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THERMOSTATISTICS IN THE NEIGHBORHOOD OF THE

π–MODE SOLUTION FOR THE FERMI–PASTA–ULAM β

SYSTEM: FROM WEAK TO STRONG CHAOS

MARIO LEO, ROSARIO ANTONIO LEO AND PIERGIULIO TEMPESTA

Abstract. We consider a π–mode solution of the Fermi–Pasta–Ulam
β system. By perturbing it, we study the system as a function of the
energy density from a regime where the solution is stable to a regime,
where is unstable, first weakly and then strongly chaotic. We introduce,
as indicator of stochasticity, the ratio ρ (when is defined) between the
second and the first moment of a given probability distribution. We will
show numerically that the transition between weak and strong chaos can
be interpreted as the symmetry breaking of a set of suitable dynamical
variables. Moreover, we show that in the region of weak chaos there is
a numerical evidence that the thermostatistic is governed by the Tsallis
distribution.
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1. Introduction

Since its discovery, the celebrated Fermi–Pasta–Ulam (FPU) system [1]
has represented a paradigmatic model for the analysis of energy equiparti-
tion, stochastic resonances [2] and thermalization in nonlinear systems (for
a recent account, see [3]). In order to explain its rich phenomenology, sev-
eral approaches have been proposed. Zabusky and Kruskal [4], by analyzing
the string dynamics in the continuum limit, discovered solitary waves and
started the modern theory of nonlinear integrable systems. Another ap-
proach, due to Izrailev and Chirikov [5] and many others, was addressed to
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the numerical determination of ”stochasticity thresholds”, that marked the
transition from recurrences to thermalization and equilibrium.

In the last two decades it has been shown that many complex systems
possess weakly chaotic regimes, such as those exhibiting long–range particle
interactions, strong correlations, scale invariance, properties of multifractal-
ity, etc.. New physical phenomena are expected at the edge of chaos.

The approach first proposed in [6] aims to a generalization of the standard
statistical mechanics. As is well known, the Boltzmann–Gibbs thermostatis-
tics offers the natural theoretical framework to describe nonintegrable and
fully chaotic dynamics. This yields eventually to ergodicity and mixing in
phase space. A natural question is how to describe situations when the
system exhibits a weakly chaotic behavior, the ergodic hypothesis typically
is not verified and the statistical mechanics of Boltzmann and Gibbs (BG)
fails to provide a correct theoretical framework. The classical picture is
usually restored in the strongly chaotic regime. The approach, nowadays
called nonextensive statistical mechanics [7], has been proposed in order to
handle these more general situations, and in particular deals with the case
of power–law divergencies of the sensitivity to the initial conditions. At the
heart of the theory there is a generalization of the Boltzmann–Gibbs en-
tropy, the Sq entropy, that depends on a real parameter, the entropic index
q.

The literature on this topic has been increasing dramatically in the recent
years (for a regularly updated bibliography, see [8]).

Motivated by this current research, in this paper we analyze the statistical
behaviour of the FPU β system [1] when a π–mode solution is initially
excited. We describe both numerically and analytically, as a function of the
energy density, the transition of the system from a stable to a strongly chaotic

regime by following the time evolution of a suitable observable associated
to the exact π–mode solution. This observable physically corresponds to a
geometric symmetry of the system that is lost when the system is perturbed.
The analysis of this observable offers a very accurate tool for the study of
the evolution of the system.

An interesting result of our investigation is that in the weakly chaotic
regime the model appears to be described by the Tsallis (q–Gaussian) sta-
tistics. Recent generalizations of the central limit theorem [9], [10] provide a
theoretical framework for the wide appearance of such statistics in Physics.
These theorems claim that, under suitable hypotheses, q–Gaussian distribu-
tions should govern the weakly chaotic regimes, instead of Gaussian ones(see
also [11]).

However, the fact that a Tsallis statistics seems to play an important rôle
in the FPU β model, at first sight is quite surprising, since we are dealing
with a Hamiltonian system possessing a short–range interaction, whereas,
within the class of Hamiltonian systems, usually nonextensive regimes are
observed in long–range interacting many–body systems.
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The appearance of the Tsallis distribution for the FPU chain in the region
of weak chaos could be a consequence of the choice of the initial condition to
which an exact one-mode solution is associated. When a sufficiently small
perturbation is applied, the occurrence of q-Gaussians can be expected (see,
for instance, [12], [13], [14]). When the exact solution is further perturbed
and the energy density is increased, the weakly–chaotic behaviour is re-
placed by a strongly chaotic one leading to ergodicity and to the classical
Boltzmann–Gibbs statistics.

In order to detect accurately this transition, we introduce an indicator

of stochasticity ρ, that estimates the deviation of a generic assigned distri-
bution from the Gaussian behaviour for any value of the excitation energy
density. It is a function of the dynamical variables of the configuration
space only. The usefulness of the function ρ relies on the fact that it is
model–independent, since it can be used to characterize the behaviour of
any complex system.

In Section 2, we review briefly some theoretical aspects of nonextensive
thermostatistics. In Section 3, we propose our analysis of the FPU chain,
from the initial conditions selected towards the strongly chaotic region of
the phase space. In Section 4, the numerical results obtained are reported.
In Section 5, some open problems related to our work are discussed.

2. The nonextensive scenario

Let us consider a system in classical statistical mechanics, whose associ-
ated probabilities are pi (i = 1, ...,W ), satisfying the condition

∑W
i=1 pi = 1.

Here W is the total number of possible (microscopic) configurations of the
system. In [6], the following entropy was introduced:

(1) Sq = k
1−∑W

i=1 p
q
i

q − 1
,

where q ∈ R and k is a positive constant. It is immediate to ascertain that
it reduces, in the limit q → 1, to the Boltzmann–Gibbs entropy:

(2) S1 = lim
q→1

Sq ≡ SBG = −k
W
∑

i=1

pi ln pi.

If we introduce the q–exponential, defined by

(3) exq := [1 + (1− q)x]1/(1−q) ,

and the q–logarithm

(4) lnq x :=
x1−q − 1

1− q
,
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the entropy Sq can be seen as a q–deformation of SBG:

(5) Sq = −k

W
∑

i=1

pi lnq pi.

The entropy Sq possesses many physical properties. Two of them are par-
ticularly relevant.

a) Nonadditivity. Given two probabilistically independent subsystems A
and B of a given system, we have that

(6)
Sq(A+B)

k
=

Sq(A)

k
+

Sq(B)

k
+ (1− q)

Sq(A)

k

Sq(B)

k
.

Therefore, the entropy (1) is nonadditive, according to the definition pro-
posed by Penrose [15]. In the literature, the cases q < 1 and q > 1 are
usually referred to as super–additive and sub–additive, respectively.

b) Extensivity. For systems with strictly or asymptotically scale–invariant
correlations [16], [17] or global long–range interactions [18], for special values
of q, Sq satisfies the relation

(7) Sq ∼ N

i.e. is proportional to the number of particles of the system. This is crucial,
in order for a statistical mechanics to be a meaningful and widely applicable
one, as already Clausius pointed out.

Unfortunately, the notions of additivity and extensivity have often been
confused in the literature, and Sq, being nonadditive, has been referred to
as nonxtensive as well. This use is indeed erroneous, although widespread in
the literature. Von Neumann entropy, for instance, is additive but in general
nonextensive. Both SBG and Sq may or may not be extensive, depending
on the specific physical system considered [16].

Tsallis entropy can be considered as the simplest nontrivial generalization
of Boltzmann–Gibbs entropy: in addition to extensivity, it possesses all
nice properties of the classical entropy (as concavity, Lesche–stability [19],
finiteness of entropy production for unit time, etc.), except additivity, which
is replaced by the condition (6). A crucial result has been obtained in
several recent papers, as [9], [10], where q–extensions of the Central Limit
Theorem have been proposed. In these works it has been shown that, when
we deal with large sets of random variables with correlation (it may happen
for instance in physical systems with a weakly chaotic regime), q–Gaussian
probability distributions emerge as attractors, instead of Gaussian ones. In
the last twenty years, the nonextensive scenario has been widely investigated:
many interesting physical systems at the edge of chaos, both in classical and
quantum mechanics, have been shown to be conveniently described by the
Tsallis statistics. Other relevant applications have been found in economics,
linguistics, biosciences, social sciences, self–organized criticality, etc. [8]. In
the following, we will show how the FPU chain, under suitable conditions,
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admits in a specific region of the phase space a description in terms of the
nonextensive statistics.

3. The π–mode solution: a statistical analysis

Let us now describe the main features of the FPU β system with N oscil-
lators and periodic conditions. Let xi denote the displacement of the i–th
particle of the nonlinear chain from its equilibrium position. The Hamilton-
ian of the model reads

(8) H =
1

2

N
∑

i=1

pi
2 +

1

2

N
∑

i=1

(xi+1 − xi)
2 +

β

4

N
∑

i=1

(xi+1 − xi)
4

with

(9) xN+1 = x1 and β > 0.

All quantities are dimensionless. If we introduce the normal coordinates Qi

and Pi of the normal mode through the relations

(10) Qi =

N
∑

j=1

Sijxj Pi =

N
∑

j=1

Sijpj,

with

(11) Sij =
1√
N

(

sin
2πij

N
+ cos

2πij

N

)

,

the harmonic energy of the mode i is

(12) Ei =
1

2

(

P 2
i + ω2

iQ
2
i

)

,

where for periodic boundary conditions

(13) ω2
i = 4 sin2

πi

N
.

For β = 0, all normal modes oscillate independently and their energies Ei are
constant of the motion. In the anharmonic case (β 6= 0), the normal modes
are instead coupled, and the variables Q have no longer simple sinusoidal
oscillations.

Given a linear mode, if its excitation energy and the coupling nonlinear
parameter are small, the energy exchange with the other modes also remains
small and periodic. However, when the nonlinear effects become larger, a
conspicuous exchange of energy among all normal modes is observed. In
[20]–[24], the concept of strong stochasticity threshold (SST) has been in-
troduced. It is defined as the energy density threshold that characterizes
the transition of the system dynamics from weak to strong chaos during the
relaxation of the system towards ergodicity and equipartition.
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Besides, it is well known that, for a periodic FPU β chain, there are
nonlinear one–mode exact solutions (OMSs) (π–mode, π/2–mode, etc.) [25]
corresponding to the values of the integer mode number

(14) n =
N

4
,
N

3
,
N

2
,
2

3
N,

3

4
N.

If we excite one of these nonlinear modes and integrate the corresponding
equations of the motion, the finite precision of the numerical algorithm nat-
urally generates a perturbation of the mode. Beyond a certain threshold
value ǫt of the energy density ǫ, the nonlinear mode becomes unstable. In
[26]–[28], this mechanism has been extensively used to analyze the stability
properties of the π–mode and π/2–mode (n = N/4), both for positive and
negative values of the nonlinearity parameter β.

What is the route towards equipartition, ergodicity or chaos when ǫ > ǫt?
Qualitatively, the behaviour of the system is the following. For ǫ > ǫt,
the energy of the OMS is no longer constant. For small values of ǫ above
the threshold, the π–mode loses and recovers almost completely its initial
energy. In this recurrence region, if one increases ǫ, only the fraction of
the energy ceded to other modes and the period of recurrence change. For
larger values of ǫ, a more and more irregular behaviour is observed: the
energy ceded increases and the periodicity of the recurrence is lost, while
the system tends towards the equipartition of the whole initial energy.

A crucial point is the choice of indicators able to reveal the existence
of thresholds. To this aim, several indicators have been introduced in the
literature related, for instance, to the rate of energy exchange among normal
modes, to geometrical properties of trajectories in phase space and to single–
particle correlation functions. Collective spectral parameters have also been
proposed [29]. In particular, the normalized spectral entropy has been used
to reveal the existence of a SST [20].

In this work, by using a new global indicator ρ, we present, as a function
of energy density, a statistical analysis of the FPU β system, when the π–
mode is initially excited. This indicator is related to the distribution of the
values of a physical observable which remains constant during the evolution
of the system, if it is stable. As is well known, when one excites the π–mode,
the variable xi is related to the modal variable QN/2 by

(15) xi(t) =
1√
N

(−1)iQN/2(t).

Therefore, it is natural to introduce the observables

(16) ηi = xi + xi−1.

Indeed, the quantities ηi are always equal to zero during the time evolution of
the system, if it is stable, independently of the choice of the initial condition
QN/2(0). Instead, when the energy density is greater than the instability
threshold value ǫt, the ηi are no longer equal to zero. The distribution of the
values of ηi then depends on the exchange of energy among the π–mode and
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the other modes, rather than the statistic of the numerical integration errors.
We will show numerically that the transition from weak to strong chaos can
be interpreted as the breaking of the symmetry described by eqs. (15), (16).
Taking into account these considerations, we introduce, as an indicator of
stochasticity, the ratio between the second and the first moment of a given
probability distribution

(17) ρ =
σ

θ
,

when they are defined and the first moment is not zero. In the case of
symmetric distribution functions, θ is the mean value of the modulus of the
differences between the values of the observable and its mean value. In our
analysis, we distinguish two possibilities.

a) The distribution is normal, i.e. described by the Gauss function

(18) f(ξ) =
a√
π

exp (−a2ξ2),

where a is a parameter. One has the theoretical value ρ = σ
θ =

√

π
2 . This

result is characteristic of normal distributions and is utilized to estimate if
a distribution of measurements satisfies the Gauss distribution.

b) The distribution is a Tsallis distribution:

(19) f(ξ) = a
(

1− (1− q)b2ξ2
)

1

1−q .

with a and q dependent on ǫ,

(20) b = a
√
π

Γ
(

3−q
2(q−1)

)

√
q − 1 Γ

(

1
q−1

)

where Γ is the Euler Γ function and 1 < q < 3 in order that the distribution
is normalized to one. In this case we have proved that, for 1 < q < 5/3, the
function ρ has the following exact expressions:

(21) ρ(q) =
√
π

√

q−1
5−3q Γ

(

3−q
2(q−1)

)

Γ
(

2−q
q−1

)

We remark that, in the limit q → 1, the Tsallis distribution becomes the
Gauss distribution. In the specific example of the FPU β system, θ is the
mean value of the moduli of differences

(22) ξi = ηi − 〈ηi〉,
numerically obtained and σ the standard deviation:

(23) θ =

∑ |ξi|
M

, σ =

√

∑

ξ2i
M

where M is the number of values of ξi. What one expects is that for ǫ <
ǫt, when the system is stable, ρ(ǫ) should remain approximately constant.
Instead it should change abruptly for ǫ > ǫt, when the π–mode starts to
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exchange energy with the others modes. For larger and larger values of ǫ,
when an equipartition state has been reasonably reached, the parameter ρ
should assume again a constant value, characteristic of the distribution of
the ξi. For intermediate values of ǫ, a transition between weak and strong
chaos should be observed.

4. Numerical Results

We describe now our numerical analysis of the FPU β model. In order to
study numerically the stability of the π–mode, we utilize the method used
in ref [26]. The equations of the motion in the variables xi, pi are integrated
by means of a bilateral symplectic algorithm ([30]). We recall that the
dynamical properties of the FPU β system depend only on the product ǫβ,
so in all numerical experiments we put β = 1 and change the value of the
energy density without loss of generality. We excite the nonlinear π–mode
at t = 0, by putting

(24) Q(0) = Q0 6= 0, Q̇(0) = P0 = 0.

From these values, the initial values of xi and pi are calculated and the
Hamilton equations are integrated in the variables xi and pi with an inte-
gration step ∆t = 0.02. Every 100 integration steps the quantities

(25) ηi = xi(t) + xi−1(t), i = 1, . . . , N

are calculated. For each value of ǫ, we follow the evolution of the system
for a time approximately equal to 106/π periods of the corresponding linear
normal mode (TN/2 = π). Longer integration times give qualitatively the
same behaviour.

The numerical results show that the dependence of ρ on ǫ is qualitatively
the same for each choice of ηi with 32 ≤ N ≤ 1024. We shall discuss in
detail these results, through an analysis of the case N = 128 and i = 64.
We recall that the value of the energy density for the direct excitation of
the j–mode (j < N/2) by the instability of the mode N/2 is given by [25]:

(26) ǫex =
1

3

(

1

sin2 πj/N
− 1

)

≥ ǫt.

The first mode that becomes unstable is the mode N/2− 1, when ǫ = ǫt.
In Fig. 1, the behaviours of ρ, σ, θ and < η64 > are shown as a function

of ǫ. For the sake of clarity, the four quantities are rescaled by different
numerical factors. The global indicator ρ increases abruptly, if ǫ exceeds the
threshold value

(27) ǫt = 2.0× 10−4 ≈ π2/(3N2).

Then a rapid decrease of ρ, just above ǫt, is observed with a regular recur-
rent energy exchange of the π–mode with the mode N/2 − 1. This lasts
approximately until the mode N/2 − 2 is directly excited. The excitation
energy density of this mode corresponds in the graph of ρ approximately
to the presence of a ”bush”. This energy density can be considered as the
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beginning of the regime of weak chaos in the system. Moreover, we observe
a small peak for 0.01 ≤ ǫ ≤ 0.1. For larger values, ρ is almost independent of
ǫ and reaches the value

√

π/2 characteristic of the Gaussian distribution. In
this region, the transition to the chaotic behaviour is rapid and the exchange
of energy with the other linear modes is complete.

 40

 20

 0

-20

 100 1 0.01 0.0001

ε

Figure 1. (Color on line). The indicator ρ, the first and the
second moment θ and σ and < η64 > vs the energy density ǫ
for N = 128. For the sake of clarity, the four quantities are
rescaled by different numerical factors: ρ × 10 (red), σ × 2
(blue), θ × 2 (purple) and < η64 > ×500 (green).

Concerning the behaviour of 〈η64〉, a significative change is observed ap-
proximately in correspondence of the small peak present in the curve ρ(ǫ).
This change reveals a strong breaking of the symmetry η64 = x64 + x63 = 0
of the π–mode and marks the transition of the system from weak to strong
chaos. The small peak in the plot of ρ could be the consequence of a mecha-
nism of resonance overlap. As is well known, the solution of the differential
equation for the modal variable Q, is given by

(28) Q(t) = Q0 cn(Ωt; k2),
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 60
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e
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2 3 4

Figure 2. (Color on line). For a direct comparison with
the results shown in Fig. 1 and to remark the presence of
resonances for energies in correspondence of the small peak
in the graph of ρ, we report ( see Eq. (31)) the mode number
i as a function of the corresponding resonance energy density
ǫr for N = 128 and m = 2 (red), 3 (green) and 4 (blue).

where cn is the periodic Jacobi elliptic function with period T = aK(k)/Ω,
K(k) is the complete elliptic integral of the first kind and, for β = 1:

(29) k2 =
1

2

√
1 + 4ǫ− 1√
1 + 4ǫ

, Ω2 =
4

1− 2k2
.

One has resonance if the harmonic frequencies ~ω = (ω1, ω2, . . . , ωN/2), con-
cerning the harmonic term of the Hamiltonian, satisfy the relation

(30) ~m · ~ω =

N/2
∑

i

miωi ≈ 0

where ~m is an array of integers and the ωi are given by the formula (13).
Since we excite the π–mode, we have resonance, in particular, when Ω =

mωi with integer m > 1 and for some ωi. From previous relations one
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obtains for the resonance energy density ǫr:

(31) ǫr =
1

4

(

m4 sin4
πi

N
− 1

)

.

The resonance is possible for values of i such that ǫr > 0.
For example, for m = 2 one has

(32) i =

{

N/6 if N/6 is integer

[N/6] + 1 if N/6 is not integer.

Here, [x] denotes the smallest integer less than or equal to x. Conse-
quently the first linear mode that goes in resonance with the π–mode cor-
responds to i = 22, for ǫ = 0.0282. This value marks the rising of the small
peak in Fig. 1. In Figure 2, the values of i as a function of the resonance
energy densities are reported for m = 2, 3, 4.

 40

 20

 0

 0.1 0-0.1

f(
ξ)

ξ

Figure 3. (Color on line). Numerical distribution f(ξ)
(green points) of the values of ξ = η64− < η64 > fitted with
Tsallis distribution (red curve) for N = 128 and ǫ = 0.006.

Finally, we have analyzed the distribution for values of ǫ between the
”bush” and the small peak in the plot of ρ in Fig. 1. We have fitted
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 40

 1

 0.01

 0.1 0-0.1

f(
ξ)

ξ

Figure 4. (Color on line). Plot in linear–log scale of the
numerical distribution f(ξ) (blue points) fitted with Tsallis
distribution (red) and Gauss distribution (green) forN = 128
and ǫ = 0.006.

the numerical distribution with a Gaussian and a Tsallis distribution (see
Eqs. (18), (19)). It emerges that in the region of weak chaos the numerical
distribution is fitted accurately with a Tsallis distribution. A typical fit is
shown in Fig. 3 for ǫ = 0.006. The best fit with the Tsallis distribution,
with the two parameters q and a, gives q = 1.463 and a = 42.380, with a
reduced χ2 = 0.064. With this value of q we have, from Eq. (21), a value of
ρ = 1.497, to be compared with the numerical value ρ = 1.461. A fit with
the Gaussian distribution with the parameter a gives a = 40.874 with a
reduced χ2 = 0.905. In Fig. 4 Tsallis, Gaussian and numerical distributions
are compared, using a linear–log scale, for ǫ = 0.006. In Fig. 5, the same
distributions are compared for ǫ = 1 and ǫ = 5. By increasing the energy,
the three distributions collapse into the Gaussian one, as we expected. We
also get a common value q = 1.01, that is a signal that we have already
reached a region of strong stochasticity.
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 0.0001

 0.001

 0.01

 0.1

 20 0-20

f(
ξ)

ξ

ε = 5ε = 1

Figure 5. (Color on line). Plot in linear–log scale of the
numerical distribution f(ξ) (blue points) fitted with Tsallis
distribution (red) and Gauss distribution (green) for N =
128, ǫ = 1 and ǫ = 5. In both cases the Tsallis and Gaussian
distributions essentially overlap.

5. Open problems

We have described the evolution of the π–mode solution of the FPU β
system, by means of a new indicator of stochasticity. From numerical and an-
alytical results we deduce that, for ǫ > ǫt, there are three different regimes in
the transition from a regular to chaotic behaviour. A first KAM–like regime,
characterized by a regular and recurrent behaviour, extends approximately
from ǫt to the energy at which the mode N/2 − 2 is directly excited by
the π–mode. This value of ǫ corresponds roughly at the appearance of the
”bush” in the graph of ρ; then a second regime is observed until the small
peak (playing the rôle of strong sthochasticity threshold) is reached. This is
the zone where the weak chaos dominates. Then, the system enters a regime
of strong chaos characterized by the full symmetry breaking of the π–mode
solution. From our analysis it emerges with a good evidence that the regime
of weak chaos is described by the Tsallis distribution.
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It would be interesting to extend this analysis to other exact solutions. It
is a completely open question to ascertain whether, after a sufficiently long
time, the weakly chaotic regime here described would collapse into a fully
chaotic one. This aspect can be connected with the recent investigation on
the metastability scenario for the FPU problem [31], [32], [33].

Finally, it would be important to analyze, from the perspective of nonex-
tensive thermostatistics, also the case of the Fermi–Pasta–Ulam system with
fixed boundary conditions (for a recent study, see [34]).
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