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Abstract

This paper discusses the mathematical framework for designing methods of large defor-
mation matching (LDM) for image registration in computational anatomy. After reviewing
the geometrical framework of LDM image registration methods, a theorem is proved show-
ing that these methods may be designed by using the actions of diffeomorphisms on the
image data structure to define their associated momentum representations as (cotangent
lift) momentum maps. To illustrate its use, the momentum map theorem is shown to re-
cover the known algorithms for matching landmarks, scalar images and vector fields. After
briefly discussing the use of this approach for Diffusion Tensor (DT) images, we explain
how to use momentum maps in the design of registration algorithms for more general data
structures. For example, we extend our methods to determine the corresponding momen-
tum map for registration using semidirect product groups, for the purpose of matching
images at two different length scales. Finally, we discuss the use of momentum maps in
the design of image registration algorithms when the image data is defined on manifolds
instead of vector spaces.
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1 Introduction

Large deformation diffeomorphic matching methods (LDM) for image registration are based on
minimizing the sum of a kinetic energy metric, plus a penalty term. The former ensures that
the deformation follows an optimal path, while the latter ensures an acceptable tolerance in
image mismatch. The LDM approaches were introduced and systematically developed in Trouvé
[29, 30], Dupuis et al. [10], Joshi and Miller [19], Miller and Younes [22], Beg [5], and Beg et al. [7].
See Miller et al. [23] for an extensive review of this development. The LDM approach fits within
Grenander’s [12] deformable template paradigm for image registration. Grenander’s paradigm,
in turn, is a development of the biometric strategy introduced by Thompson [28] of comparing
a template image I0 to a target image I1 by finding a smooth transformation that maps the
template to the target. This transformation is assumed to belong to a Lie group G that acts on
the set of images V containing I0 and I1. The effect of the transformation on the data structure
is called the action G × V → V of the Lie group G on the set V . For example, the action of
g ∈ G on I0 ∈ V is denoted as gI0 ∈ V .

The objective of LDM is not just to determine a deformation g1 ∈ G such that the group
action g1I0 of g1 ∈ G on the template I0 ∈ V approximates the target I1 ∈ V to within a
certain tolerance. Rather, the objective of LDM is to find the optimal path gt ∈ G continuously
parametrized by time t ∈ R that smoothly deforms I0 through It = gtI0 to g1I0. The optimal
path gt ∈ G is defined as the path that costs the least in time-integrated kinetic energy for a
given tolerance. Hence, the deformable template method may be formulated as an optimization
problem based on a trade-off between the following two properties: (i) the tolerance for inexact
matching between the final deformed template g1I0 and the target template I1; and (2) the cost of
time-integrated kinetic energy of the rate of deformation along the path gt. The former is defined
by assigning a norm ‖ · ‖ : V → R to measure the mismatch ‖gtI0 − I1‖ between the two images.
The latter is obtained by choosing a Riemannian metric | · | : TG → R that defines the kinetic
energy on the tangent space TG of the group G. In this setting, a notion of distance between
two images emerges, that allows one to compare similarity of images in terms of transformations.
This is the setting for the development of computational anatomy using the inexact template
matching approach for the registration of images. For more details and background about LDM,
see Miller and Younes [22], Miller et al. [23], Beg [5], and Beg et al. [7].

In applications of LDM to the analysis of features in bio-medical images, the optimal path
gt is naturally chosen from among the diffeomorphic transformations G = Diff(Ω) of an open,
bounded domain Ω. The domain Ω will be taken to be the ambient space in which the anatomy
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is located. Recall that a diffeomorphism g ∈ Diff(Ω) is a smooth invertible map (i.e., a invertible
function that maps the domain Ω onto itself) whose inverse is also smooth. The one-to-one
property of these transformations ensures that disjoint sets remain disjoint, so that, e.g., no
fusion of points occurs under LDM. Continuity of the diffeomorphisms ensures that connected sets
remain connected. Smoothness of these transformations ensures preservation of the smoothness of
boundaries of the anatomical objects in bio-medical images. The invertibility of diffeomorphisms
and their stability under composition also allows one to regard Diff(Ω) formally as a Lie group.

Different types of bio-medical images contain various types of information that may be rep-
resented in a number of geometrically different types of data structures. For example, the data
structures for MR images are scalar functions, or densities, while data obtained DT-MRI can be
represented as symmetric tensor fields. Naturally, the design of image registration algorithms
based on the theory of transformations must take differences in data structure into account.

Registration of DT-MRI data – necessary for the quantitative analysis of anatomical features
such as tissue geometry and local fiber orientation – is much more complicated than registration
of scalar image data. This complication arises because local fiber orientation changes under
a diffeomorphic transformation and this reorientation has to be included properly in the de-
sign of LDM matching algorithms for DT-MRI. A further complication arises because it is not
entirely understood how macroscopic deformation influences microscopic properties such as fiber-
orientation and diffusivity of water. Though significant efforts have been directed at scalar image
registration, little work has been done on matching tensor images using LDM. For the pioneering
efforts in the use of LDM with DT-MRI see Alexander et al. [2, 3], Cao et al. [8, 9].

In summary, the LDM approach models computational anatomy as a deformation of an initial
template configuration. The images describing the anatomy are defined on an open bounded set
Ω and the path from the template image I0 to the target image I1 is viewed as the continuous
deformation It := gtI0 under the path of diffeomorphic transformations gt ∈ Diff(Ω) acting on the
initial template I0. Importantly, the optimal path of diffeomorphic transformations gt depends
on three main factors: namely, how the action gtI0 is defined, as well as the definitions of the
kinetic energy and the tolerance norm. Images representing different types of information may
transform differently under G = Diff(Ω). Hence, the optimal path gt ∈ Diff(M) sought in the
LDM approach will depend on the geometrical properties of the data structures that represent
the information in the various types of images.

In the geometrical framework for the LDM approach, the optimal transformation path gt ∈
Diff(M) may be estimated by using the variational optimization method developed in Beg [5]
and Beg et al. [7]. Namely, the optimal path for the matching diffeomorphism in this problem
may be obtained from a gradient-descent algorithm based on the directional derivative of the
cost functional. The cost functional must balance the energy of the deformation path versus
the tolerance of mismatch, while taking proper account of the transformation properties of the
image data structure. Other promising methods besides LDM exist, such as the metamorphosis
approach discussed in Miller and Younes [22], Trouvé and Younes [31] and Holm et al. [18].
Metamorphosis is a variant of LDM, that allows the evolution It of the image template to deviate
from pure deformation. It is also a promising method in the LDM family, but its discussion is
beyond our present scope.

Our aim in this paper is to show that a simple and universal property of transformation theory,
called the momentum map can be used to identify and derive the LDM algorithm corresponding
to any data structure on which diffeomorphisms may act. That is, the momentum map approach
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enables one to tailor the LDM algorithm to the transformation properties of the data structure
of the images to be matched. For basic introductions to the momentum map in geometric
mechanics, see Holm [14] or Marsden and Ratiu [20]. For more extensive treatments see Abraham
and Marsden [1], Ortega and Ratiu [25].

Our interests here focus mainly on deriving the momentum maps corresponding to the various
types of data structures, rather than developing the matching dynamics that they subsequently
produce. In particular, we shall discuss how one uses the momentum map approach to cope with
different data structures, such as densities, vector fields or tensor fields, by recognizing their
shared properties in a unified geometrical framework.

Plan of the paper. In Section 2 we begin by discussing the geometry underlying the standard
algorithm for LDM introduced in Beg et al. [7]. With this motivation we then introduce an
abstract framework in which to model registration problems. We derive the equivalent of Beg’s
formula in the abstract framework in Theorem 2.5 and show that it has the structure of a
momentum map. The end of the section is devoted to a discussion of the EPDiff equation and
the importance of the initial momentum.

After presenting the abstract framework we apply it in Section 3 to a range of examples
commonly encountered in computational anatomy: landmarks, scalar images, vector fields and
symmetric tensor fields arising from DT-MRIs. We emphasize the momentum maps in these
examples as the main ingredient in our framework and show how to recover results found in the
literature.

Section 4 is devoted to a generalization of standard LDM in a different direction. This
section takes into account the presence of two different length scales in the image and formulates
a version of LDM that uses a semidirect product of two diffeomorphism groups — one for each
length scale — to perform the registration. We show that for images defined by scalar functions
this approach yields a momentum map that is very similar to Beg’s formula, except that we use
the sum of two kernels, instead of only one kernel.

Besides the formulation of LDM as in Beg et al. [7], other penalty terms have been proposed
by Beg and Khan [6], Avants et al. [4] and Hart et al. [13]. We show in Section 5 that these
other proposed penalty terms result in momentum map structures that are similar to those in
the formulation of Theorem 2.5.

Our approach can also be generalized to include data structures defined on manifolds that
do not possess a linear structure. In Section 6 we consider the extensions of the theory required
to deal with data structure defined on manifolds and apply these extensions in examples.

2 Geometry of Registration

2.1 Motivation

The optimal solution to a non-rigid template matching problem is defined as the shortest, or
least expensive, path of continuous deformations of one geometric object (template) into another
one (target). The goal is the find the path of deformations of the template that is shortest, or
costs the least, for a given tolerance in matching the target. The approach focuses its attention
on the properties of the action of a Lie group G of transformations on the set of deformable
templates. The attribution of a cost to this process is based on metrics defined on the tangent
space TG of the group G, following Grenander’s [12] principles.
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Formulation of LDM

In the LDM framework this template matching procedure for image registration is formulated
as follows. Suppose an image, say a medical image, is acquired using MRI, CT, or some other
imaging technique. To begin, consider the case that the information in an image can be repre-
sented as a function I : Ω → R, where Ω ⊆ R

d is the domain of the image. We denote the data
structure by writing I ∈ V = F(Ω), the space of smooth functions encoding the information in
the images. One usually deals with planar (d = 2) or volumetric (d = 3) images. Consider the
comparison of two images, consisting of a function I0 representing the template image and I1 the
target image. The goal is to find a transformation φ : Ω → Ω, such that the transformed image
I0 ◦ φ

−1 matches the target image I1 with minimal error, as measured by, say, the L2 norm of
their difference

E2(I0, I1) = ‖I0 ◦ φ
−1 − I1‖

2
L2 .

For this purpose, one introduces a time-indexed deformation process, that starts at time t = 0
with the template (denoted I0), and reaches the target I1 at time t = 1. At a given time t during
this process, the current object It is assumed to be the image of the template, I0, obtained
through a sequence of deformations.

We also want the time-indexed transformation to be regular. To ensure its regularity, we
require the transformation to be generated as the flow of a smooth time dependent vector field
u : [0, 1] × Ω → Ω, i.e. φ = φ1 with

∂tφt = ut ◦ φt, φ0(x) = x. (2.1)

We measure the regularity of ut via a kinetic-energy like term

E1(ut) =

∫ 1

0

|ut|
2
Hdt

where |ut|H is a norm on the space of vector fields on Ω defined in terms of a positive self-adjoint
differential operator L by

|ut|
2
H = 〈u, Lu〉L2 .

The operator L is commonly chosen as Lu = u − α2∆u. We denote by H this space of vector
fields.

Following Beg et al. [7] we can cast the problem of registering I0 to I1 as a variational problem.
Namely, we seek to minimize the cost

E(ut) =

∫ 1

0

|ut|
2
Hdt+

1

2σ2
‖I0 ◦ φ

−1
1 − I1‖

2
L2 (2.2)

over all time-dependent vector fields ut. The transformation φ1 is related to the vector field ut

via (2.1). A necessary condition for a vector field ut to be minimal is that the derivative of the
cost functional E vanishes at ut, that is DE(ut) = 0. It is shown in Beg et al. [7, theorem 2.1.]
and Miller et al. [23, theorem 4.1] that DE(ut) = 0 is equivalent to

Lut =
1

σ2
|detDφ−1

t,1 |(J
0
t − J1

t )∇J0
t , (2.3)

where φt,s = φt ◦ φ
−1
s and J0

t = I0 ◦ φ
−1
t,0 , J1

t = I1 ◦ φ
−1
t,1 . This condition is then used in Beg et al.

[7] to devise a gradient descent algorithm for numerically computing the optimal transformation
φ1.
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Geometric reformulation of LDM

Formula (2.3) can be reformulated equivalently in a way that emphasizes its geometric nature.
As we will show in Section 2.2, formula (2.3) is equivalent to

Lut = −
1

σ2
(φt · I0) ⋄

(
φt,1 · (φ1 · I0 − I1)

♭
)
. (2.4)

This formula can be understood as follows: the first factor φt·I0 is the action of the transformation
φt on the image I0 ∈ V = F(Ω). This is defined as the composition of functions, φt ·I0 = I0◦φ

−1
t .

The flat-operator ♭ : V → V ∗ maps images in V to the objects in V ∗ dual to scalar functions,
using the inner product on V . (These dual objects are the scalar densities.) To describe such an
operator, one first needs to choose a convenient space V ∗ in nondegenerate duality with V . We
choose to identify V ∗ with functions in F(Ω), by using the L2-pairing

〈f, I〉 :=

∫

Ω

f(x)I(x)dx,

where dx is a fixed volume element on Ω. With this choice, the flat operator ( ♭ ) is simply the
identity map on functions. However, it is important that we conceptually distinguish between
elements in V and in its dual V ∗. Indeed, the action of a transformation φ on an element in V ∗

is the dual action, and does not coincide with the action on V in general. In our example, the
action on f ∈ V ∗ is

φ · f = |detDφ−1|(f ◦ φ−1). (2.5)

To see how this action arises, we need the abstract definition of a dual action, which is

〈φ · f, I〉 = 〈f, φ−1 · I〉.

The inverse is necessary to ensure that we have a left action:

φ · (ψ · f) = (φ ◦ ψ) · f .

Using this definition and the change of variables formula we see that

〈φ · f, I〉 = 〈f, φ−1 · I〉 =

∫

Ω

(I ◦ φ)fdx =

∫

Ω

I(f ◦ φ−1)|detDφ−1|dx

=
〈
|detDφ−1|

(
f ◦ φ−1

)
, I
〉
.

Therefore, in the second factor φt,1 · (φ1 · I0 − I1)
♭ of equation (2.4), the term (φ1 · I0 − I1)

♭ is
interpreted as a function in V ∗. Consequently, the action is the dual action given by

φt,1 · (φ1 · I0 − I1)
♭ = |detDφ−1

t,1 |(J
0
t − J1

t ) .

It remains to explain the last ingredient, the diamond map

⋄ : V × V ∗ → H∗. (2.6)

This is the cotangent-lift momentum map associated to the given action of G on V . Such
momentum maps are familiar in geometric mechanics; see, e.g., Holm [14] or Marsden and Ratiu
[20]. The momentum map (2.6) takes elements of V ×V ∗, regarded as the cotangent bundle T ∗V
of the space of images V , to objects in H∗, dual to the vector fields in H. As before, the map ⋄
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depends on the choice of H∗. Using the L2-pairing with respect to the fixed volume element dx
and relative to the Euclidean inner product ( · ) in R

d, the momentum map (2.6) is defined for
images that are functions I ∈ V = F(Ω) by the relation

〈I ⋄ f , u 〉 =

∫

Ω

−f∇I · u dx. (2.7)

Remark 2.1 (Momentum maps). In geometric mechanics, momentum maps generalize the no-
tions of linear and angular momenta. For a mechanical system, whose configuration space is a
manifold M acted on by a Lie group G, the momentum map J : T ∗M → g∗ assigns to each
element of the phase space T ∗M a generalized “momentum” in the dual g∗ of the Lie algebra
g of the Lie group G. For example, the momentum map for spatial translations is the linear
momentum and for rotations it is the angular momentum.

The importance of the momentum map in geometric mechanics is due to Noether’s theorem.
Noether’s theorem states that the generalized momentum J is a constant of motion for the
system under consideration when its Hamiltonian is invariant under the action of G on T ∗M .
This theorem allows us to turn symmetries of the Hamiltonian into conservation laws.

Remark 2.2 (Momentum of images). Momentum maps for images have been discussed previ-
ously. In particular, the momentum map for the EPDiff equation of Holm and Marsden [15]
produces an isomorphism between landmarks (and outlines) for images and singular soliton so-
lutions of the EPDiff equation. This momentum map was shown in Holm et al. [17] to provide a
complete parameterization of the landmarks by their canonical positions and momenta. Another
interpretation of momentum for images in computational anatomy is also discussed in Miller
et al. [24].

We now explain in which sense expression (2.7) is a momentum map. Even though the cost
functional (2.2) is not invariant under the action of the diffeomorphism group, one may still
define the momentum map ⋄ : V × V ∗ → H∗ via

〈I ⋄ f, u〉 = 〈f, uI〉 ,

as done in geometric mechanics, see Marsden and Ratiu [20] and Holm [14]. The action uI is
defined as uI := ∂t|t=0φt · I for a curve φt such that φ0(x) = x and ∂t|t=0φt = u. This is the
infinitesimal action corresponding to the action of Diff(Ω) on V . Although the ⋄-map does not
provide a conserved quantity of the dynamics, it nevertheless helps our intuition and gives us a
way to structure the formulas.

Let us apply this concept to image registration for I ∈ F(Ω), the scalar functions on the
domain Ω. The infinitesimal action is given by

uI = ∂t

∣∣
t=0

(I ◦ φ−1
t ) = −∇I · u

and thus the momentum map in this case is

〈I ⋄ f, u〉V ∗×V = 〈f,−∇I · u〉 =

∫

Ω

−(∇I · u)fdx = 〈−f∇I, u〉H∗×H ,

as stated in formula (2.7). The key is to reinterpret the L2-duality between the functions −∇I ·u
and f as the duality between the vector fields −f∇I and u.

Using formulas (2.7) and (2.5) in equation (2.4), we regain the stationarity condition (2.3).
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Remark 2.3. Writing the gradient of the cost functional (2.3) in the geometric form (2.4) has
several advantages. For example, it allows us to generalize an algorithm that matches images
as scalar functions, to cope with different data structures, such as densities, vector fields, tensor
fields and others. Making this generalization allows one to see the underlying common geometrical
framework in which we may unify the treatment of these various data structures. We can also
keep the data structure fixed and vary the norm ‖ · ‖, and thereby alter our criteria of how we
measure the distance between two objects.

This geometric framework also enables comparison of different formulations of LDM. For
example, one may compare the approach from Beg et al. [7] presented here with the symmetric
approach from Avants et al. [4] and Beg and Khan [6] and the unbiased approach from Hart
et al. [13], in terms of their respective momentum maps.

In addition, the geometrical setting introduced here for image analysis allows us not only to
vary the data structure, but also to change the group of transformations. We will explore this
possibility in Section 4, when we consider image registration using two diffeomorphism groups
simultaneously.

2.2 Abstract Framework

Diffeomorphic image registration may be formulated abstractly as follows. Consider a vector
space V of deformable objects on which an inner product 〈 · , · 〉 is defined, that allows us to
measure distances between two such objects. We can think of V as containing brain MRI images,
an example frequently encountered in computational anatomy [23]. The distance between two
objects can be defined as ‖I−J‖2 = 〈I−J, I−J〉, which in the case of images is the L2-distance

∫

Ω

|I(x) − J(x)|2dx.

The second ingredient is a Lie groupG of deformations, that acts on the space V of deformable
objects from the left

(g, I) ∈ G× V 7→ gI ∈ V.

In computational anatomy G usually is taken to be the group of diffeomorphisms Diff(Ω) or
variants of it. A diffeomorphism φ ∈ Diff(Ω) acts on images by push-forward ; that is, by pull
back by the inverse map,

φ · I := φ∗I = I ◦ φ−1 or φ · I(x) = I(φ−1(x)).

Roughly speaking, this action corresponds to drawing the image I on a rubber canvas, then
deforming the canvas by φ and watching the image being deformed along with the canvas. It is
also the basis for the familiar Lagrangian representation of fluid dynamics as described in Holm
et al. [16].

Given a curve t 7→ gt of transformations, we define the right-invariant velocity vector ut ∈ g

as
ut = (∂tgt)g

−1
t . (2.8)

We obtain ut by taking the tangent vector of gt and right-translating it back to the tangent space
at the identity TeG = g, which is the Lie algebra of G. Rewriting (2.8) as

∂tgt = utgt (2.9)



The momentum map representation of images December 14, 2009 9

and specifying initial conditions at some time t = s, we obtain an ordinary differential equation
(ODE). If we start with velocity vectors ut, we can solve this ODE to reconstruct the curve gt.
This corresponds to the construction of diffeomorphisms as flows of vector fields via the equation

∂tφt = ut ◦ φt, φ0(x) = x.

Let us denote by gu
t,s the solution of the ODE (2.9) rewritten as

∂gu
t,s = utg

u
t,s, gu

s,s = e

with the initial condition that gu
t,s is the identity e at time t = s. Since the time t = 0 will play a

special role, we denote gu
t := gu

t,0. Standard results for differential equations show the following
properties

gt,sgs,r = gt,r , gt,s = gtg
−1
s , g−1

t,s = gs,t

which we will use in our calculations.
Following the motivation discussed in Section 2.1 we define the abstract version of the cost

functional (2.2) as

E(ut) :=

∫ 1

0

ℓ(ut)dt+
1

2σ2
‖gu

1I0 − I1‖
2
V (2.10)

where the function ℓ : g → R is a Lagrangian measuring the kinetic energy contained in ut and
‖ · ‖ is the norm on V induced by the inner product 〈 · , · 〉. Note that formula (2.10) defines a
matching problem for any data structure living in a vector space V and any group of deformations
G acting on V . Although it was inspired by the concrete problem of diffeomorphically matching
scalar-valued images, the cost function (2.10) no longer contains any reference to image matching.

Next, we want to deduce (2.4) in our abstract framework. In order to compute the derivative
DE(ut) we need to know how gu

1 behaves under variations δut of ut. This is answered by the
following lemma, the proof of which is adapted from Vialard [33] and Beg et al. [7].

Lemma 2.4. Let u : R → g, t 7→ u(t) be a curve in g and ε 7→ uε a variation of this curve.
Then

δgu
t,s :=

d

dε

∣∣∣∣
ε=0

guε

t,s = gu
t,s

∫ t

s

(
Adgu

s,r
δu(r)

)
dr ∈ Tgu

t,s
G.

Proof. For all ε we have
d

dt
guε

t,s = uε(t)g
uε

t,s, guε

s,s = e.

Taking the ε-derivative of this equality yields the ODE

d

dt

(
d

dε

∣∣∣∣
ε=0

guε

t,s

)
= δu(t)gu

t,s + u(t)

(
d

dε

∣∣∣∣
ε=0

guε

t,s

)
,

and then, using the notation δgu
t,s := d

dε

∣∣
ε=0

guε

t,s, we compute

d

dt

((
gu

t,s

)−1
δgu

t,s

)
= −

(
gu

t,s

)−1
u(t)gu

t,s

(
gu

t,s

)−1
δgu

t,s +
(
gu

t,s

)−1 (
δu(t)gu

t,s + u(t)δgu
t,s

)

= gu
s,tδu(t)g

u
t,s

= Adgu
s,t
δu(t).
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Now we integrate both sides from s to t and multiply by gu
t,s from the left to get

δgu
t,s = gu

t,s

∫ t

s

(
Adgu

s,r
δu(r)

)
dr ,

as required.

Already knowing from (2.4) how the first derivative DE(ut) of the cost functional is going
to look, we want to establish the necessary notation before we proceed with the rest of the
calculation. The inner product on V provides a way to identify V with its dual. To I ∈ V one
associates the linear form I♭ := 〈I, · 〉 ∈ V ∗.

Given an action G on V , we define the cotangent lift action of G on π ∈ V ∗ via

〈gπ, I〉 =
〈
π, g−1I

〉
, for all I ∈ V .

As mentioned earlier the inverse is necessary to make the dual action into a left action. Finally
we define the cotangent-lift momentum map ⋄ : V × V ∗ → g via

〈I ⋄ π, u〉 = 〈π, uI〉 ,

where uI is the infinitesimal action of g on V defined by uI = ∂t|t=0gtI for a curve gt with g0 = e
and ∂t|t=0gt = u. The use of the momentum map was motivated in Remark 2.1.

Now we are ready to calculate the stationarity condition DE(ut) = 0.

Theorem 2.5. Given a curve t 7→ ut ∈ g, we have

DE(ut) = 0 ⇐⇒
δℓ

δu
(t) = −gu

t I0 ⋄ g
u
t,1π , (2.11)

or, equivalently

DE(ut) = 0 ⇐⇒
δℓ

δu
(t) = −

1

σ2
J0

t ⋄
(
gu

t,1

(
J0

1 − J1
1

)♭)
, (2.12)

where the quantities π, J0
t , and J1

t are defined as

π :=
1

σ2
(gu

1I0 − I1)
♭ ∈ V ∗, J0

t = gu
t I0 ∈ V, J1

t = gu
t,1I1 ∈ V.

When G acts by isometries, the stationarity condition simplifies to

DE(ut) = 0 ⇐⇒
δℓ

δu
(t) = −

1

σ2
J0

t ⋄
(
J0

t − J1
t

)♭
.

The quantity J0
t is the template object moved forward by gt until time t and J1

t is the target
object moved backward in time from 1 to t.

Proof. Using the notation π := 1
σ2 (g

u
1I0 − I1)

♭ = 1
σ2 (J

0
1 − J1

1 )♭ ∈ V ∗, we may calculate

〈DE(u), δu〉 = δ

(∫ 1

0

ℓ(u(t))dt+
1

2σ2
‖gu

1 I0 − I1‖
2
V

)

=

∫ 1

0

〈
δℓ

δu
(t), δu(t)

〉
dt+

〈
π,

d

dε

∣∣∣∣
ε=0

(guε

1 I0 − I1)

〉
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=

∫ 1

0

〈
δℓ

δu
(t), δu(t)

〉
dt+ 〈π, δgu

1I0〉

=

∫ 1

0

〈
δℓ

δu
(t), δu(t)

〉
dt+

〈
π,

(
gu
1

∫ 1

0

(
Adgu

0,s
δu(s)

)
ds

)
I0

〉

=

∫ 1

0

(〈
δℓ

δu
(t), δu(t)

〉
dt+

〈
(gu

1 )−1 π,
(
Adgu

0,t
δu(t)

)
I0

〉)
dt

=

∫ 1

0

(〈
δℓ

δu
(t), δu(t)

〉
+
〈
I0 ⋄ (gu

1 )−1 π,Adgu
0,t
δu(t)

〉)
dt

=

∫ 1

0

(〈
δℓ

δu
(t) + Ad∗

gu
0,t

(
I0 ⋄ (gu

1 )−1 π
)
, δu(t)

〉)
dt,

which must hold for all variations δu(t). Therefore,

δℓ

δu
(t) = −Ad∗

gu
0,t

(
I0 ⋄ (gu

1 )−1 π
)

= − gu
t I0 ⋄ g

u
t,1π

= −
1

σ2
J0

t ⋄ gu
t,1

(
J0

1 − J1
1

)♭
.

If G acts by isometries, then the action commutes with the flat map and we obtain

δℓ

δu
(t) = −

1

σ2
J0

t ⋄
(
J0

t − J1
t

)♭
.

This theorem tells us how to compute the gradient of the cost functional for any data structure
and any group action. Just like the cost functional (2.10) it is expressed entirely in geometric
terms and contains no reference to particular examples such as images. This makes the theorem
widely applicable.

Remark 2.6. Although the momentum δℓ
δu

(t) at each time depends on I0 and I1, it turns out
that δℓ

δu
(t) obeys a dynamical equation that is independent of I0, I1. The equation in question is

the Euler-Poincaré equation on G. History and applications of the Euler-Poincaré equation can
be found in Holm et al. [16], Marsden and Ratiu [20] and Marsden and Scheurle [21].

Lemma 2.7. The momentum δℓ
δu

(t) satisfies

d

dt

δℓ

δu
(t) = − ad∗

ut

δℓ

δu
(t) . (2.13)

This is the Euler-Poincaré equation on the Lie group G with Lagrangian ℓ : TG/G ≃ g → R.

Proof. Because the cotangent-lift momentum map is Ad∗-invariant we obtain from Theorem 2.5

δℓ

δu
(t) = −gu

t I0 ⋄ g
u
t,1π

= −Ad∗
(gu

t )−1

(
I0 ⋄ (gu

1 )−1 π
)
.

Differentiation of Ad∗ follows the rules

∂t Ad∗
gt
η = Ad∗

gt
ad∗

ġtg
−1

t

η ,
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∂t Ad∗
g−1

t

η = − ad∗
ġtg

−1

t

Ad∗
gt
η .

From this we see that

d

dt

δℓ

δu
(t) = −

d

dt
Ad∗

(gu
t )−1

(
I0 ⋄ (gu

1 )−1 π
)

= ad∗
ut

Ad∗
gt

(
I0 ⋄ (gu

1 )−1 π
)

= − ad∗
ut

δℓ

δu
(t) ,

and so the momentum satisfies the Euler-Poincaré equation.

Remark 2.8 (EPDiff equation). When G = Diff(M) the Euler-Poincaré equation is the EPDiff
equation for left action of the diffeomorphisms on the manifold M ,

d

dt

δℓ

δu
(t) = − ad∗

ut

δℓ

δu
(t) . (2.14)

See Holm and Marsden [15] for a detailed treatment of the EPDiff equation.

Remark 2.9 (Dependence of I0, I1 on the initial momentum). It might seem counterintuitive
that the momentum evolves independently of the objects we are trying to match. However, the
objects I0, I1 do influence the momentum δℓ

δu
(t) in a significant way. Namely, solving the Euler-

Poincaré equations requires that we know the initial momentum δℓ
δu

(0) and this initial momentum
depends on I0, I1 through the formula

δℓ

δu
(0) = −I0 ⋄ (gu

1 )−1π .

Alternatively, we might think of it from the viewpoint of the variational principle. Assume
that ℓ(u) = 1

2
|u|2 is the squared length of a vector for some inner product 〈 · , · 〉 on g. If we have

found a vector field ut and g1, which minimize

1

2

∫ 1

0

|u|2dt+
1

2σ2
‖g1I0 − I1‖

2
V ,

then the vector field ut must also minimize
∫ 1

0

|u|2dt ,

among all vector fields ũt whose flows g̃t coincide with gt at time t = 1, i.e., g̃1 = g1. But this
means that ut must be the velocity vector field of a geodesic gt in G. Here we have implicitly
endowed G with a right-invariant Riemannian metric induced by the inner product 〈 · , · 〉 on g.
The Euler-Poincaré equation (2.14) is just the geodesic equation on the Lie group G with respect
to this Riemannian metric.

3 Registration Using the Group of Diffeomorphisms

3.1 The Setting

In computational anatomy the group of deformationsG is usually the group of diffeomorphisms of
some domain Ω ⊂ R

d. Different types of data used in computational anatomy, such as landmarks,
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scalar-valued images or vector fields, are deformed by diffeomorphisms via the mathematical
operations of pull-back and push-forward. Intuitively this corresponds to embedding your data
into the domain Ω, then deforming Ω by the diffeomorphism and observing how the data is
deformed with it. We will go into greater detail about how each of the data types can be
registered after reviewing some basic notions about the diffeomorphism group.

Diffeomorphism group

For technical reasons, we need to consider a group of diffeomorphisms associated to a certain
Hilbert space of vector fields H. We suppose that H is a subspace of the space of C1 vector fields
vanishing at the boundary and at infinity, and such that there exists a constant C for which

|u|1,∞ ≤ C|u|H, (3.1)

where | · |H is the inner product norm of the Hilbert space H and | · | is the norm in W 1,∞(Ω).
Such a Hilbert space defines a unique Kernel K : Ω × Ω → L(Rd,Rd) such that

〈u, p〉L2 =

〈
u,

∫
K(·, y)p(y)dy

〉

H

.

This also defines a positive, self-adjoint differential operator L (with respect to the L2-inner
product) such that 〈u, v〉H = 〈u, Lv〉L2 .

If ut : [0, 1] → H is a time-dependent vector field in L1([0, 1],H), then following Younes [34]
and Vialard [33], we can consider the solution φt of the differential equation

∂tφt(x) = ut ◦ φt(x), φ0(x) = x, (3.2)

and the group

GH =
{
φ1 | φt is solution of (3.2) for some ut ∈ L1([0, 1],H)

}
. (3.3)

We shall quickly indicate why GH is a group, following Trouvé [29]. Let φu
1 and φv

1 be the flows
at time t = 1 of the vector fields ut and vt. Let ũt := −u1−t. Then we have the relation

φũ
t ◦ φ

u
1 = φu

1−t ,

since φv
t ◦ φ

u
1(x) and φu

1−t(x) are both integral curves of ũt at φu
1(x). Taking t = 1, we obtain

(φu
1)

−1 = φũ
1 ∈ GH. To prove that the composition φu

1 ◦ φ
v
1 is in GH, we consider the vector field

(u ⋆ v)t :=

{
2u2t, if t ≤ 1/2
2v2t−1, if t > 1/2

, t ∈ [0, 1].

In order to compute φu⋆v
1 , we first solve the ODE for t ≤ 1/2. In this case (u ⋆ v)t = 2u2t =: ūt,

therefore φu⋆v
t = φū

t = φu
2t. We then consider the case when t becomes larger than 1/2. In this

case (u ⋆ v)t = 2v2t−1 =: v̄t and from the situation t ≤ 1/2, we know that at time t = 1/2 the

flow φu⋆v
t takes the value φu

1 . Thus, we must have φu⋆v
t = φv̄

t ◦
(
φv̄

1/2

)−1

◦ φu
1 . Now we observe

that φv̄
t ◦
(
φv̄

1/2

)−1

= φv
2t−1, since they are both integral curves of v̄ that coincide at time t = 1/2.

We thus get the formula
φu⋆v

t = φv
2t−1 ◦ φ

u
1 .
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Taking t = 1, we get φv
1 ◦ φ

u
1 = φu⋆v

1 ∈ GH.
Even though GH is not precisely a Lie group, it comes close enough for our purposes, with H

acting as a substitute for the Lie algebra. We can use formal analogies with the finite dimensional
case to develop applications for computational anatomy. Details about this construction can be
found in Younes [34], Trouvé [29] and results about the regularity of the diffeomorphisms thus
constructed are found in Trouvé and Younes [32] and in Glaunès [11].

In the following, when we speak of the group of diffeomorphisms, we will mean the group GH.

3.2 Example 1: Landmark Matching

The simplest kind of objects used in computational anatomy are landmarks. Landmarks are
labeled collections I = (x1, . . . ,xn) of points xi ∈ R

d. Given two sets (x1, . . . ,xn), (y1, . . . ,yn)
of landmarks, the landmark matching problem consists of minimizing the energy

E(ut) =
1

2

∫ 1

0

|ut|
2
Hdt+

1

2σ2

n∑

i=1

‖φ1(x
i) − yi‖2. (3.4)

Our space of deformable objects is V = (Rd)n with the usual inner product

〈I, J〉 =

n∑

i=1

xi
· yi ,

for I = (x1, . . . ,xn), J = (y1, . . . ,yn). The action of the diffeomorphism group GH is by push-
forward

φ · I :=
(
φ(x1), . . . , φ(xn)

)
.

The corresponding cotangent-lift action on the dual space (Rdn)∗ ∼= R
dn is given by

φ · J ♭ =
(
Dφ(x1)−Ty1, . . . , Dφ(xn)−Tyn

)

and the calculation
〈
I ⋄ J ♭, u

〉
H∗×H

=
〈
J ♭, uI

〉

=
〈
(y1, . . . ,yn), (u(x1), . . . , (xn))

〉

=
n∑

i=1

yi
· u(xi)

=

〈
n∑

i=1

yiδ
x

i , u

〉

H∗×H

yields the diamond operator

(x1, . . . ,xn) ⋄ (y1, . . . ,yn)♭ =
n∑

i=1

yiδ
x

i

where δ
x

is the delta-distribution defined by
∫
f(y)δ

x
(y)dy = f(x) for a test function f(y).

The condition (2.12) that a minimizing vector field ut must satisfy is

Lut = −
1

σ2

n∑

i=1

Dφt,1(φ1(x
i))−T (φ1(x

i) − yi) δφt(xi) .
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Consequently, the momentum Lut is concentrated only on the points φt(x
i). By using the Green’s

function K(x,y) corresponding to the differential operator L, the minimizing condition above
can be rewritten for the velocity ut as

ut = −
1

σ2

n∑

i=1

K(x, φt(x
i))
[
Dφt,1(φ1(x

i))−T (φ1(x
i) − yi)

]
.

3.3 Example 2: Image Matching

The large deformation diffeomorphic matching framework used in Beg et al. [7] seeks to match
two images I0, I1 by minimizing

E(ut) =
1

2

∫ 1

0

|ut|
2
Hdt+

1

2σ2
‖I0 ◦ φ

−1
1 − I1‖

2
L2.

This example has already been discussed in Section 2.1. We review it here by applying the
abstract formalism developed above. In this example the space V of deformable objects consists
of real valued functions on Ω. We endow this space with the L2-inner product. The group of
deformations is again the group of diffeomorphisms GH, generated by vector fields in H. The
action of GH on V is by push-forward

φ · I = φ∗I = I ◦ φ−1

for φ ∈ GH and I ∈ V . As we have seen, the dual action reads

φ · π = |detDφ−1|
(
π ◦ φ−1

)

where |detDφ| denotes the absolute value of the determinant of Dφ. The diamond map in this
example is

I ⋄ π = −π∇I .

According to (2.12), a minimizing vector field ut must satisfy the following necessary condition

Lut =
1

σ2
| detDφ−1

t,1 |(J
0
t − J1

t )∇J0
t (3.5)

where J0
t = I0 ◦ φ

−1
t,0 , J1

t = I1 ◦ φ
−1
t,1 , and φt,s is the flow of the vector field ut

∂tφt,s = ut ◦ φt,s, φs,s(x) = x.

Equation (3.5) was used in Beg et al. [7] in devising a gradient descent scheme to computationally
find the minimizing vector field.

3.4 Example 3: Vector Fields

Diffusion tensor magnetic resonance imaging measures the anisotropic diffusion of water mole-
cules in biological tissues, thus enabling us to quantify the structure of the tissue. The measure-
ment at each voxel is a second order symmetric tensor. It was shown in Pierpaoli et al. [26] and
Scollan et al. [27] that the alignment of the principal eigenvector of this tensor tends to coincide
with the fiber orientation in brain and heart.



The momentum map representation of images December 14, 2009 16

The fiber orientation can be described by a vector field I : Ω → R
d and matching two vector

fields can be formulated as minimizing the energy

E(ut) =
1

2

∫ 1

0

|ut|
2
Hdt+

1

2σ2
‖Dφ1 ◦ I0 ◦ φ

−1
1 − I1‖

2
L2 . (3.6)

In this example the space of deformable objects V is the vector space of vector fields in Ω, the
deformation group is the group of diffeomorphisms GH, generated by vector fields in H, and GH

acts on V by push forward
φ · I = φ∗I = Dφ ◦ I ◦ φ−1.

The infinitesimal action of u ∈ H on I ∈ V is given by the negative of the Jacobi-Lie bracket
whose components are

(uI)i =
∂ui

∂xj
Ij −

∂I i

∂xj
uj = −[u, I]i.

The object dual to vector fields with respect to the L2-pairing are one-forms π ∈ V ∗ = Ω1(Ω).
The diamond map is given by

I ⋄ π = −£Iπ − div(I)π,

where £Iπ denotes the Lie derivative of the one-form π along the vector field I. In coordinates,
writing I = I i ∂

∂xi and π = πidx
i, we can write the diamond map in the form

I ⋄ π = −

(
πj
∂Ij

∂xi
+ Ij ∂πi

∂xj
+ πi

∂Ij

∂xj

)
dxi.

Using these formulas, we can write the necessary condition for a vector field ut to minimize (3.6)
as

Lut =
(
£(φt)∗I0 + div ((φt)∗I0)

) (
|detDφ−1

t,1 |(φt,1)∗π
)
,

where π = 1
σ2 ((φ1)∗I0 − I1)

♭ ∈ V ∗. Note that because the ♭-map does not commute with pull
backs and push forwards, i.e.

φ∗(φ∗I)
♭ 6= I♭,

this formula cannot be significantly simplified.

3.5 Diffusion Tensor MRI

Instead of matching only the fiber orientations, we could also match the entire symmetric 2-
tensor, as was done in Alexander et al. [3] and Cao et al. [9]. In order to do so, we should first
explain how a diffusion tensor changes under a diffeomorphism. In analogy to images and vector
fields we could use the push forward by the diffeomorphism. If T is a symmetric tensor-field with
coordinates Tij , i.e.

T (x) = Tijdx
i ⊗ dxj

and φ ∈ GH a diffeomorphism, then the push-forward has the coordinate expression

φ∗T (x) = Tij(φ
−1(x))Bi

k(x)B
j
l (x)dx

k ⊗ dxl, (3.7)

where and Bi
k(x) is the coordinate matrix of Dφ−1(x).

In Alexander et al. [3] and Cao et al. [9] a different action was used. At each point x ∈ Ω ⊂ R
d

the orthonormal principal-axis directions e1(x), e2(x), e3(x) of the tensor T (x) are computed, as
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well as their corresponding eigenvalues λ1(x) ≥ λ2(x) ≥ λ3(x). Then T can be written as
T = λ1e1e

T
1 + λ2e2e

T
2 + λ3e3e

T
3 . The principal axes are each transformed separately as vector

fields under the diffeomorphisms as in Section 3.4, then normalized and made orthogonal using
the Gram-Schmidt method. The results are given as:

ê1 =
φ∗e1

‖φ∗e1‖
,

ê2 =
φ∗e2 − 〈 ê1, φ∗e2〉ê1

‖φ∗e2 − 〈 ê1, φ∗e2〉ê1‖
,

ê3 = ê1 × ê2.

In the above lines, the first principal axis e1 is pushed forward by φ to ê1 parallel to φ∗e1. The
second principal axis e2 is mapped in such a way, that ê1, ê2 span the same plane as φ∗e1, φ∗e2

and are orthogonal to each other. The last principal axis is then mapped to be orthogonal to
the first two. The transformed tensor is defined to be:

φ · T = λ1ê1ê
T
1 + λ2ê2ê

T
2 + λ3ê3ê

T
3 . (3.8)

This means, that we transform the principal axis directions as described above, but we do not
change the eigenvalues. The choice of this action is motivated by the particular application.
In brain DT-MRI the tensor T (x) describes the diffusivity of water in different directions at a
position x. The action by diffeomorphisms describes a macroscopic deformation of the brain,
such as a change of orientation, a growing tumor or a trauma. However, the diffusivity of water is
governed by the microscopic structure of tissue, which remains unchanged under a macroscopic
transformation. Therefore, one is looking for a way to transform the tensor, while keeping its
eigenvalues (the principal diffusivities) unchanged.

It can be shown that T 7→ φ·T is a left action of Diff(Ω) on the vector space of symmetric two-
tensors. Both of these approaches to Diffusion Tensor MRI given by the actions (3.7) and (3.8)
have the structure of a Lie group action and thus they may both be cast into our momentum-map
framework. We leave it to future work to study the different momentum maps that arise for each
of the actions and the implications that these have for matching of DT-MRIs.

4 Registration using Semidirect Products

The examples in the previous section have shown that the abstract formulation of diffeomorphic
image registration using the diamond operation ( ⋄ ) provides a mathematical framework that
allows us to adapt easily to accommodate different data structures. A second advantage of this
framework is the ability to perform matching using different groups. The images encountered
in computational anatomy may contain information on different length scales. Two images can
vary in their large scale structure as well as in the fine details. In matching such images, it might
be of advantage to have two groups at our disposal, one to match the large scale behavior and
the other one to deal with the fine details. This is made possible in our framework by using the
concept of a semidirect product, which we will review below and then apply in examples.

4.1 Semidirect Product of Groups

Consider a Lie group H acting on K from the left by homomorphisms.

(h, k) ∈ H ×K 7→ h · k ∈ K,
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that is,

h1 · (h2 · k) = (h1h2) · k left group action

h · (k1k2) = (h · k1)(h · k2) action by group homomorphisms.

We can then form the semidirect product group G = H sK. The group multiplication in G
is given by

g1g2 = (h1, k1) (h2, k2) = (h1h2, k1 (h1 · k2))

and the inverse of (h, k) is (h, k)−1 = (h−1, h−1 ·k−1). The Lie algebra g is the semidirect product
g = h s k of the Lie algebras of H and K. The tangent actions on G are given by

(ḣ1, k̇1)(h2, k2) =
(
ḣ1h2, k̇1(h1 · k2) + k1(ḣ1 · k2)

)
(4.1)

(h1, k1)(ḣ2, k̇2) =
(
h1ḣ2, k1 · (h1k̇2)

)
(4.2)

and the right-trivialization of the tangent bundle is given by

ġg−1 = (ḣ, k̇)(h−1, h−1 · k−1) =
(
ḣh−1, k̇k−1 + k(ḣh−1 · k−1)

)

The next lemma provides formulas for the adjoint and coadjoint actions of H sK on itself and
its Lie algebra.

Lemma 4.1. We have the following formulas for the adjoint and coadjoint actions

Ad(h,k)(w, v) =
(
Adh v,Adk(h · w) + k(Adh v · k

−1)
)

(4.3)

Ad∗
(h,k)(µ, ν) =

(
Ad∗

h(µ+ J(k−1ν)), h−1 · Ad∗
k ν
)

(4.4)

ad(v1,w1)(v2, w2) = (adv1
v2, adw1

w2 + v1 · w2 − v2 · w1) (4.5)

ad∗
(v1,w1)

(µ, ν) =
(
ad∗

v1
µ− w1 ⋄ ν, ad∗

w1
ν − v1 · ν

)
, (4.6)

where J : T ∗K → h∗ is the cotangent lift momentum map associated to the action of H on K

〈J(αk), v〉 = 〈αk, v · k〉 ,

and ⋄ : k× k∗ → h∗ is the cotangent lift momentum map associated to the induced representation
of H on k

〈w ⋄ ν, v〉 := 〈ν, v · w〉 .

The action (v, w) ∈ h × k 7→ v · w ∈ k is defined as v · w = ∂t|t=0(h(t) · w) for a curve h(t) with
h(0) = e and ∂t|t=0h(t) = v.

Proof. For the adjoint action (Ad) of the group on its Lie algebra, we simply perform the mul-
tiplications

Ad(h,k)(v, w) = (h, k)(v, w)
(
h−1, h−1 · k−1

)

= (hv, k(h · w))
(
h−1, h−1 · k−1

)

=
(
hvh−1, k(h · w)k−1 + k(hvh−1 · k−1)

)

=
(
Adh v,Adk(h · w) + k(Adh v · k

−1)
)
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and for the coadjoint action (Ad∗) on the dual Lie algebra, we pair with (a, b) ∈ h s k to define

〈
Ad∗

(h,k)(µ, ν), (a, b)
〉

=
〈
(µ, ν),Ad(h,k)(a, b)

〉

= 〈µ,Adh a〉 +
〈
ν,Adk(h · b) + k(Adh a · k

−1)
〉

= 〈Ad∗
h µ, a〉 +

〈
h−1 · Ad∗

k ν, b
〉

+
〈
k−1ν,Adh a · k

−1
〉

= 〈Ad∗
h µ, a〉 +

〈
h−1 · Ad∗

k ν, b
〉

+
〈
Ad∗

h

(
J(k−1ν)

)
, a
〉

=
〈(

Ad∗
h(µ+ J(k−1ν)), h−1 · Ad∗

k ν
)
, (a, b)

〉
.

For the next identity we differentiate (4.3) and remark that because of h · e = e we get v · e = 0.
Thus, the adjoint action (ad) of the Lie algebra on itself is given by

ad(v1,w1)(v2, w2) = (adv1
v2, adw1

w2 + v1 · w2 + w1(v2 · e) + adv1
v2 · e− v2 · w1)

= (adv1
v2, adw1

w2 + v1 · w2 − v2 · w1) .

For the coadjoint action (ad∗) of the Lie algebra on its dual, we pair again with (a, b) ∈ h s k to
see that

〈
ad∗

(v1,w1)
(µ, ν), (a, b)

〉
= 〈(µ, ν), (adv1

a, adw1
b+ v1 · b− a · w1)〉

=
〈
ad∗

v1
µ, a
〉

+
〈
ad∗

w1
ν − v1 · ν, b

〉
− 〈w1 ⋄ ν, a〉

=
〈(

ad∗
v1
µ− w1 ⋄ ν, ad∗

w1
ν − v1 · ν

)
, (a, b)

〉

as stated in the lemma.

If G = H sK, the equation

∂tg
u
t,s = utg

u
t,s, gu

s,s = e.

can be written as (see (4.1))

∂t

(
hu

t,s, k
u
t,s

)
=
(
vth

u
t,s, wtk

u
t,s + vt · k

u
t,s

)
, hu

s,s = e, ku
s,s = e,

where ut = (vt, wt) ∈ h s k = g and gu
t,s = (hu

t,s, k
u
t,s) ∈ H sK. Thus hu

t,s and ku
t,s satisfy the

equations
∂th

u
t,s = vth

u
t,s, ∂tk

u
t,s = wtk

u
t,s + vt · k

u
t,s. (4.7)

This means that hu
t,s is the flow of the vector field vt, but this is not true for ku

t,s and the vector
field wt. The corresponding relation for ku

t,s is a direct consequence of the noncommutativity of
the semidirect product. After reviewing these facts about the semidirect product, we will apply
them to form the semidirect product of two diffeomorphism groups and using this product to
perform image registration. This is done in the next section.

4.2 Image Matching with Semidirect Product Groups

Given a space V of deformable objects, assume that two groups H , K of deformations act on
V from the left. We imagine H to contain large-scale deformations and K to contain small-
scale deformations. Since a deformation that captures small structures is also able to capture
large-scale ones, we will assume that H is a subgroup of K, denoted by H ≤ K.

Let us determine the action by group isomorphisms of H on K subject to the following two
conditions:
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• The formula
(h, k)I := khI (4.8)

defines an H sK-action on V . Thus h deforms I first on a large scale and then the details
are captured on a small scale by k.

• The H sK action is effective. If the action is a representation, this means that it is
faithful. This condition requires that if (h, k)I = I for all I ∈ V , then (h, k) is the identity.

The first condition implies (h1, k1)(h2, k2)I = (h1h2, k1(h1 · k2))I for all h1, h2 ∈ H , k1, k2 ∈ K,
and I ∈ V . Therefore, k1h1k2h2I = k1(h1 · k2)h1h2I for all I ∈ V which, by the second
condition, yields k1h1k2 = k1(h1 · k2)h1, that is, the action is necessarily given by conjugation
(h1 · k2) = h1k2h

−1
1 . In this sense the action by conjugation appears naturally.

Because of the form of the action on V , the momentum map of the cotangent lifted action of
H sK on V × V ∗ has the expression

I ⋄ π = (I ⋄1 π, I ⋄2 π) ∈ h∗ × k∗ ∼= (h s k)∗, (4.9)

where, I ∈ V , π ∈ V ∗, and I ⋄1 π and I ⋄2 π denote the cotangent lift momentum maps of the H
and K-actions on V , respectively.

Since the H-momentum map is obtained from the K-momentum map by restriction, we have

ι∗(I ⋄2 π) = I ⋄1 π, (4.10)

where I ∈ V , π ∈ V ∗, ι : h →֒ k is the inclusion, and ι∗ : k∗ → h∗ is its dual.
The matching problem using a semidirect product is to minimize the energy

E(vt, wt) =

∫ 1

0

ℓ(vt, wt)dt+
1

2σ2
‖k1h1I0 − I1‖

2
V , (4.11)

where (h1, k1) are related to (vt, wt) by

∂tht = vth
u
t h0 = e

∂tkt = (vt + wt)k
u
t − ku

t vt k0 = e

}
. (4.12)

The last equation is obtained by specializing (4.7) for s = 0 and the action equal to conjugation.

Theorem 4.2. Given a curve t 7→ (vt, wt) ∈ h s k the stationarity condition DE(vt, wt) = 0 for
the action (4.11) is equivalent to

δℓ

δv
(t) = −g̃tI0 ⋄1 g̃t,1π,

δℓ

δw
(t) = −g̃tI0 ⋄2 g̃t,1π,

where π = 1
σ2 (g̃1I0 − I1)

♭ and g̃t ∈ K is the solution of the equation

∂tg̃t = (vt + wt)g̃t, g̃0 = e. (4.13)

Proof. Let gt = (ht, kt) ∈ H sK be the solution of the equation ∂tgt = utgt, g0 = e, where
ut = (vt, wt) ∈ h s k and define g̃t := ktht ∈ K. By Theorem 2.5 and (4.9) we get

δℓ

δv
= −gu

t I0 ⋄1 g
u
t,1π,

δℓ

δw
= −gu

t I0 ⋄2 g
u
t,1π.



The momentum map representation of images December 14, 2009 21

Since gtI0 = kthtI0 = g̃tI0 by the definition of the H sK-action on V , this yields

δℓ

δv
(t) = −g̃tI0 ⋄1 g̃t,1π,

δℓ

δw
(t) = −g̃tI0 ⋄2 g̃t,1π.

It remains to show equation (4.13). By (4.12) we have

∂tg̃t = (∂tkt)ht + kt(∂tht) = (vt + wt) ktht − ktvtht + ktvtht = (vt + wt) g̃t .

We have g̃0 = k0h0 = e.

This theorem shows that when matching with two groups, the momentum δℓ
δv

(t) contain no
more information than δℓ

δw
(t), since we have

δℓ

δv
(t) =

δℓ

δw
(t)

∣∣∣∣
h

by (4.10). Nonetheless, this case differs from matching with only one group, since the Euler-
Poincaré equation for the semidirect product reads

d

dt

δℓ

δv
(t) = − ad∗

vt

δℓ

δv
(t) + wt ⋄

δℓ

δw
(t)

d

dt

δℓ

δw
(t) = − ad∗

wt

δℓ

δw
(t) + vt ·

δℓ

δw
(t)

which incorporates the Lagrangian of both groups and is genuinely different from the Euler-
Poincaré equation for a single group, which is

d

dt

δℓ

δu
(t) = − ad∗

ut

δℓ

δu
(t).

4.3 Example: Semidirect Product Image Matching with Two Kernels

One way of introducing a length scale in image matching is to choose an appropriate kernel
for the cost of the H-action. If we were to choose for example Lu = u − α2∆u to be the
differential operator associated to the H1-norm on H , then the corresponding kernel would be
K(x, y) = e(−|x−y|/α) where α is a length scale; that is a filter width. A popular alternative
choice in image registration is the smoother Gaussian kernel K(x, y) = e(−|x−y|2/α2). Increasing
the value of α increases the cost of forming gradients, or curvature, and thus inhibits nearby
particles from being deformed differently, while allowing large-scale deformations of the image.
Sufficiently decreasing the value of α on the other hand would allow fine adjustments in the
image to be made without requiring much energy cost for the velocity vector field.

Recall the setting of the example of image matching in Section 3.3. When matching two
images I0, I1 ∈ V := F(Ω) with one kernel, the optimizing vector field ut satisfies

ut =
1

σ2
K ∗

(
|detDφ−1

t,1 |∇J
0
t (J0

t − J1
t )
)
,

where K ∗ f =
∫
K(·, y)f(y)dy denotes convolution with the kernel of the operator L; see (2.3).

A natural approach for distinguishing between multiple length scales would be to use instead
the sum of two kernels

ũt =
1

σ2
(Kα1

+Kα2
) ∗
(
|detDφ̃−1

t,1 |∇J̃
0
t (J̃0

t − J̃1
t )
)
,



The momentum map representation of images December 14, 2009 22

with two length scales α1 and α2. We will show, how this approach can be given a geometrical
interpretation.

Given two kernel Kα1
and Kα2

that correspond to the two length scales α1 > α2, we use
the diagonal Lagrangian ℓ(v, w) = 1

2
|v|2α1

+ 1
2
|w|2α2

to measure the energy of the joint velocity
vector (v, w). The norm | · |αi

is associated to the inner product coming from the kernel Kαi
,

i = 1, 2. We assume that the associated Hilbert spaces Hα1
⊂ Hα2

verify the hypothesis (3.1).
Let Gα1

⊂ Gα2
be the groups associated to Hα1

, Hα2
via (3.3). The element (ψ, η) ∈ Gα1

sGα2

acts on V = F(Ω) by the action (4.8), that is,

(ψ, η) · I := (η ◦ ψ) · I = I ◦ (η ◦ ψ)−1 = I ◦ ψ−1 ◦ η−1.

The matching problem with the semidirect product group Gα1
sGα2

is to minimize the energy

E(vt, wt) =
1

2

∫ 1

0

|vt|
2
α1

+ |wt|
2
α2
dt+

1

2σ2

∥∥I0 ◦ ψ−1
1 ◦ η−1

1 − I1
∥∥2

L2
.

By Theorem 4.2, the energy is minimal if

vt = Kα1
∗
(
−φ̃tI0 ⋄1 φ̃t,1π

)
, wt = Kα2

∗
(
−φ̃tI0 ⋄2 φ̃t,1π

)

and
∂tφ̃t = (vt + wt) ◦ φ̃t, φ0 = id.

The example of single kernel image matching in Section 3.3 showed us that

−φ̃tI0 ⋄ φ̃t,1π =
1

σ2
|detDφ̃−1

t,1 |∇J̃
0
t (J̃0

t − J̃1
t ),

with J̃0
t = I0 ◦ φ̃

−1
t,0 , J̃1

t = I1 ◦ φ̃
−1
t,1 . By denoting ũt := vt + wt the velocity vector field of φ̃t, we

see that

ũt =
1

σ2
(Kα1

+Kα2
) ∗
(
|detDφ̃−1

t,1 |∇J̃
0
t (J̃0

t − J̃1
t )
)
. (4.14)

Thus, matching images with the sum of two kernels corresponds to using a semidirect product
of diffeomorphism groups. This provides a geometrical interpretation for an approach that was
suggested intuitively.

5 Symmetric Formulations of Image Registration

The cost functional (2.10) is not the only choice possible in the large diffeomorphism matching
framework. Other cost functionals have been proposed in the literature, which make the regis-
tration problem symmetric. A consequence of the choice (2.10) is that it matters, whether we
choose to register I0 to I1 or vice versa. In some applications it may be useful to conceptually dis-
tinguish between I0 and I1, for example when the template I0 is available in a higher resolution,
but in other cases one would prefer a symmetric cost functional to (2.10). Such cost functionals
have been proposed in Beg and Khan [6], Avants et al. [4] and Hart et al. [13]. We will show
how they can be analyzed geometrically similar to the cost functional (2.10) in Section 2.

Example 5.1. The approach described in Avants et al. [4] and Beg and Khan [6] can be ab-
stractly described with the following cost functional

E(ut) =

∫ 1

0

ℓ(ut)dt+
1

2σ2
‖g 1

2

I0 − g 1

2
,1I1‖

2
V
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where gt,s is the flow of ut. Since we now evaluate the inexactness of the matching in the midpoint
t = 1

2
of the interval, this choice of the cost functional leads to a symmetric formulation of LDM.

A calculation similar to theorem 2.5 with π = 1
σ2 (g 1

2

I0 − g 1

2
,1I1)

♭

〈DE(ut), δut〉 =

∫ 1

0

〈
δℓ

δu
(t), δu(t)

〉
dt+ 〈π, δg 1

2

I0 − δg 1

2
,1I1〉

=

∫ 1

0

〈
δℓ

δu
(t), δu(t)

〉
dt

+

〈
π, g 1

2

(∫ 1

2

0

Adg−1

t
δu(t)dt

)
I0 − g 1

2
,1

(∫ 1

2

1

Adg1,t
δu(t)dt

)
I1

〉

=

∫ 1

0

〈
δℓ

δu
(t), δu(t)

〉
dt

+

∫ 1

2

0

〈
I0 ⋄ g

−1
1

2

π,Adg−1

t
δu(t)

〉
dt+

∫ 1

1

2

〈
I1 ⋄ g1, 1

2

π,Adg1,t
δu(t)

〉
dt

=

∫ 1

2

0

〈
δℓ

δu
(t) + gtI0 ⋄ gt, 1

2

π, δu(t)

〉
dt+

∫ 1

1

2

〈
δℓ

δu
(t) + gt,1I1 ⋄ gt, 1

2

π, δu(t)

〉
dt

shows that a minimizing vector field has to satisfy

δℓ

δu
(t) = −gtI0 ⋄ gt, 1

2

π, t ∈ [0, 1/2]

δℓ

δu
(t) = −gt,1I1 ⋄ gt, 1

2

π, t ∈ [1/2, 1]

π =
1

σ2
(g 1

2

I0 − g 1

2
,1I1)

♭

The momentum has a structure very similar to that of Theorem 2.10, but now we have a discon-
tinuity at time t = 1/2.

Example 5.2. Another approach to symmetrize the registration problem considered in Beg and
Khan [6] is via the cost functional

E(ut) =

∫ 1

0

ℓ(ut)dt+
1

2σ2

∫ 1

0

‖gtI0 − gt,1I1‖
2
V dt

Instead of minimizing the matching error at some chosen time like t = 0 for the classical LDM or
t = 1

2
as in the previous example, this approach averages the error over the whole time-interval.

Using the notation πt = 1
σ2 (gtI0 − gt,1I1)

♭ we can again calculate the derivative of E(ut)

〈DE(ut), δut〉 =

∫ 1

0

〈
δℓ

δu
(t), δu(t)

〉
dt+

∫ 1

0

〈πr, δgrI0 − δgr,1I1〉dr

=

∫ 1

0

〈
δℓ

δu
(t), δu(t)

〉
dt

+

∫ 1

0

〈
πr, gr

(∫ r

0

Adg−1

t
δu(t)dt

)
I0 − gr,1

(∫ r

1

Adg1,t
δu(t)dt

)
I1

〉

=

∫ 1

0

〈
δℓ

δu
(t), δu(t)

〉
dt
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+

∫ 1

0

∫ r

0

〈gtI0 ⋄ gt,rπr, δu(t)〉dtdr +

∫ 1

0

∫ 1

r

〈gt,1I1 ⋄ gt,rπr, δu(t)〉dtdr

=

∫ 1

0

〈
δℓ

δu
(t), δu(t)

〉
dt

+

∫ 1

0

∫ t

1

〈gtI0 ⋄ gt,rπr, δu(t)〉drdt+

∫ 1

0

∫ t

0

〈gt,1I1 ⋄ gt,rπr, δu(t)〉drdt

=

∫ 1

0

〈
δℓ

δu
(t) +

∫ 1

0

(
gt,1I11[0,t](r) + gtI01[t,1](r)

)
⋄ gt,rπrdr, δu(t)

〉
dt .

This calculation yields necessary conditions for the minimizing vector field

δℓ

δu
(t) = −

∫ 1

0

(
gt,1I11[0,t](r) + gtI01[t,1](r)

)
⋄ gt,rπrdr ,

πt =
1

σ2
(gtI0 − gt,1I1)

♭ .

Here, 1[0,t](r) is the indicator function of the interval [0, t], i.e. 1[0,t](r) = 1 for r ∈ [0, t] and 0
otherwise. The momentum again displays the momentum map structure, in this case involves
an average over time.

Example 5.3. A third approach to symmetric registration was presented in Hart et al. [13].
They proposed to allow inexactness in the initial as well as in the final image by choosing the
cost functional

E(ut, I) =

∫ 1

0

ℓ(ut)dt+
1

2σ2
‖I − I0‖

2
V +

1

2σ2
‖g1I − I1‖

2
V .

This cost functional treats I ∈ V as an additional free variable. Intuitively this approach means
that we are looking for an energy minimal path such that both the starting and the ending points
match I0 and I1 as well as possible. Computing the necessary conditions for the pair (ut, I) to
be minimizing with π = 1

σ2 (g1I − I1)
♭ yields

〈DE(ut, I), (δut, δI)〉 =

∫ 1

0

〈
δℓ

δu
(t), δu(t)

〉
dt+

1

σ2
〈I♭ − I♭

0, δI〉 + 〈π, δg1I + g1δI〉

=

∫ 1

0

〈
δℓ

δu
(t), δu(t)

〉
dt+

1

σ2
〈I♭ − I♭

0 + σ2g−1
1 π, δI〉 +

〈
π, g1

(∫ 1

0

Adg−1

t
δu(t)dt

)
I

〉

=

∫ 1

0

〈
δℓ

δu
(t) + gtI ⋄ gt,1π, δu(t)

〉
dt+

1

σ2
〈I♭ − I♭

0 + σ2g−1
1 π, δI〉 .

This leads to

δℓ

δu
(t) = − gtI ⋄ gt,1π ,

I♭ = I♭
0 − σ2g−1

1 π ,

π =
1

σ2
(g1I − I1)

♭.

If we are dealing with images I ∈ F(Ω,R) as in section 3.3, then the equation for I♭ can be
solved explicitly to find

I =
I0 + |Dφ1|I1 ◦ φ1

1 + |Dφ1|
.

In this case I constitutes a weighted average of I0 and the deformed image φ−1
1 · I1 at time t = 0.
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We have seen in all these examples that the momentum δℓ
δu

(t) had a very similar structure
based on the momentum map. They differed in the time point at which the inexactness of the
matching was measured, or, as in the last case, in which image was being compared. We have
restricted our attention primarily to only one of these possible formulations of LDM. However,
the geometric interpretations are similar in all cases and the momentum map plays the dominant
role in each case.

6 Nonlinear Generalizations

We now show that the formalism developed in §2.2 generalizes easily to the case when the set
of images is not necessarily a vector space and the cost function is not necessarily the Euclidean
distance. This situation arises, for example, in the Landmark Matching Problem associated to
points on the sphere for the study of neocortex, see Miller et al. [23] and references therein.

Suppose the set of images is a manifold Q on which a group of transformation G acts on the
left. As before, we denote by gI the action g ∈ G on I ∈ Q. We consider a cost function of the
form

E(ut) =

∫ 1

0

ℓ(ut)dt+ F (gu
1I0, I1) , (6.1)

where F is defined on Q × Q. When Q is a vector space V with inner product norm ‖ · ‖V , we
recover the cost function (2.10) by choosing

F (I, J) :=
1

2σ2
‖I − J‖2.

The next theorem establishes the stationarity condition associated to the cost in (6.1).

Theorem 6.1. Given a curve t 7→ ut in the Lie algebra g of G, we have

DE(ut) = 0 ⇐⇒
δℓ

δu
(t) = −J

(
gu

t,1 ∂1F (J0
1 , I1)

)
,

where J : T ∗Q → g∗ is the cotangent bundle momentum map and ∂1F (J0
1 , I1) ∈ T ∗

J0

1

Q is the

tangent map to F relative to the first variable. The momentum δℓ
δu

(t) satisfies the Euler-Poincaré
equation

d

dt

δℓ

δu
(t) = − ad∗

ut

δℓ

δu
(t).

Proof. The proof is similar to that of Theorem 2.5. We will use the formula 〈J(αq), u〉 =
〈αq, uQ(q)〉 for the momentum map J : T ∗Q → g∗ associated to the cotangent lift action. Using
Lemma 2.4, we calculate

〈DE(ut), δut〉 = δ

(∫ 1

0

ℓ(u(t))dt+ F (gu
1 I0, I1)

)

=

∫ 1

0

〈
δℓ

δu
(t), δu(t)

〉
dt+

〈
∂1F (J0

1 , I1), (δg
u
1 )I0

〉

=

∫ 1

0

(〈
δℓ

δu
(t), δu(t)

〉
dt+

〈
(gu

1 )−1 ∂1F (J0
1 , I1),

(
Adgu

0,t
δu(t)

)
Q
I0

〉)
dt

=

∫ 1

0

(〈
δℓ

δu
(t), δu(t)

〉
+
〈
J
(
(gu

1 )−1 ∂1F (J0
1 , I1)

)
,Adgu

0,t
δu(t)

〉)
dt
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=

∫ 1

0

(〈
δℓ

δu
(t) + Ad∗

gu
0,t

(
J
(
(gu

1 )−1 ∂1F (J0
1 , I1)

))
, δu(t)

〉)
dt ,

which must hold for all variations δu(t). Therefore,

δℓ

δu
(t) = −Ad∗

gu
0,t

(
J
(
(gu

1 )−1 ∂1F (J0
1 , I1)

))

= −J
(
gu

t,1 ∂1F (J0
1 , I1)

)
,

as required. The same proof as for Lemma 2.7 shows that the Euler-Poincaré equations are
verified.

When Q is a vector space V , this stationarity condition can be rewritten by using the ⋄ map,
as

δℓ

δu
(t) = −J0

t ⋄
(
gu

t,1 ∂1F (J0
1 , I1)

)
.

Landmark matching on manifolds. In the case of the Landmark Matching Problem on a
Riemannian manifold Q, one chooses the cost function

F (q1, .., qn; p1, ..., pn) :=

n∑

i=1

1

2σ2
d(qi, pi)

2,

where d is the Riemannian distance. This approach is used for imaging of the neocortex, where
Q is taken to be the sphere S2. The energy to minimize has the form

E(ut) =
1

2

∫ 1

0

|ut|
2
H +

n∑

i=1

1

2σ2
d(φ1(qi), pi)

2,

where qi, pi ⊂ S2 are given.

LDM multimodal image matching. The framework developed above allows us to under-
stand geometrically the model developed in Vialard [33], §3.2. This model deals also with a
change of intensity in the image I : Ω → X. This change of intensity can be modeled by an
action η ◦ I of a diffeomorphism of the template co-domain X. In this case, the energy can have
the general form

E(vt, wt) =

∫ 1

0

ℓ(vt, wt)dt+ F (η1 ◦ I0 ◦ φ
−1
1 , I1),

where ηt ∈ Diff(X) and φt ∈ Diff(Ω) are the flows of vt and wt, respectively. This problem can
be recast in our formulation by considering the action of the direct product Diff(Ω) × Diff(X)
on the manifold Q = F(Ω, X) given by

(φ, η) · I := η ◦ I ◦ φ−1.

For simplicity, we suppose thatX is a vector space, but in generalX can be an arbitrary manifold.
The cotangent lifted action on π reads

(φ, η) · (I, π)(x) = | detDφ−1(x)|Dη−1(I(φ(x)))T · π(φ−1(x))
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and the momentum map is

J(I, π) =

(
−π · ∇I,

∫

Ω

π(x)δI(x)dx

)
.

Using these formulas, the stationarity condition is

δℓ

δv
= πt · ∇J0

t ,
δℓ

δw
= −

∫

Ω

πt(x)δJ0
t (x)dx,

where J0
t = ηt ◦ I0 ◦ φ

−1
t and

πt(x) := | detDφ−1
t,1 (x)|

(
Dηt,1(J

0
1 (x))

)−T
∂1F (J0

1 , I1)(φ
−1
t,1 (x)).

The last expression is obtained using the formula of the cotangent lifted action and the equality

(
Dη−1

t,1 (J0
t (φt,1(x)))

)T
= Dηt,1(J

0
1 (x))−T .

For more discussion, see Vialard [33].

Alternative approach. We now consider an alternative approach that affects the geometric
shape of the image I : Ω → X, as considered in Trouvé [29]. This approach is different from that
considered above. For example we can consider the case X = S2 of images of unitary vectors
in R

3. In this case the shape can be modified by letting various groups of matrices acting on
S2. These matrices are of course allowed to depend on the domain Ω. We thus need to consider
the group F(Ω, G), where G is a group acting on X. In order to also take into account the
transformation on the domain, the semidirect product Diff(Ω) sF(Ω, G) ∋ (φ, θ) needs to be
considered as in Trouvé [29]. This group acts in a natural way on the space F(Ω, X) of images
via the left action

(φ, θ) · I = (θI) ◦ φ−1,

where the function θI is defined by (θI)(x) := θ(x)I(x) and in the last term we use the G-action
on X. A vector field on this Lie algebra has components (u, ν) where u is a vector field on Ω and
ν : Ω → g. Using the multiplication rule (φ, θ)(φ̄, θ̄) = (φ ◦ φ̄, (θ ◦ φ̄)θ̄) in the semidirect product,
the ODE ∂t(φt, θt) = (ut, νt)(φt, θt) reads

φ̇t = ut ◦ φt, θ̇t = (νt ◦ φt)θt, φ0 = e, θ0 = e.

For simplicity, we suppose that X is a vector space. The infinitesimal action on the space of
images reads (u, ν)I = νI −∇I · u hence the cotangent bundle momentum map is

J(I, π) = (−π · ∇I, I ⋄ π) ,

where I⋄π is the function with values in g∗ defined by (I⋄π)(x) = I(x)⋄π(x) and the diamond on
the right denotes the momentum map associated to the action of G on X. In order to formulate
the stationarity condition, we also need the expression of the cotangent lifted action given by

(φ, θ) · (I, π) =
(
(θI) ◦ φ−1, | detDφ−1| (θπ) ◦ φ−1

)
.

The cost function has the form

E(ut, νt) =

∫ 1

0

ℓ(ut, νt)dt− F
(
(θ1I0) ◦ φ

−1
1 , I1

)
.
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The stationarity conditions are thus given by

δℓ

δu
(t) = πt · ∇J0

t ,
δℓ

δν
(t) = −J0

t ⋄ πt,

where J0
t = (φt, θt) · I0 = (θtI0) ◦ φ

−1
t and

πt = | detDφ−1
1,t |
(
θ1,t∂1F (J0

1 , I1)
)
◦ φ−1

1,t .

For example, when F (I, J) = 1
2σ2‖I − J‖L2 , relative to an inner product on X, then ∂1F (I, J) =

1
σ
(I − J)♭ ∈ F(Ω, X∗), where ♭ is associated to the inner product on X. In this case, the

stationarity conditions are

δℓ

δu
(t) = | detDφ−1

1,t | (J
0
t − J1

t )♭∇J0
t ,

δℓ

δν
= J0

t ⋄ | detDφ−1
1,t | (J

0
t − J1

t )♭.

7 Conclusions

This paper has revealed that Beg’s algorithm from Beg [5] and Beg et al. [7] for image regis-
tration in the LDM framework is the cotangent-lift momentum map associated to the action of
diffeomorphisms on scalar functions. Accordingly, the momentum map has emerged as a central
organizing principle in the abstract framework inspired by image registration. The momentum
map provides the means of unifying the LDM approach for the registration of different data
structures that use different penalty terms and different Lie groups. Different data structures
summon different group actions to define their transformations and they will therefore give rise
to different momentum maps. But once the momentum map is computed, it is straight-forward
to implement the corresponding gradient-descent scheme for image registration. Although not
emphasized in this paper, it should be noted that the specification of distance on the space of
images will also be reflected in the momentum map. Exploring the specification of distance and
dealing with other data structures has been left for future work. For example, the pioneering
work of Alexander et al. [3] and Cao et al. [9] on the registration of DT-MRIs led to the action
on symmetric tensors discussed in Section 3.5. We plan to compare the momentum map for
this action with the usual push-forward action on tensor fields to gain further insights into the
matching procedures for tensor data structures.

Images encountered in applications often contain information at several length scales. A
heuristic approach for adapting the registration procedure to take into account these length scales
suggested replacing the kernel in (2.3) by the sum of two kernels Kα1

+Kα2
, with two different

length scales α1 and α2 for their corresponding filters. We have shown that this strategy has
a geometric interpretation. Namely, instead of using a single diffeomorphism group to perform
image registration, we can use the semidirect product of two such groups, each associated to its
own length scale. The resulting equations (4.14) then coincide with the sum-of-kernels strategy.
Similarly, the same result could be obtained for the sum of three and more kernels.

Other formulations of LDM that were intended to make the registration symmetric, as pro-
posed by Avants et al. [4], Beg and Khan [6] and Hart et al. [13], were also written geometrically.
We have shown that all these cases exhibit similar momentum map structures. The main differ-
ence arises from the choice of the time at which the momentum map is to be evaluated. Once
again, the momentum map appears as a unifying framework allowing systematic comparisons
among the different examples.
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We have also explored a natural generalization of the framework to incorporate data structures
living in manifolds, which do not have the linear structures of vector fields. Examples included
landmarks on a sphere. Since in this case no norm is available to measure distances between
two images, a distance function must be chosen. Further applications and capabilities of this
nonlinear framework will be explored in future work.
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[12] U. Grenander. General Pattern Theory. Oxford University Press, 1994.



The momentum map representation of images December 14, 2009 30

[13] G. L. Hart, C. Zach, and M. Niethammer. An optimal control approach for deformable
registration. http://www.cs.unc.edu/research/image/midag/pubs/papers/mmbia2009.
pdf, 2009.

[14] D. D. Holm. Geometric Mechanics Part II: Rotating, Translating and Rolling. Imperial
College Press, London, 2008.

[15] D. D. Holm and J. E. Marsden. The Breadth of Symplectic and Poisson Geometry, volume
232 of Progress in Mathematics, chapter Momentum Maps and Measure-valued Solutions
(Peakons, Filaments, and Sheets) for the EPDiff Equation, pages 203–235. Birkhäuser, 2005.
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