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Abstract

The subfilter-scale (SFS) physics of regularization models are investi-
gated to understand the regularizations’ performance as SFS models. The
strong suppression of spectrally local SFS interactions and the conserva-
tion of small-scale circulation in the Lagrangian-averaged Navier-Stokes
α−model (LANS−α) is found to lead to the formation of rigid bodies.
These contaminate the superfilter-scale energy spectrum with a scaling
that approaches k

+1 as the SFS spectra is resolved. The Clark−α and
Leray−α models, truncations of LANS−α, do not conserve small-scale
circulation and do not develop rigid bodies. LANS−α, however, is closest
to Navier-Stokes in intermittency properties. All three models are found
to be stable at high Reynolds number. Differences between L

2 and H
1

norm models are clarified. For magnetohydrodynamics (MHD), the pres-
ence of the Lorentz force as a source (or sink) for circulation and as a
facilitator of both spectrally nonlocal large to small scale interactions as
well as local SFS interactions prevents the formation of rigid bodies in
Lagrangian-averaged MHD (LAMHD−α). We find LAMHD−α performs
well as a predictor of superfilter-scale energy spectra and of intermittent
current sheets at high Reynolds numbers. We expect it may prove to be
a generally applicable MHD-LES.
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1 Introduction

Computing solutions to the Navier-Stokes equations at realistic values of the
Reynolds number (Re ≡ UL0/ν, with characteristic velocity, U , and length-
scale, L0 and viscosity, ν) for most geophysical, astrophysical, and many engi-
neering applications is technologically infeasible. This is because the range of
dynamically important length (and time) scales is quite large: from the large
scale, L0, defined by the problem down to the scales of viscous dissipation,
lν ∼ L0Re

−3/4. One approach is to simply cut off the smallest scales to arrive
at a problem small enough for modern computational limits. A low-bandpass
filter, L : f → f̄ , replaces the velocity, v, and pressure, P , with smoother,
resolvable fields, v̄ , P̄ . Their time evolution is governed by the filtered Navier-
Stokes equations,

∂tv̄ + ω̄ × v̄ = −∇P̄ + ν∇2v̄ −∇ · τ̄

∇ · v = 0 , (1)

where ω = ∇ × v is the vorticity and τ̄ is the Reynolds subfilter-scale (SFS)
stress tensor,

τ̄ij = vivj − v̄iv̄j . (2)

The modeling of the unresolved stress, Eq. (2), is the main challenge of con-
ducting such large eddy simulations (LES, see [35] for a recent review).

Regularization modeling (of the SFS stress tensor) for Navier-Stokes [8, 26,
12, 14, 6, 15, 28, 33, 43], magnetohydrodynamics (MHD) [25], Boussinesq con-
vection [46], and inviscid cases [31] promises several advantages. Unlike the sit-
uation for Navier-Stokes [23] (where only weak, possibly non-unique solutions
have been rigorously proven to exist), for a regularization (which has strong,
unique solutions), we are guaranteed the computability of solutions: we can
achieve a direct numerical solution (DNS) of the model equations. It is worth
noting that we can then achieve a grid-independent model. As only the spectral
distribution of energy, not the dissipative processes as in many LES, is modi-
fied, a well-defined Reynolds number is retained (instead of the usual approach
of modeling the behavior of the flow in the limit of very large Re). Thus, the
models may be more applicable to intermittent phenomena where the length of
the inertial range can be important [20]. Since the models do not introduce the
effect of the small scales in an ad hoc fashion but rather preserve the mathe-
matical properties of the underlying equations, their application can further our
understanding of turbulence and turbulence modeling. The methods are also
more easily generalized to other problems (e.g., coupling to a magnetic field).

In this paper we address two separate questions. One is the question of the
practical applicability of regularization models as SFS models. When addressing
this question, the filter width, α, will be placed in the inertial range and the grid
spacing, ∆, will be just small enough to achieve a DNS of the regularization.
Our aim is then to determine how well the model’s DNS reproduces a “DNS” of
Navier-Stokes compared at scales larger than α. Our second question is “How
do the models work?” Here, we aim to understand how the new SFS physics
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allow reproduction of the superfilter-scale properties. To address this question,
we must necessarily spend the majority of our numerical resolution to resolve
the subfilter-scale inertial range. The filter width, α, will be a large fraction
of the computational domain and no superfilter-scale comparisons can be made
with Navier-Stokes. Instead, comparisons for scales smaller than α will elucidate
the differences in physics between the model and Navier-Stokes (or MHD). It is
these very differences that allow the model to reduce computational cost when
employed as a SFS.

2 Navier-Stokes

2.1 LANS−α and rigid body formation

The first model we consider is the Lagrangian-averaged Navier-Stokes (LANS)
α−model [8, 26]. It is derived by Lagrangian averaging fluid motions followed
by application of Taylor’s frozen-in turbulence approximation as the model’s
one and only closure: fluctuations about the Lagrangian mean smaller than α
are swept along by the large-scale flow and are not allowed to interact with
one another. The model is attractive as it retains the Hamiltonian structure of
Navier-Stokes, preserves Kelvin’s theorem (conserves small-scale circulation in
the absence of dissipation), and conserves both total energy and helicity (the
correlation between the velocity, v, and its curl, the vorticity ω = ∇×v). These
properties are conserved in the H1

α norm instead of the usual L2 norm. This
is essential when interpreting results of the model as, for example, quantities
involving the square velocity, |v|2, must now be replaced with the dot product
v · v̄ where v̄ is the filtered velocity. Physically, the model retains nonlocal
interactions (important at finite Re [36, 2]) between the superfilter and subfilter
scales while the flux of energy in subfilter scales is reduced by the limit on local
small-scale to small-scale interactions.

The LANS−α model is given by,

∂tv + ω × v̄ = −∇π + ν∇2v

∇ · v = ∇ · v̄ = 0 . (3)

From the identity, ω × v̄ = v̄ · ∇v+ (∇v̄)T · v−∇(v̄ · v), we see that it differs
from Navier-Stokes both in advection by the smoothed velocity and the addi-
tion of a second nonlinear term associated with the conservation of circulation.
Traditionally, LANS−α is used with an inverse Helmholtz operator as the filter:
v̄i = (1 − α2∂jj)

−1vi. In this case, LANS−α can be written as a LES, Eq. (1),
with

τ̄αij = (1− α2∂jj)
−1α2(∂mv̄i∂mv̄j + ∂mv̄i∂j v̄m − ∂iv̄m∂j v̄m) (4)

as the Reynolds subfilter-scale stress tensor. The model allows for a reduction
in resolution without changing the dissipative terms by altering the SFS scaling
properties. Near wavenumber, k = 2π/α, the H1

α energy spectrum is predicted
to transition from kβ with β = −5/3 at larger scales to β = −1 at smaller

3



Figure 1: Energy spectrum for LANS−α (solid line) with filter scale α = 2π/3
(vertical dashed line). The SFS power law is well approximated by k+1. Insert
shows thresholded cubed velocity increment |δv̄‖(2π/10)|

3 < 10−2 in black.
These regions do not contribute to the turbulent cascade of energy to smaller
scales and are identified with rigid bodies. A spectrum of only the white regions
(dashed line) is consistent with the predicted k−1 scaling outside rigid bodies.

scales [12]. Consequently, dissipation goes as k1 instead of k1/3 and the same
amount of power is dissipated in fewer scales. The change in spectral scaling
also predicts a resolution requirement in degrees of freedom, dof , for LANS [12],

dofα ∼ α−1Re3/2 , (5)

which has been confirmed in numerical experiments [19]. Resolving dofα al-
lows the identification of LANS−α as a grid-independent SFS model. When
compared with the result for Navier-Stokes,

dofNS ∼ Re9/4 , (6)

we see that LANS−α should improve as a SFS model for larger Re. This is an
encouraging prediction as LANS−α compared well with dynamic eddy viscosity
[39] and dynamic mixed (similarity) eddy viscosity [15] at moderate Re.

We have, however, found that LANS−α develops a problem at large Re: it
develops a positive-exponent power-law bump in its small-scale energy spectrum
and a contamination of superfilter-scale spectral properties [19]. To investigate
the SFS physics responsible for this, we employ a filter 1/3 the size of our 2563

computational cube in a pseudo-spectral calculation [17, 18] with a Taylor-Green
(TG) forcing [44] and Re ≈ 8000. As shown in Fig. 1, the observed scaling law
is k+1. This was shown to be associated with the formation in the flow of
passively swept regions, called rigid bodies [19]. These form as a consequence
of disallowing sub-α-scale fluctuations to interact with each other in the closure
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approximation. A rigid body cannot support longitudinal velocity increments:
δv̄‖(l) ≡ [v̄(x) − v̄(x + l)] · l/l = 0. This predicts a scaling relation, δv̄ ∼ l0,
and, with v ∼ α2k2v̄ for l ≪ α, an energy spectrum of

Eα(k) ∼ v̄vk−1 ∼ k1 (7)

which is compatible with the observed SFS energy spectrum. Inside rigid bodies
there can be no turbulent cascade of energy to smaller scales (no internal degrees
of freedom). From the Kármán-Howarth theorem, we should then expect to be
able to detect rigid bodies by visualizing the cubed velocity increments (which
are proportional to the energy flux). The regions which correspond to negligible
flux are shown as black in the inset of Fig. 1. Filtering these regions out, allows
us to obtain a (convolved) energy spectra for the remaining white portion of
the flow. This spectrum is shown as a dashed line in Fig. 1 and has a negative
spectral slope close to the predicted k−1 energy spectrum. The resulting picture
of the model’s behavior is to produce two spatially separate scalings. The white
portions of the flow possess the predicted LANS−α scaling and are responsible
for the observation of the predicted dofα. The black portions are rigid bodies
whose k1 energy spectrum dominates over k−1 for large k and are responsible for
the observed spectral contamination. Note that suitable spectra can be obtained
with very small α [19] or with modified viscous length scale (LANS−αβ [28]).

2.2 Clark−α, Leray−α, and influence of circulation on rigid

bodies

The formation of rigid bodies in LANS−α limits the reduction of numerical dof
saved compared to Navier-Stokes to a factor of 1/12 regardless of Re [19]. It
is desirable, then, to alter the model in such a way to prevent the formation of
rigid bodies. Truncation of the Reynolds SFS stress tensor, Eq. (4), to the first
term results in the Clark−α model [6],

∂tv + (1−
1

2
α2∇2)(ω̄ × v̄)−

1

2
α2

[

(∇2
ω̄)× v̄ + ω̄ × (∇2v̄)

]

=

−∇P + ν∇2v

∇ · v = ∇ · v̄ = 0 , (8)

and to the first two terms results in the Leray−α model [14, 15],

∂tv + v̄ · ∇v = −∇p+ ν∇2v

∇ · v = ∇ · v̄ = 0 . (9)

Both these models are regularizations and conserve the total energy of the flow.
They do not, however, conserve the helicity nor the small-scale circulation.
Considering the rotational properties of a rigid body (in the absence of viscous
friction), these models’ circulation properties may be incompatible with rigid
body formation. This is, indeed, borne out in the model’s SFS energy spectrum
(Fig. 2a). While LANS−α exhibits a positive-exponent power law in this case
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(a) (b)

Figure 2: (a) Compensated energy spectra (2π/α, vertical dashed line) for
Navier-Stokes (solid black), LANS−α (blue dash-dotted), Clark−α (green
dashed), and Leray−α (red dotted). (b) Normalized structure function scal-
ing exponent ξp/ξ3 versus order p. Clark−α is the best approximation for the
superfilter-scale spectrum, whereas high-order intermittency properties are best
reproduced by LANS−α [21].

(α = 2π/13, Re ≈ 3300, TG forcing), both Clark−α and Leray−α are free
from this signature of rigid body formation. However, LANS−α’s intermittency
properties are more similar to Navier-Stokes than the other two models (Fig.
2b).

3 MHD: circulation and outlook for LES

In MHD, the situation is quite different since small-scale circulation is broken
by the Lorentz force j× b, with j = ∇× b the current, b being the induction.
This force acts as source (sink) of circulation, Γ, as opposed to the insufficient
modeling of Γ in the Leray−α and Clark−αmodels. This can be seen in Kelvin’s
theorem,

d

dt
Γ =

d

dt

∮

C

v · dr =

∮

C

j× b · dr . (10)

This may prevent the formation of rigid bodies even while conserving all the
correct physical properties of the flow.

The LES equations for MHD are given by

∂tv̄ + ω̄ × v̄ = j̄× b̄−∇Π̄ + ν∇2v̄ −∇ · τ̄

∂tb̄ = ∇×
(

v̄ × b̄
)

+ η∇2b̄−∇ · τ̄b , (11)

where η is the magnetic diffusivity, Π = P + |b|2/2 the modified pressure, τ̄ is
the Reynolds SFS stress tensor,

τ̄ij = vivj − v̄iv̄j − (bibj − b̄ib̄j) , (12)

and τ̄b is the electromotive-force SFS stress tensor,

τ̄bij = bivj − b̄iv̄j − (vibj − v̄ib̄j) . (13)
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Note that the extension of eddy viscosity to eddy resistivity employs the usual
form for τ̄ involving only the filtered velocity while the expression for τ̄b similarly
only involves the filtered magnetic field [45]. Meanwhile, Eqs. (12) and (13)
make it explicitly clear that interactions between the two fields at subfilter

scales must be taken into account.
Another problem with extending eddy-viscosity concepts to MHD is that

they can be related to a known power law of the energy spectrum [9]. This is
inappropriate for MHD as neither kinetic nor magnetic energy is a conserved
quantity and the general expression of the energy spectrum is not known at this
time [27, 30, 16, 34, 32]. Additionally, MHD has been shown to have nonlocal
interactions between large and small (superfilter and subfilter) scales [1] (e.g.,
in the Batchelor viscous-inductive regime, ν ≫ η, where energy is transferred
directly from viscous-scale, lν , eddies to small-scale magnetic field, l ≪ lν [3]).
This complex interaction is a challenge in general for MHD-LES, but may be
an advantage for the Lagrangian-averaged approach as energy exchanges with
sub-α scales may disrupt rigid body formation. Some limited case MHD LES
include the cross-helicity model [41] assuming alignment between the fields and
the low magnetic Re LES [29, 42]. However, there are many regimes of MHD
dependent on the ratios between the various conserved quantities and ν/η. As
a result, there is not yet any generally applicable LES for MHD.

3.1 LAMHD−α and absence of rigid bodies

The Lagrangian-averaged MHD α−model (LAMHD−α) [25, 24, 40] is given by,
where the velocity if filtered as before and b̄ = (1− α2∇2)−1b:

∂tv + ω × v̄ = j× b̄−∇π + ν∇2v

∂tb̄ = ∇× (v̄ × b̄) + η∇2b

∇ · v = ∇ · v̄ = ∇ · b = ∇ · b̄ = 0 . (14)

The model preserves the ideal quadratic invariants of MHD (in the H1
α norm) as

well as Alfvén’s theorem for frozen-in field lines. Physically, it supports Alfvén
waves at all scales while slowing and hyper-diffusively damping waves with wave-
lengths, λ, smaller than α [22]. In examinations of its SFS physical properties
LAMHD−α (dashed lines) displays neither positive-exponent power-law scal-
ing nor superfilter-scale spectral contamination (see Fig. 3). Under similar
conditions LANS−α (not shown) displays these signs of rigid body formation.
Further examinations with larger filters and higher Re were unable to unravel
any sign that rigid bodies form for LAMHD−α [22].

3.2 LAMHD−α as a SFS model

Given that LAMHD−α does not display the same limitations as LANS−α, we
test it as a SFS model for large kinetic and magnetic Reynolds numbers, ≈ 3300.
A DNS of MHD is computed at a resolution of 10243. The initial conditions
for v and b are a superposition of ABC modes [13] with random phases and
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(a) (b)

Figure 3: Kinetic (a) and magnetic (b) energy spectra (2π/α vertical dashed
line). The largest scales are affected by differences from the MHD DNS (solid
lines) in initial conditions. LAMHD−α (dashed lines) exhibits neither the pos-
itive power-law nor the superfilter-scale spectral contamination associated with
high Re LANS−α.

wavenumbers k ∈ [1, 4]. No external forcing is applied and the total energy is
allowed to freely decay. LAMHD−α is computed for identical conditions at a
resolution of N3 = 1683 with the same Re and a filter size α = 6∆ = 2π/28.
As a base-level comparison we also compute an under-resolved (or no-model)
solution of the MHD equations at N3 = 1683. Time evolution of the total
energies and enstrophy are shown in Fig. 4. In comparison with under-resolving
MHD, LAMHD−α shows errors of approximately the same magnitude in these
global quantities. Comparisons of energy spectra (Fig. 5), however, show an
improvement in predictive quality for LAMHD−α, especially for the magnetic
energy spectrum. As turbulence develops, energy begins to pile up at small-
scales and deplete at intermediate scales for 1683 MHD. LAMHD−α improves
the prediction of superfilter-scale spectra compared to no SFS model.

Cross-sections of |j|2, shown in Fig. 6 at t = 8.4 indicate that LAMHD-
α finds sharper and better defined, more intermittent current sheets than the
under-resolved run compared to the DNS.

4 Computability and interpretation of H1
α norm

regularizations

It has been reported recently in [7] that Clark-α and LANS-α have poor SFS
model performance and, in fact, have instabilities. This result highlights the
importance of correctly interpreting H1

α norm regularizations. To illustrate this,
we compute 2563 DNS and 643 models runs for their case 3a: decaying Taylor-
Green vortex with ν = 2.5 · 10−3 (time step, dt = 3 · 10−3 for all simulations).
In Fig. 7, we display results for the models employing a filter width α = 2π/16
(results with α = 2π/24 are closer to that of the DNS). Fig. 7a shows the time

8



(a) (b)

Figure 4: Time evolution of total (solid), magnetic (dashed), and kinetic (dot-
ted) energies (a) and total dissipation, ε, (b) for 10243 DNS (black/solid), 1683

LAMHD−α (blue/dash-dotted), and 1683 no-model (red/dotted). LAMHD−α
provides no improvement in prediction of global quantities over an under-
resolved DNS.

(a) (b)

Figure 5: Compensated kinetic (a) and magnetic (b) energy spectra averaged
over t ∈ [8, 8.8]. Line styles are as in Fig. 4. Energy piles up at small scales in
the no-model approach (under-resolved DNS) and LAMHD−α is seen to provide
improved predictions of the superfilter-scale spectra, especially for the magnetic
field.
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Figure 6: Cross sections of square current, j2, at t = 8.4 for no-model 1683 (left),
1683 LAMHD−α (center), and 10243 DNS (right) at full resolution. LAMHD−α
provides a much better capturing of the intermittent current sheets than the
under-resolved solution.

evolution of the total kinetic energy in the super-filter scales,

tke ≡

∫ kα

0

E(α)(k) , (15)

where kα = 2π/α. Incorrectly applying the L2 norm, E = |v|2/2, to Clark−α
and LANS−α leads to the interpretation that they deviate significantly from the
DNS due to slower energy decay. Correctly applying the H1

α norm, Eα = v̄ ·v/2,
shows that the models are, in fact, doing quite well as can be seen in the
plot of the dissipation rate of energy, ε (Fig. 7b). The qualitative properties
of Lagrangian models is that they have the same invariants as the primitive
equations, albeit in a different norm. Since it is these invariants which may very
well influence the dynamics, as for example shown in [10] where Kolmogorov
spectra are present at intermediate times at large scale in ideal (Euler) three-
dimensional fluid flows, one must compare the behavior of one set of invariants
to the other set in the Lagrangian modeling formulation. Similarly, the L2 norm
spectra for Clark−α and LANS−α in Fig. 7c appear under-dissipative at high
wave numbers, while the correctH1

α norm spectra are closer to the DNS. We also
conduct Clark−α and LANS−α computations for case 3b of [7]: ν = 1/3000,
α = 2π/32 and 3843 grid points. We find no signs of instability. The particular
numerical expression of the models we used is given in Eqs. (3) and (8). These
differ from Eqs. (8) and (9) in [7] and it is known that discretized pseudospectral
operators depend on their algorithmic form (e.g., ∇ψ2 6= 2ψ∇ψ [11, 5]). This
is likely the source of their observed instability; however a recently discovered
deficiency in high-order low-storage Runge-Kutta schemes [4] may also impact
numerical implementation of the models. For this reason, our calculations are
made with second-order Runge-Kutta in time.
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(a) (b)

(c) (d)

Figure 7: Case3a, Re ≈ 400: (a) Filtered kinetic energy, tke. Line styles are as
in Fig. 2a for correct norms with the addition of L2 norm energy for Clark−α
(pink dash-triple-dotted) and for LANS−α (cyan long-dashed). (b) Dissipation,
ε = dE/dt, versus time, t. (c) Energy spectra after peak of dissipation, t ∈
[4.5, 5.5]. Case3b, Re ≈ 3000: (d) Dissipation, ε, versus time, t for Clark−α
(green) and for LANS−α (blue).
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5 Summary

Incompressible LANS−α, while it performed well at moderate Reynolds num-
ber is limited as a high Re SFS model. Due to its strong suppression of spec-
trally local interactions at subfilter-scales, and consistent with its conservation
of small-scale circulation, LANS−α develops rigid bodies which contaminate the
superfilter-scale energy spectrum. In contrast, Clark−α and Leray−α, neither of
which conserve small-scale circulation do not develop energy-spectrum contam-
ination from rigid bodies. LANS−α, however, best matches the intermittency
properties of Navier-Stokes fluid turbulence.

In MHD, a mechanism for local small-scale transfer is the interaction of
small-scale Alfvén waves. As LAMHD−α supports Alfvén waves at all scales
while slowing and hyperdiffusively damping those with wavelength λ < α, it
more gently suppresses SFS local interactions than LANS−α. This together
with the greater nonlocality in MHD and the Lorentz-force source of small-scale
circulation, inhibits the formation of rigid bodies in LAMHD−α. For this rea-
son, we find LAMHD−α to be a viable model at high Re in 3D. As LAMHD−α
has been previously found to reproduce the difficult to model properties of MHD
at high Re in 2D [38] and moderate Re in 3D [37], we believe it will prove to
be a generally applicable MHD LES, in many instances in geophysics and as-
trophysics where magnetic fields are known to be important dynamically.
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[17] D. O. Gómez, P. D. Mininni, and P. Dmitruk. MHD simulations and
astrophysical applications. Advances in Space Research, 35:899–907, 2005.
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