= u,

δh

δβ
= ν,

δh

δn
= −

δℓM
δn

. (8.59)

Consequently, the Euler-Poincaré equations (8.53) for metamorphosis in the Eulerian de-
scription imply the following equations, for the Legendre-transformed variables, (µ, n, β),
written as a matrix operation, symbolically as

∂

∂t





µ
n
β



 = −





ad∗
2
µ −2 ⋄ n β ⋄2

−2n 0 −1
−2β 1 0









δh/δµ
δh/δn
δh/δβ



 =: B





δh/δµ
δh/δn
δh/δβ



 , (8.60)

with boxes 2 indicating where the substitutions occur. These equations can also be obtained
from the system (6.11) (with minus sign chosen in ∓) by explicitly computing every term for
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this situation. The Poisson bracket defined by the L2 skew-symmetric Hamiltonian matrix
B is given by

{
f, h
}
(µ, n, β) =

∫ 



δf/δµ
δf/δn
δf/δβ





T

B





δh/δµ
δh/δn
δh/δβ



 dx . (8.61)

The pair (n, β) satisfies canonical Poisson-bracket relations. The other parts of the Poisson
bracket are linear in the variables (µ, n, β). This linearity is the signature of the Lie-Poisson
bracket on the dual of the semidirect product Lie algebra of vector fields X(D) acting on
functions F(D,W ) and its dual F(D,W ∗) with a canonical cocycle between them. The
semidirect product Lie algebra bracket on g× V × V is

[(u, n, ν), (ū, n̄, ν̄)] = ([u, ū], un̄− ūn, uν̄ − ūν) .

A similar Lie-Poisson bracket was found for complex fluids in [30]. Ongoing work in this
direction includes a Lagrange-Poincaré formulation of these equations ([26]).

9 Conclusions and outlook

This paper has begun the development of the family of dynamical systems associated with
optimal control and optimization problems. The theory was developed in the context of many
examples inspired by control theory and optimization, particularly in the new area of appli-
cations in imaging analysis of the theory of metamorphosis, a means of optimally tracking
the changes of shape necessary for registration of images of various types, or data structures,
without requiring that the transformations of shape be diffeomorphisms. The main idea was
to soften the exact dynamical constraint by replacing it with a quadratic penalty term. The
resulting optimization dynamics was studied by using methods that originated in geometric
mechanics. In particular, Lagrange-Poincaré reduction and its associated variational formu-
lations were adapted to this sort of optimal inexact reduction. This approach allowed us to
obtain the equations of metamorphosis dynamics that are naturally generated by the sta-
tionarity conditions, then study their properties from both the Lagrangian and Hamiltonian
points of view.

This geometric setup for optimization dynamics was illustrated in diverse examples in
Section 8. Besides metamorphosis (§8.5), these examples included optimally reduced versions
of the heavy top (§8.1.1), the double bracket equations (§8.1.2), the N -dimensional free
rigid body (§8.3.1), the Euler equations for an inviscid ideal fluid both incompressible and
compressible (§8.3.2), and the N -dimensional Camassa-Holm equation (§8.4). For the one-
dimensional Camassa-Holm equation the optimal reduction process produced its integrable
Hamiltonian extension, the two-component Camassa-Holm equations in (8.48) and (8.49).

We plan to continue the investigation of the relationships among problems in imaging,
optimal control, and geometric mechanics. In particular, we plan to continue developing the
dynamical systems framework for designing and interpreting methods of large deformation
matching for image registration in computational anatomy.
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[38] D. D. Holm, L. Ó Náraigh, and C. Tronci. Singular solutions of a modified two component Camassa-
Holm equation. Phys. Rev. E, 79:016601, 2009. (Preprint at arxiv.org/abs/0809.2538).

http://arxiv.org/abs/0911.2205
arxiv.org/abs/0809.2538


Gay-Balmaz, Holm and Ratiu Geometric optimization dynamics 70
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[59] Trouvé, A. [1995], An infinite dimensional group approach for physics based models in patterns recog-
nition. Preprint at http://www.cis.jhu.edu/publications/.
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[61] Trouvé, A. and L. Younes [2005], Metamorphoses through Lie group action, Found. Comp. Math. 5,
173–198.

[62] Vialard, F.-X., [2009], Hamiltonian Approach to Shape Spaces in a Diffeomorphic Framework: From the

Discontinuous Image Matching Problem to a Stochastic Growth Model, Ph.D. Thesis, École Normale
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