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Chaotic background of large-scale climate oscillations

A. Bershadskii
ICAR, P.O.B. 31155, Jerusalem 91000, Israel

It is shown that the periodic alteration of night and day provides a chaotic dissipation mechanism
for the North Atlantic (NAO) and Southern (SOI) climate oscillations. The wavelet regression
detrended daily NAO index for last 60 years and daily SOI for last 20 years as well as an analytical
continuation in the complex time domain were used for this purpose.

PACS numbers: 05.45.Gg, 92.60.Ry, 92.70.Qr

It is now well known that climate is a nonlinear sys-
tem, which can exhibit a chaotic behavior. Therefore, the
climate response to the periodic forcing does not always
have the result that one might expect. Already pioneer-
ing studies of the effect of external periodic forcing on
the first Lorenz model of the chaotic climate revealed
very interesting properties of chaotic response (see, for
instance, [1],[2]). Unlike linear systems, where periodic
forcing leads to periodic response, nonlinear chaotic re-
sponse to periodic forcing can result in exponentially de-

caying broad-band power spectrum [3]-[7]. Thus, the
chaotic response to periodic forcing can provide a dis-

sipation mechanism for the considered system, especially
in the case when the system’s pumping frequency is con-
siderably lower than the frequency of the periodic forcing
under consideration. The climate, where the chaotic be-
havior was discovered for the first time, is still one of the
most challenging areas for the chaotic response theory.
The weather (time scales up to several weeks) chaotic
behavior usually can be directly related to chaotic con-
vection, while appearance of the chaotic properties for
more long-term climate events is a non-trivial and chal-
lenging phenomenon (see for instance, recent Ref. [7] and
references therein).
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FIG. 1: Spectrum of the wavelet regression detrended NAO
data series (the NAO index data were taken from Ref. [9]).
In the semi-logarithmic scales used in the figure the straight
line indicates the exponential decay Eq. (1).

”And in the alteration of night and day,
and the food We send down from the sky, and revives
therewith the earth after its death, and in the turning
about of winds are signs for people of understanding”.
QURAN (45:4-5).

The solar day is a period of time during which the
earth makes one revolution on its axis relative to the
sun. During a part of the day the sun’s direct rays are
blocked (locally) by the earth. Therefore, the periodic
daily variability of solar impact plays crucial role in
high frequency climate behavior. It will be shown in
present paper that just unusual properties of chaotic

response to the daily periodicity of solar forcing provide
an effective mechanism for high frequency dissipation of
the large-scale climate oscillations.

One of the most significant and recurrent patterns of
atmospheric variability over the middle and high lati-
tudes of the Northern Hemisphere is known as NAO -
North Atlantic Oscillation. Climate variability from the
subtropical Atlantic to the Arctic and from Siberia to
the eastern boards of the North America is strongly re-
lated to the NAO (see, for a recent comprehensive review
Ref. [8]). In Ref. [9] a projection of the daily 500mb
height anomalies over the Northern Hemisphere onto the
loading pattern [10] of the NAO was used in order to
construct the daily NAO for last 60 years. Due to the
natural climatic trends the daily NAO index time series
is not a statistically stationary data set. In order to solve
this problem a wavelet regression detrending method was
used in present investigation for the daily NAO time se-
ries [11]. We used a symmlet regression of the data. Most
of the regression methods are linear in responses. At the
nonlinear nonparametric wavelet regression one chooses
a relatively small number of wavelet coefficients to rep-
resent the underlying regression function. A threshold
method is used to keep or kill the wavelet coefficients.
In this case, in particular, the Universal (VisuShrink)
thresholding rule with a soft thresholding function was
used. At the wavelet regression the demands to smooth-
ness of the function being estimated are relaxed consid-
erably in comparison to the traditional methods. Figure
1 shows a spectrum of the wavelet regression detrended
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FIG. 2: As in Fig.1 but for z-component of the Lorenz chaotic
attractor Eq. (2). In the semi-logarithmic scales used in the
figure the straight line indicates the exponential decay.

data [9] calculated using the maximum entropy method
because it provides an optimal spectral resolution even
for small data sets. The spectrum exhibits a broad-band
behavior with exponential decay:

E(f) ∼ e−4πf (1)

A semi-logarithmic plot was used in Fig. 1 in order to
show the exponential decay (at this plot the exponential
decay corresponds to a straight line, for an explanation
see below).
Both stochastic and deterministic processes can result

in the broad-band part of the spectrum, but the decay in
the spectral power is different for the two cases. The ex-
ponential decay indicates that the broad-band spectrum
for these data arises from a deterministic rather than a
stochastic process. For a wide class of deterministic sys-
tems a broad-band spectrum with exponential decay is a
generic feature of their chaotic solutions Refs. [3]-[5]. Let
us consider a relevant example. The Lorenz equations are
given by:

dx

dt
= σ(y − x),

dy

dt
= rx − y − xz,

dz

dt
= xy − bz (2)

The standard values producing a chaotic attractor are:
σ = 10.0, r = 28.0, b = 8/3. Figure 2 shows a power
spectrum for z-component of the Lorenz chaotic attrac-
tor generated by Eq. (2) (the spectrum was again cal-
culated using the maximum entropy method). A semi-
logarithmic plot was used again in Fig. 2 in order to show
exponential decay (at this plot the exponential decay cor-
responds to a straight line). Nature of the exponential
decay of the power spectra of the chaotic systems is still
an unsolved mathematical problem. A progress in so-
lution of this problem has been achieved by the use of
the analytical continuation of the equations in the com-
plex domain (see, for instance, [6]). In this approach
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FIG. 3: The pertaining average maximal Lyapunov exponent
at the pertaining time, calculated for the same data as those
used for calculation of the spectrum (Fig. 1). The dashed
straight line indicates convergence to a positive value.

the exponential decay of chaotic spectrum is related to a
singularity in the plane of complex time, which lies near-
est to the real axis. Distance between this singularity
and the real axis determines the rate of the exponential
decay. For many interesting cases chaotic solutions are
analytic in a finite strip around the real time axis. This
takes place, for instance for attractors bounded in the
real domain (the Lorenz attractor, for instance). In this
case the radius of convergence of the Taylor series is also
bounded (uniformly) at any real time. Let us consider,
for simplicity, solution u(t) with simple poles only, and
to define the Fourier transform as follows

u(ω) = (2π)−1/2

∫ Te/2

−Te/2

dt e−iωtu(t) (3)

Then using the theorem of residues

u(ω) = i(2π)1/2
∑
j

Rj exp(iωxj − |ωyj|) (4)

where Rj are the poles residue and xj + iyj are their lo-
cation in the relevant half plane, one obtains asymptotic
behavior of the spectrum E(ω) = |u(ω)|2 at large ω

E(f) ∼ exp(−4πf ymin) (5)

where ω = 2πf and ymin is the imaginary part of the
location of the pole which lies nearest to the real axis.
If in the considered case ymin = 1d, than we obtain
the exponential decay shown in Fig. 1 (cf Eq. (1)). In
order to understand the reason for ymin = 1d we need
in a nonlinear dynamic climate model where the daily

periodic solar impact results in such position of the pole
nearest to the real axis. But even before constructing
such dynamic model it is already clear that just the
daily periodicity of the solar impact is responsible for
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FIG. 4: Spectrum of the wavelet regression detrended SOI
data series (the SOI data were taken from Ref. [17]). In
the semi-logarithmic scales used in the figure the straight line
indicates the exponential decay Eq. (1).

the chaotic exponential decay shown in Fig. 1.

Additionally to the exponential spectrum, let us check
the chaotic character of the wavelet regression detrended
NAO data set calculating the largest Lyapunov exponent
: λmax. A strong indicator for the presence of chaos in
the examined time series is condition λmax > 0. If this
is the case, then we have so-called exponential instabil-
ity. Namely, two arbitrary close trajectories of the sys-
tem will diverge apart exponentially, that is the hallmark
of chaos. To calculate λmax we used a direct algorithm
developed by Wolf et al [12]. Figure 3 shows the pertain-
ing average maximal Lyapunov exponent at the pertain-
ing time, calculated for the same data as those used for
calculation of the spectrum (Fig. 1). The largest Lya-
punov exponent converges very well to a positive value
λmax ≃ 0.053d−1 > 0.

In Fig. 1 one can readily recognize a peak corre-
sponding to a pumping period approximately equal to
40 days. It should be noted, that the 40-day oscillations
are well known as an intrinsic mode of the Northern
Hemisphere extratropics, which is exited presumably due
to instabilities related to large-scale topography (see, for
instance, Refs. [13]-[15]) In this case the pumping period
(40 d) is considerably larger than the daily solar forcing
period. Thus, the exponential chaotic decay (Fig. 1)
can be considered as a dissipation mechanism for these
oscillations.

Another example of the large-scale climate oscilla-
tions with the chaotic dissipation mechanism can be
recognized in Southern Hemisphere, where one of the
most significant and recurrent patterns of atmospheric
variability between the western and eastern tropical

Pacific is known as Southern Oscillation. The Southern
Oscillation is related to the variability of the Walker
circulation system: a circulation pattern characterized
by sinking air above the eastern Pacific and rising air
above the western Pacific. The Southern Oscillation
is often considered as the atmospheric component of
El Niño phenomenon. The daily Southern Oscilla-
tion Index (SOI) has been calculated based on the
differences in air pressure anomaly between Tahiti
and Darwin, Australia [16] for last 20 years [17].
Figure 4 shows a spectrum of the wavelet regression
detrended data calculated using the maximum entropy
method. A semi-logarithmic plot was used in Fig. 4
in order to show the exponential decay Eq. (1) (cf Fig.1).

I thank to J. Hurrell and to the Department of En-
vironment and Resource Management (Queensland) for
sharing their data.
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