
ar
X

iv
:1

00
3.

14
95

v1
  [

m
at

h-
ph

] 
 7

 M
ar

 2
01

0

On Lagrangian and Hamiltonian systems with

homogeneous trajectories
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Abstract

Motivated by various results on homogeneous geodesics of Riemannian spaces, we study homoge-

neous trajectories, i.e. trajectories which are orbits of a one-parameter symmetry group, of La-

grangian and Hamiltonian systems. We present criteria under which an orbit of a one-parameter

subgroup of a symmetry group G is a solution of the Euler-Lagrange or Hamiltonian equations.

In particular, we generalize the ‘geodesic lemma’ known in Riemannian geometry to Lagrangian

and Hamiltonian systems. We present results on the existence of homogeneous trajectories of

Lagrangian systems. We study Hamiltonian and Lagrangian g.o. spaces, i.e. homogeneous spaces

G/H with G-invariant Lagrangian or Hamiltonian functions on which every solution of the equa-

tions of motion is homogeneous. We show that the Hamiltonian g.o. spaces are related to the

functions that are invariant under the coadjoint action of G. Riemannian g.o. spaces thus corre-

spond to special Ad∗(G)-invariant functions. An Ad∗(G)-invariant function that is related to a g.o.

space also serves as a potential for the mapping called ‘geodesic graph’. As illustration we discuss

the Riemannian g.o. metrics on SU(3)/SU(2).
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1 Introduction

Let M be a Riemannian manifold. A geodesic in M is called homogeneous if it is the
orbit of a one-parameter group of isometries of M . A homogeneous Riemannian manifold
M = G/K, where G is a connected Lie-group and K is a closed subgroup, is a geodesic
orbit (g.o.) space with respect to G, if every geodesic in it is the orbit of a one-parameter
subgroup of G.

The homogeneous space M = G/K is called a reductive space, if there exists a direct
sum decomposition (called reductive decomposition) g = m⊕k of the Lie algebra ofG, where
m is an ad(K)-invariant linear subspace of g and k is the Lie algebra of K. It is known
that all Riemannian homogeneous spaces are reductive. If M = G/K is Riemannian and
there exists a reductive decomposition g = m⊕ k such that each geodesic in M starting at
the origin o ∈ M is an orbit of a one-parameter subgroup of G generated by some element
of m, then M is called a naturally reductive space with respect to G. The origin o is the
image of K by the canonical projection G → G/K.

Obviously, every naturally reductive space is a g.o. space as well. It was believed
some decades ago, that the converse is also true, i.e. every g.o. space is isometric to some
naturally reductive space. A counter example, however, was found by A. Kaplan [1],
initiating the extensive study of g.o. spaces [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Pseudo-
Riemannian g.o. spaces were also investigated [14, 15, 16].

In general, it is possible that a homogeneous Riemannian space M = G/K is not
naturally reductive with respect to G, but one can take larger groups G′ ⊃ G and K ′ ⊃ K
so that M = G′/K ′ and M is naturally reductive with respect to G′. The same situation
can occur for g.o. spaces as well. It is also possible in some cases that a g.o. space can be
made naturally reductive by taking a larger symmetry group G′, but there also exist g.o.
spaces for which this is not possible, i.e. which are in no way naturally reductive. Kaplan’s
example is of the latter type.

Since Riemannian (and pseudo-Riemannian) manifolds can be viewed as a special class
of the manifolds with a Lagrangian or Hamiltonian function, it is interesting to consider
the generalization of the g.o. property to Lagrangian and Hamiltonian homogeneous spaces
and to ask whether the known results for the Riemannian spaces can be generalized, and
whether the techniques of Lagrangian or Hamiltonian dynamics can be used for the study
of Riemannian g.o. spaces. In this paper we present the results that we obtained in relation
to these questions.

A subject closely related to the study of g.o. spaces is the characterization of the homo-
geneous geodesics in Riemannian manifolds. Homogeneous geodesics are of interest also
in Finsler geometry, pseudo-Riemannian geometry and in dynamics, and they appear in
the literature under different names, e.g. “relative equilibria” and “stationary geodesics”,
as well. We refer the reader to [17, 18, 19, 20, 21, 22, 23, 24, 25] and further references
therein. The present paper is also concerned with the characterization of homogeneous
geodesics in the setting of Lagrangian and Hamiltonian dynamics, partly because this is
necessary for the study of g.o. spaces. Since we were motivated mainly by Riemannian
geometry, we use the name geodesic for the solutions of the Lagrangian or Hamiltonian
equations. As we have already done above, we also refer to a manifold with a Lagrangian
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or Hamiltonian function as a Lagrangian or Hamiltonian space.
The paper is organized as follows. In section 2 we discuss the case of Lagrangian spaces.

We describe criteria for an orbit of a one-parameter subgroup to be a geodesic, including
the Lagrangian version of the ‘geodesic lemma’. We also present results concerning the
existence of homogeneous geodesics.

In section 3 we discuss the case of Hamiltonian spaces. We describe criteria for an
orbit of a one-parameter subgroup to be a geodesic, including the Hamiltonian version of
the geodesic lemma. Then we turn to the characterization of Hamiltonian g.o. spaces. In
particular, we show that the Hamiltonian g.o. spaces are closely related to the functions
which are invariant under the coadjoint action of G. Riemannian g.o. spaces correspond,
of course, to special Ad∗(G)-invariant functions. An Ad∗(G)-invariant function that is
related to a g.o. space also serves as a potential for the mapping called geodesic graph,
which has proven to be useful for the description of Riemannian g.o. spaces. We describe
a criterion based on the relation between g.o. spaces and Ad∗(G)-invariant functions that
can be used to find g.o. Hamiltonians or metrics. We also describe a generalization of the
notion of Hamiltonian g.o. space.

In section 4 we discuss the two-parameter family of Riemannian g.o. metrics on
SU(3)/SU(2) for the illustration of the results of section 3. We calculate the geodesic
graph in a new way, utilizing the relation between g.o. spaces and Ad∗(G)-invariant func-
tions.

2 Lagrangian spaces with homogeneous geodesics

Let M be a connected manifold with a Lagrangian function L : TM → R on it. The
solutions γ : I → M , where I is an interval, of the corresponding Euler-Lagrange equations
will be called geodesics. A Lagrangian function is regular if the solution of the Euler-
Lagrange equations is unique for given initial data (x, v) ∈ TM .

In the following we assume that L is invariant under the action of a connected Lie
group G on M . We use the Einstein summation convention. We denote the Lie derivative
with respect to a vector field Z as LE. We use the notation ◦ for the composition of
two functions, i.e. if f and g are two functions, then f ◦ g is the function for which
(f ◦ g)(x) = f(g(x)).

In the derivation of the results of this section the Euler-Lagrange equation, an equation
expressing the invariance of L and equations characterizing the velocity and acceleration
of orbits have important role.

Euler-Lagrange equation
The Euler-Lagrange equation for a curve γ : I → M , where I is an interval, is

∂L

∂xi
(γ(t), γ̇(t)) =

d

dt

(

∂L

∂vi
(γ, γ̇)

)

(t) ∀t ∈ I, (1)

or, expanding the right hand side,

∂L

∂xi
(γ(t), γ̇(t)) =

∂2L

∂xi∂vj
(γ(t), γ̇(t))γ̇j(t) +

∂2L

∂vi∂vj
(γ(t), γ̇(t))γ̈j(t). (2)
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Symmetry condition for L
Let Za : M → TM and Ẑa : TM → TTM , where a ∈ g, be the infinitesimal generator
vector fields for the action of G on M and TM , respectively. Their coordinate form is

Za(x) =
∂φa

i

∂τ
(0, x)

∂

∂xi
, x ∈ M (3)

and

Ẑa(x, v) =
∂φa

i

∂τ
(0, x)

∂

∂xi
+

∂2φa
i

∂τ∂xj
(0, x)vj

∂

∂vi
, (x, v) ∈ TM, (4)

where φa : R ×M → M is the action of the one-parameter subgroup generated by a ∈ g

and τ denotes the first variable of φa.
The invariance of L under the action of G implies the following symmetry condition:

L
Ẑa
L(x, v) =

∂L

∂xi
(x, v)

∂φa
i

∂τ
(0, x) +

∂L

∂vi
(x, v)

∂2φa
i

∂τ∂xj
(0, x)vj = 0, (5)

where a ∈ g. This equation holds for all (x, v) ∈ TM .

Velocity and acceleration of an orbit
The orbit of the one-parameter subgroup generated by a ∈ g in M with initial point x is
the curve γ : I → M, t 7→ φa(t, x). For the velocity

γ̇(t) =
∂φa

∂τ
(t, x) (6)

of this orbit the equation

γ̇i(t) =
∂φa

i

∂xj
(t, x)γ̇j(0) =

∂φa
i

∂xj
(t, x)

∂φa
j

∂τ
(0, x) (7)

holds because of the group property. For the acceleration we have

γ̈i(t) =
∂2φa

i

∂τ∂xj
(t, x)

∂φa
j

∂τ
(0, x) =

∂2φa
i

∂τ2
(t, x). (8)

Theorem 2.1 The orbit of a one-parameter subgroup of G starting at x ∈ M is a geodesic
of the (not necessarily regular) Lagrangian L if and only if x is a critical point of the
function L ◦ Za, i.e.

d(L ◦ Za)(x) = 0, (9)

where Za is the generator vector field of the subgroup.
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Proof. Because of the invariance of the Lagrangian an orbit of a one-parameter symmetry
group is a geodesic if and only if it satisfies the Euler-Lagrange equations at the initial
point. First, let us assume that the orbit is a geodesic. Differentiating the symmetry
condition (5) with respect to vj yields

0 =
∂

∂vj
L
Ẑa
L(x, v) =

∂2L

∂xi∂vj
(x, v)

∂φa
i

∂τ
(0, x)

+
∂2L

∂vi∂vj
(x, v)

∂2φa
i

∂τ∂xk
(0, x)vk +

∂L

∂vi
(x, v)

∂2φa
i

∂τ∂xj
(0, x). (10)

Substituting the right hand side of (8) for γ̈ in the Euler-Lagrange equation (2) at t = 0
gives

∂L

∂xj
(x, v) =

∂2L

∂xi∂vj
(x, v)

∂φa
i

∂τ
(0, x) +

∂2L

∂vi∂vj
(x, v)

∂2φa
i

∂τ∂xj
(0, x)

∂φa
j

∂τ
(0, x), (11)

where v = γ̇(0). Setting v = γ̇(0) also in (10) and subtracting from (11) gives

∂L

∂xj
(x, v) +

∂L

∂vi
(x, v)

∂2φa
i

∂τ∂xj
(0, x) = 0, (12)

where v = γ̇(0), which is just the coordinate form of (9). Considering the reverse direction
of the statement, it is clear now that if (12) and (10) hold, then (11) follows. 2

A similar theorem is stated in [22] (see also [21]). However, our proof is different from
those given in [22] and [21].

Definition 2.2 An element a of g is called a geodesic vector at x ∈ M if the orbit of the
one-parameter subgroup of G generated by a and starting at x is a geodesic.

In Riemannian geometry the interesting geodesic vectors are, of course, those which
generate orbits that are not single points in M .

The set of geodesic vectors at x is invariant under Gx, the stabilizer of x. If gx = y
for some x, y ∈ M and g ∈ G, then the set of geodesic vectors at y can be obtained from
that at x by the action of g.

As regards the existence of geodesic vectors, the following corollary of theorem 2.1 can
be stated.

Theorem 2.3 Let M , G, L be as in the theorem 2.1 and let M be compact. For any
a ∈ g there exists at least one geodesic of L in M , which is the orbit of the one-parameter
subgroup generated by a. If there exists an a ∈ g such that Za(x) 6= 0 ∀x ∈ M , then there
exists at least one geodesic of L in M , which is the orbit of the one-parameter subgroup
generated by a and is not a single point in M . If, in addition, M is also homogeneous
with respect to the action of G, then there exists at least one nonzero geodesic vector at
every point in M , which generates an orbit that is not a single point.

5



In the rest of this section we consider the case when M is a homogeneous space. For
a homogeneous space M = G/K there is a linear map fx : g → TxM, a 7→ Za(x) for
each point x ∈ M . We use the notation f for fo (i.e. we omit the subscript o denoting the
origin in G/K).

The dual of a vector space V will be denoted by V ∗. The contraction (or natural
pairing) between V and V ∗ will be denoted in the following way: (w|v), where w ∈ V ∗

and v ∈ V . The transpose of a linear map A : V → W will be denoted by A∗ (it is defined
as A∗ : W ∗ → V ∗, w 7→ w ◦ A).

The following lemma, which concerns homogeneous manifolds with invariant Lagrang-
ians and is the generalization of the known ’geodesic lemma’ for the Riemannian case [2]
(see also for example [18, 3, 4]), gives a condition for an element of g to be a geodesic
vector at o. This is a local condition in the sense that it is given in terms of L restricted
to ToM , the elements of g, and the values of the infinitesimal generator vector fields at o.
In Riemannian geometry the geodesic lemma has proven to be very useful in the study of
homogeneous geodesics.

Lemma 2.4 (Geodesic lemma) Let M = G/K be a homogeneous space with a G-
invariant Lagrangian L : TM → R. An element a ∈ g is a geodesic vector at o if and only
if

( dLo(f(a)) | f([a, b]) ) = 0 ∀b ∈ g, (13)

where Lo is L restricted to ToM . In particular, if L corresponds to a Riemannian metric,
then (13) takes the form

〈f([a, b]) , f(a)〉 = 0 ∀b ∈ g, (14)

or, equivalently,
〈[a, b]m , am〉 = 0 ∀b ∈ g, (15)

where the index m denotes the m-component related to a reductive decomposition g = k⊕m,
and m is assumed to be identified with ToM by f .

Proof. Let us assume first, that a is a geodesic vector. (9) in theorem 2.1 is equivalent to
LZb

(L ◦ Za)(o) = 0 ∀b ∈ g. In coordinate form

LZb
(L ◦ Za)(o) =

∂φb
i

∂τ
(0, o)

∂L

∂xi
(o,

∂φa

∂τ
(0, o))

+
∂φb

i

∂τ
(0, o)

∂L

∂vj
(o,

∂φa

∂τ
(0, o))

∂2φa
j

∂τ∂xi
(0, o) = 0. (16)

Taking the symmetry condition (5) at the point (o, ∂φ
a

∂τ
(0, o)) we get

L
Ẑb

L(o,
∂φa

∂τ
(0, o)) =

∂φb
i

∂τ
(0, o)

∂L

∂xi
(o,

∂φa

∂τ
(0, o))

+
∂L

∂vi
(o,

∂φa

∂τ
(0, o))

∂2φb
i

∂τ∂xj
(0, o)

∂φa
j

∂τ
(0, o) = 0. (17)
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Subtracting these two equations gives

∂L

∂vj
(o,

∂φa

∂τ
(0, o))

[

∂φb
i

∂τ
(0, o)

∂2φa
j

∂τ∂xi
(0, o) − ∂φa

i

∂τ
(0, o)

∂2φb
j

∂τ∂xi
(0, o)

]

= 0, (18)

which is the coordinate expression for (13). Conversely, assuming that (18) holds and
using (17) one obtains (16). The second part of the lemma concerning the Riemannian
case follows obviously from the first part. 2

The formula (15) for Riemannian spaces is well known and is also a generalization of
Arnold’s result about homogeneous geodesics of left-invariant metrics on Lie-groups [24].

Let r : R → g be the adjoint orbit starting at a and generated by b. f([a, b]) is the
tangent vector of the curve f ◦r at the point f(a). Equation (13) means that the derivative
of Lo at f(a) along this tangent vector is 0.

The following theorems 2.5 and 2.6 are about the existence of homogeneous geodesics.

Theorem 2.5 Let M = G/K be a homogeneous space with a G-invariant Lagrangian
L : TM → R. If G is compact, then each adjoint orbit of G contains at least one geodesic
vector at o, and each adjoint orbit of G that is not contained entirely by k contains at least
one geodesic vector at o which generates an orbit that is not a single point.

Proof. Any adjoint orbit O of G is compact. f(O) is also compact and Lo is continuous
on it, thus there exists at least one ṽ ∈ f(O) so that Lo|f(O) is minimal or maximal at
ṽ. Because of this extremality the derivative of Lo is zero at ṽ along any curve that lies
in f(O) and passes through ṽ. It is clear from the remark after the proof of the geodesic
lemma that any element of f−1(ṽ) ∩O is a geodesic vector at o.

If an adjoint orbit O is not contained entirely by k, then f(O) 6= {0}, thus there exists
at least one ṽ ∈ f(O) so that ṽ 6= 0 and Lo|f(O) is minimal or maximal at ṽ. Any element
of f−1(ṽ) ∩ O is a geodesic vector at o that generates an orbit that is not a single point.
2

Theorem 2.6 Let M = G/K be a homogeneous space with a G-invariant Lagrangian
L : TM → R. If G is solvable and the image space of dLo|ToM\{0} contains vectors of
arbitrary direction, than there exists at least one geodesic vector at o, which generates an
orbit that is not a single point.

Proof. Consider the derived series of g, i.e. the sequence

g(0) ⊃ g(1) ⊃ · · · ⊃ g(i) ⊃ . . . ,

where g(0) = g and g(i) = [g(i−1), g(i−1)] for i = 1, 2, . . . . Because of the solvability of G,
the derived series strictly decreases and ends in the null space. Consequently, there exists
an index r ≥ 0 such that f(g(r)) = ToM , but f(g(r+1)) is a proper subspace of ToM . The
connected subgroup G(r) corresponding to g(r) still acts transitively on M , therefore it is
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necessary and sufficient for a vector to be geodesic that (13) hold for all b ∈ g(r). The
condition imposed on dLo in the proposition ensures that there exists an ṽ ∈ ToM \ {0}
such that ( dL0(ṽ) | f([g(r), g(r)]) ) = 0, implying that any element of f−1(ṽ) ∩ g(r) is a
geodesic vector. 2

This theorem is similar to some parts of proposition 3 of [18]. It is clear from the proof
that the solvability of G is not necessary, it can be replaced by the weaker condition that
there exists an element g(r+1) of the derived series of g such that f(g(r+1)) is a proper
subspace of ToM .

The condition of regularity has not been imposed on the Lagrangians so far. It is
assumed, however, in the following two propositions 2.8 and 2.10, which characterize La-
grangian g.o. spaces.

Definition 2.7 Let M = G/K a homogeneous space and L : M → R a G-invariant
Lagrangian function. M is a called a Lagrangian geodesic orbit (g.o.) space with respect
to G, if every geodesic in it is an orbit of a one-parameter subgroup of G.

Proposition 2.8 Let M = G/K and L be as in definition 2.7, and assume that L is
regular. Then (M,L) is a g.o. space with respect to G if and only if for all v ∈ ToM there
exists an a ∈ g such that f(a) = v and a is a geodesic vector.

Definition 2.9 Let M = G/K be a Lagrangian g.o. space with respect to G. A mapping
ξ : ToM → g with the properties that f(ξ(v)) = v and ξ(v) is a geodesic vector at o for
all v ∈ ToM is called a geodesic graph. Obviously, there exists at least one geodesic graph
for every g.o. space. f(ξ(v)) = v means that the velocity of the orbit generated by ξ(v) is
v at o.

In Riemannian geometry the geodesic graph is very useful for studying g.o. spaces.
Important results about its properties were obtained in [4, 19]. We note that there is a
minor difference between our definition and the usual definition; in the usual definition
one has a direct sum decomposition g = m⊕ k, and one takes the k-component of ξ(v) as
the value of the geodesic graph at v.

The following consequence of proposition 2.8 and of the geodesic lemma, in particular
of (13), applying to the special case M = G, is well known [25].

Theorem 2.10 If M = G, i.e. L is a regular left-invariant Lagrangian on G, then M is a
g.o. space with respect to G if and only if Le = L|TeG (where e is the unit element of G) is
invariant under the adjoint action of G. Any function on TeG can be extended uniquely to
a left-invariant function on G, therefore the Lagrangians on G that have the g.o. property
with respect to G are in one-to-one correspondence with the regular Ad-invariant functions
on g.

We note that in the case M = G the equation (13) expresses the Ad(G)-invariance of Le.
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In the next section we turn to the Hamiltonian formalism, which is better suited to
the characterization of g.o. spaces than the Lagrangian formalism.

3 Hamiltonian spaces with homogeneous geodesics

Let M be a manifold with a Hamiltonian function H : T ∗M → R. The solutions
γ ≡ (x, p) : I → T ∗M , where I is an interval, of the Hamiltonian equations will be
called geodesics. In the following we assume that H is invariant under the action of a
connected Lie-group G on M .

Hamiltonian equations
The Hamiltonian equations for a curve γ : I → T ∗M are the following:

XH(γ(t)) = γ̇(t) ∀t ∈ I, (19)

or equivalently

∂H

∂pi
(x, p) = ẋi (20)

−∂H

∂xi
(x, p) = ṗi, (21)

where the Hamiltonian flow (vector field) generated by the function H on the symplectic
manifold T ∗M is denoted by XH .

Let Ẑ∗
a : T ∗M → TT ∗M , a ∈ g, be the infinitesimal generator vector fields for the

action of G on T ∗M . Their coordinate form is

Ẑ∗
a(x, p) =

∂φa
i

∂τ
(0, x)

∂

∂xi
−

∂2φa
j

∂τ∂xi
(0, x)pj

∂

∂pi
, (22)

where φa is the same object as in section 2.

Symmetry condition for H
The invariance of H implies the following symmetry condition:

L
Ẑ∗

b

H(x, p) =
∂H

∂xi
(x, p)

∂φb
i

∂τ
(0, x) − ∂H

∂pi
(x, p)

∂2φb
j

∂τ∂xi
(0, x)pj = 0, (23)

where b ∈ g. This equation holds for all (x, p) ∈ T ∗M .

We recall that the momentum map for the action of G on T ∗M is P : T ∗M →
g∗, (x, p) 7→ f∗

x(p), where fx is the linear mapping introduced in section 2 after theorem
2.3. Clearly P is linear on each cotangent space T ∗

xM , x ∈ M , and it is also equivariant.
P restricted to the cotangent space T ∗

xM at x ∈ M is the transpose of fx. P has the
property that

X(P |a) = Ẑ∗
a ∀a ∈ g, (24)

9



where XF denotes the Hamiltonian flow generated by a function F : T ∗M → R and (P |a)
denotes the function (x, p) 7→ (f∗

x(p)|a). This property implies [X(P |a),X(P |b)] = X(P |[a,b]),
where [, ] on the left hand side denotes the Lie bracket of vector fields. The functions
(P |a), a ∈ g, are conserved quantities, i.e. the function P (and thus (P |a), for all a ∈ g)
is constant along the geodesics of H.

Definition 3.1 An element a of g is called a geodesic vector at (x, p) ∈ T ∗M if the orbit
of the corresponding one-parameter subgroup starting at (x, p) is a geodesic.

Since the momentum map is constant along geodesics, if a ∈ g is a geodesic vector at
(x, p) ∈ T ∗M , then a is an element of the stabilizer subgroup of P (x, p) with respect to
the coadjoint action of G.

Lemma 3.2 Let H : T ∗M → R be a Hamiltonian function that is invariant under the
action of a connected Lie group G. a ∈ g is a geodesic vector at (x, p) ∈ T ∗M if and only
if

XH(x, p) = Ẑ∗
a(x, p), (25)

or, equivalently,
d(H − (P |a))(x, p) = 0, (26)

where P is the momentum mapping for the action of G on T ∗M .

The proof of this lemma can be found in [25] (proposition 4.3.7.), for instance.
The following version of the geodesic lemma can be stated for Hamiltonian homoge-

neous spaces.

Lemma 3.3 (Geodesic lemma) Let M = G/K be a homogeneous space and H :
T ∗M → R a G-invariant Hamiltonian function. An element a ∈ g is a geodesic vec-
tor at (o, p), where o denotes the origin, if and only if

dHo(p) = f(a) (27)

and
( f∗(p) | [a, b] ) = 0 ∀b ∈ g (28)

hold, where Ho is H restricted to T ∗
oM . (28) is equivalent to the condition that the one-

parameter subgroup generated by a is contained by the stabilizer subgroup of f∗(p) ∈ g∗

with respect to the coadjoint action of G.

Proof. Assume first that a is a geodesic vector. (27) is just the first of the two Hamiltonian
equations at the initial point and in coordinate form it reads as follows:

∂φi

∂τ
(x, 0) =

∂H

∂pi
(x, p). (29)

10



The second Hamiltonian equation at the initial point is

∂2φj

∂τ∂xi
(0, x)pj = −∂H

∂xi
(x, p). (30)

Substituting the left hand sides of (29) and (30) for the right hand sides of (29) and (30)
in (23) gives

pj

[

∂φa
i

∂τ
(0, x)

∂2φb
j

∂τ∂xi
(0, x) − ∂φb

i

∂τ
(0, x)

∂2φa
j

∂τ∂xi
(0, x)

]

= 0 ∀b ∈ g, (31)

which is just the coordinate form of the equation

( p | [Za, Zb](o) ) = 0 ∀b ∈ g. (32)

This is equivalent to (28), because [Za, Zb](o) = f([a, b]) and (p | f([a, b])) = (f∗(p) | [a, b]).
Considering the reverse direction, it is clear that (30) can be obtained from (31), (29) and
(23). 2

Those points of T ∗M where there exists a geodesic vector are called relative equilibria
of the Hamiltonian function. If (x, p) is a relative equilibrium and µ = P (x, p) is a regular
value of P , then (x, p) is a critical point of the reduced Hamiltonian Hµ (see [25], section
4.3).

Definition 3.4 Let M = G/K a homogeneous space and H : T ∗M → R a G-invariant
Hamiltonian function. M is a called a geodesic orbit (g.o.) space with respect to G, if
every geodesic in it is an orbit of a one-parameter subgroup of G.

If M is a g.o. space, then every point of T ∗M is a relative equilibrium, and thus the
reduced Hamiltonian Hµ is constant on the connected components of the reduced phase
spaces (the definition of the reduced phase space can be found e.g. in [25], section 4.3).

In the following propositions 3.5 and 3.6 elementary conditions are given under which
a Hamiltonian homogeneous space has the g.o. property. They are direct consequences of
lemma 3.2 and lemma 3.3.

Proposition 3.5 Let M = G/K be a homogeneous space and H : T ∗M → R a G-
invariant Hamiltonian function. This space has the g.o. property with respect to G if and
only if

dH(o, p) ∈ {d(P |b)(o, p) : b ∈ g} ∀(o, p) ∈ T ∗
oM (33)

or, equivalently,

XH(o, p) ∈ {Ẑ∗
b (o, p) : b ∈ g} ∀(o, p) ∈ T ∗

oM. (34)
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Proposition 3.6 Let M and H be the same as in the previous proposition. M is a g.o.
space with respect to G if and only if for all p ∈ T ∗

oM there exists an a ∈ g such that

dHo(p) = f(a) (35)

and
( f∗(p) | [a, b] ) = 0 ∀b ∈ g (36)

hold.

Definition 3.7 Let M = G/K be a Hamiltonian g.o. space with respect to G. A mapping
ξ : T ∗

oM → g with the property that ξ(p) is a geodesic vector at (o, p) for all p ∈ T ∗
oM

is called a geodesic graph. Obviously, there exists at least one geodesic graph for every
Hamiltonian g.o. space.

The following last part of the section we describe the relation between g.o. spaces
and Ad∗(G)-invariant functions, and we describe how an Ad∗(G)-invariant function that
corresponds to a g.o. space can be used to obtain a geodesic graph. We also describe a
criterion that can be used to find g.o. Hamiltonians or metrics. Finally, we discuss briefly
a generalization of the notion of Hamiltonian g.o. space.

Lemma 3.8 Let M = G/K be a homogeneous space and H : T ∗M → R a G-invariant
Hamiltonian function that has the g.o. property with respect to G. If P is constant along
a smooth curve γ : I → T ∗M , then H is also constant along this curve.

Proof. The derivative d(H◦γ)
dt

of H along γ at t ∈ I equals (dH(γ(t))|γ̇(t)). It is sufficient
to show that this number is zero for any t ∈ I. Let t be a fixed element of I. It follows
from proposition 3.5. that (dH(γ(t))|γ̇(t)) = (d(P |b)(γ(t))|γ̇(t)) for some b ∈ g. Since P
is constant along γ, the derivative of P along γ is zero, therefore the derivative of (P |b) is
also zero, thus (d(P |b)(γ(t))|γ̇(t)) = 0. 2

The following theorem is a direct consequence of lemma 3.8.

Theorem 3.9 Let M = G/K be a homogeneous space and H : T ∗M → R a G-invariant
Hamiltonian function that has the g.o. property with respect to G. If the connected compo-
nents of the level sets of the momentum mapping P have the property that any two point
in them can be connected by a piecewise smooth curve, then H is constant on the connected
components of the level sets of P . If, in addition, H takes the same value on all connected
components of any level set of P , then H takes the form

H = h ◦ P, (37)

where h : g∗ → R is an Ad∗(G)-invariant function.

P is an analytic function, therefore its rank is maximal on an open dense subset N
of T ∗M , which is G-invariant. It follows that in N the level sets of P are submanifolds,
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therefore the condition of theorem 3.9 is satisfied and thus H is constant on the connected
components of the level sets of P |N . This can also be inferred from the fact, noted after
definition 3.4, that for a g.o. space the reduced Hamiltonian is constant on the connected
components of the reduced phase spaces. It is also obvious that the function h that
appears in (37) is almost the same as the reduced Hamiltonian, i.e. the constant value of
the reduced Hamiltonian Hµ at a fixed value of µ is equal to h(µ).

The formula H = h ◦ P always holds locally in N ; if (o, p) is in N , then there exists
an open neighborhood O of (o, p) in N so that in this neighbourhood H takes the form
H = h ◦ P , where h is a (locally) Ad∗(G)-invariant smooth function on P (O). Further-
more, it follows from the proof of theorem 3.11, that ξ : p′ 7→ dh(P (o, p′)) is a smooth
(locally) K-equivariant geodesic graph in an open neighbourhood of p in T ∗

oM .

The following theorem is a converse of theorem 3.9.

Theorem 3.11 Let h : g∗ → R be an Ad∗(G)-invariant function with the properties that
h ◦ f∗ is smooth and h is differentiable at the points of the image space of f∗ (which is
f∗(T ∗

oM)). The Hamiltonian function defined as

H = h ◦ P (38)

is G-invariant and has the g.o. property. The vector

dh(P (o, p)) =
∂h

∂gn
(P (o, p))dgn, (39)

where the gn are some linear coordinates on g∗, is a geodesic vector at (o, p) ∈ T ∗M , thus
the mapping

ξ = dh ◦ f∗ : T ∗
oM → g, p 7→ dh(P (o, p)) ≡ (dh ◦ f∗)(p) (40)

is a K-equivariant geodesic graph.

Proof. We note that P (o, p) = f∗(p), by definition. H is obviously G-invariant. The
property that h ◦ f∗ is smooth implies the smoothness of H. We have

dH =
∂h

∂gn

∂Pn

∂xj
dxj +

∂h

∂gn

∂Pn

∂pj
dpj, (41)

where Pn are the components of P with respect to the coordinates gn. This shows that
at (o, p) ∈ T ∗M the vector b ∈ g that has the components ∂h

∂gn
(P (o, p)) has the property

that dH(o, p) = d(P |b)(o, p), thus the condition of proposition 3.5 is fulfilled. Clearly
∂h
∂gn

(P (o, p)) are just the components of dh(P (o, p)) with respect to the coordinates gn. 2

It is also clear from the proof of theorem 3.11 that

Proposition 3.12 If h : g∗ → R is an Ad∗(G)-invariant function, H = h ◦P is a smooth
Hamiltonian function and h is differentiable at P (o, p) for some p ∈ T ∗

oM , then dh(P (o, p))
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is a geodesic vector at (o, p).

The condition imposed on h in theorem 3.11 could probably be weakened, in particular
we do not expect that the differentiability of h in every point of f∗(T ∗

oM) is necessary for
h ◦ P to be a g.o. Hamiltonian.

The following propositions 3.13 and 3.14 are about Riemannian g.o. spaces.

Proposition 3.13 If h is a smooth Ad∗(G)-invariant function on g∗ and h◦f∗ is a homo-
geneous positive definite quadratic polynomial, then h defines a naturally reductive space.

Proof. h gives rise to a Riemannian metric, since h ◦ f∗ is a homogeneous positive definite
quadratic polynomial. If h is a smooth function on g∗, then the geodesic graph (40) is
K-equivariant and is also smooth, however, according to the results of [19] (reformulated
in the introduction of [4]), any K-equivariant geodesic graph of a not naturally reductive
Riemannian g.o. space is not differentiable at p = 0. 2

Proposition 3.14 If h is a quadratic Ad∗(G)-invariant polynomial on g∗ and the polyno-
mial h◦f∗ is homogeneous, quadratic and nondegenerate, then h gives rise to a Riemannian
or pseudo-Riemannian metric on M = G/K. On T ∗

oM the quadratic polynomial that cor-
responds to the metric is h ◦ f∗. The geodesic graph ξ : p 7→ dh(P (o, p)) is linear in this
case. If h ◦ f∗ is positive definite, then the metric is Riemannian, and the linearity of the
geodesic graph obviously implies that it is naturally reductive.

It seems plausible to conjecture that the naturally reductive metrics are those which
can be obtained from h functions that are quadratic polynomials.

In section 4 we discuss an example where h is a complicated function, nevertheless
h ◦ f∗ is a homogeneous quadratic polynomial and it is also positive definite, thus h still
gives rise to a Riemannian metric on G/K. This metric has the g.o. property, but the
geodesic graph is not linear and is not differentiable at p = 0, and the metric is not
naturally reductive with respect to G, in accordance with the results of [19] (see also the
introduction of [4]) mentioned in the proof of proposition 3.13.

As the example shows, in the Riemannian case the function h is not necessarily simple
even though H|ToM ≡ Ho = h ◦ f∗, and thus also h|m∗ , where m∗ is defined as m∗ =
f∗(T ∗

oM), is a quadratic polynomial. However, h|m∗ is sufficient for determining Ho (since
Ho = h|m∗ ◦ f∗), and thus H. Therefore in order to specify a Riemannian g.o. space it is
sufficient to specify the polynomial h|m∗ , for which we introduce the notation ho = h|m∗ .
The g.o. property implies that there is an open dense subset No of m∗ such that at any
point b ∈ No the derivative of ho has to be zero in any direction ad∗a(b), where a ∈ g is
such that ad∗a(b) ∈ m∗. That is to say, at any point b ∈ No the equation

(dho(b) | ad∗a(b)) = 0 (42)

has to hold for all a ∈ g for which ad∗a(b) ∈ m∗. This equation can be used in practice for
finding suitable ho functions, i.e. for finding g.o. metrics or g.o. Hamiltonians, or to test
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whether a given metric or Hamiltonian function has the g.o. property. In terms of Ho, ho
is given as ho = Ho ◦ (f∗)−1, of course.

The Ad∗(K)-invariance of ho is necessary and sufficient for the G-invariance of the
Hamiltonian function defined by ho. If a ∈ k and b ∈ No, then ad∗a(b) ∈ m∗, thus (42) has
to be satisfied. However, if ho is Ad

∗(K)-invariant, then (42) obviously holds if a ∈ k. The
condition (42) is therefore interesting mainly for those elements a of g which are not in k.

The construction of g.o. Hamiltonian functions as H = h ◦P can be generalized in the
following way.

Theorem 3.15 Let M be a manifold and P a mapping T ∗M → g∗, where g is a Lie
algebra of a Lie group G, with the property [X(P |a),X(P |b)] = X(P |[a,b]) for all a, b ∈ g.
Let h be a smooth Ad∗(G)-invariant function. The Hamiltonian function H = h ◦ P is
G-invariant with respect to G in the sense that H is constant along the integral curves of
X(P |a) for all a ∈ g. Any integral curve of XH coincides with an integral curve of X(P |a)
for some a ∈ g. In particular, the integral curve of XH starting at the point (x, p) ∈ T ∗M
coincides with the integral curve of X(P |a), where a = dh(P (x, p)), starting at (x, p).

In a more general form of the theorem the condition that h should be smooth could
be relaxed. Certain notable dynamical systems, for example the system of two pointlike
bodies which interact by the Newtonian gravitational force (the Kepler problem) and the
harmonic oscillator, admit a formulation in this framework with noncommutative groups
G. Completely integrable systems can also be formulated in the framework of theorem
3.15 with commutative symmetry groups.

4 Example

In this section we discuss the example when G = SU(3) andK = SU(2) in order to give an
illustration to the second part of section 3. This case was studied in [2], where the authors
described a two-parameter family of invariant Riemannian g.o. metrics on SU(3)/SU(2),
of which only a one-parameter subfamily is naturally reductive with respect to SU(3).
Further results, in particular concerning the geodesic graph, were obtained in [4]. We note
that these metrics belong to the type of g.o. metrics which are naturally reductive with
respect to a suitable larger symmetry group [4].

The Lie algebras of SU(3) and SU(2) are the following:

su(3) = g = k⊕m

su(2) = k = span(A,B,C)
m = span(E1, E2, E3, E4, Z)
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[A,B] = 2C [A,Z] = 0 [A,E1] = −E2 [B,E1] = E3 [C,E1] = E4

[B,C] = 2A [B,Z] = 0 [A,E2] = E1 [B,E2] = E4 [C,E2] = −E3

[C,A] = 2B [C,Z] = 0 [A,E3] = E4 [B,E3] = −E1 [C,E3] = E2

[A,E4] = −E3 [B,E4] = −E2 [C,E4] = −E1

[Z,E1] = E2 [E1, E2] = Z − 1
3A [E2, E4] =

1
3B

[Z,E2] = −E1 [E1, E3] =
1
3B [E3, E4] = Z + 1

3A
[Z,E3] = E4 [E1, E4] =

1
3C

[Z,E4] = −E3 [E2, E3] = −1
3C.

There exists one (up to multiplication by a constant) quadratic homogeneous invariant
polynomial on su(3):

Y1 = a′2 + b′2 + c′2 + e21 + e22 + e23 + e24 + z2, (43)

where a′, b′, c′, e1, e2, e3, e4, z denote the coordinates corresponding to the basis vectors
A′ = A√

3
, B′ = B√

3
, C ′ = C√

3
, E1, E2, E3, E4, Z of su(3). Y1 defines a positive definite

Ad-invariant quadratic form on su(3), allowing the identification of su(3) and su(3)∗

and implying the equivalence of the coadjoint and adjoint actions of SU(3). The basis
A′, B′, C ′, E1, E2, E3, E4, Z is orthonormal with respect to the quadratic form defined by
Y1. We use the same notation for the corresponding orthonormal basis in su(3)∗. Y1 can
now be taken as an invariant polynomial on su(3)∗ as well. f can be used to identify
ToM with m, and then the momentum mapping restricted to T ∗

oM , i.e. f∗, is the trivial
embedding m → m⊕ k. The polynomial Y1 composed with f∗ thus takes the form

y1 = Y1 ◦ f∗ = e21 + e22 + e23 + e24 + z2, (44)

where we have introduced the notation y1 for Y1 ◦ f∗. The metric on SU(3)/SU(2)
corresponding to y1 is naturally reductive. In [2] it was found that the complete family of
Riemannian g.o. metrics on SU(3)/SU(2) is given on T ∗

oM ≡ m by

α(e21 + e22 + e23 + e24) + βz2, α > 0, β > 0, (45)

where α and β are real numbers. The metric (45) is naturally reductive if and only if
α = β [2], which corresponds to h = αY . The family of polynomials (45) coincide with the
complete family of positive definite Ad∗(K)-invariant quadratic homogeneous polynomials
on m. It is not difficult to verify that the metrics (45) also satisfy the condition (42).

By solving the partial differential equations that express the Ad∗(G)-invariance of a
function we find that the Ad∗(G)-invariant functions are of the form G(Y1, Y2), where G is
an arbitrary function of two variables and Y2 is the homogeneous third order polynomial

Y2 =
√
3σ3 + z(σ2 − 2σ1) +

2

3
z3, (46)
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where σ1, σ2 and σ3 are the following Ad∗(K)-invariant polynomials:

σ1 = a′2 + b′2 + c′2 (47)

σ2 = e21 + e22 + e23 + e24 (48)

σ3 = a′(e21 + e22 − e23 − e24) + 2b′(e1e4 − e2e3)− 2c′(e1e3 + e2e4). (49)

We have

y2 = Y2 ◦ f∗ = z(e21 + e22 + e23 + e24) +
2

3
z3, (50)

where the notation y2 is introduced for Y2 ◦ f∗. In order to get the G function for which
G(Y1, Y2) ◦ f∗ equals (45) one has to solve the equations (44) and (50) for e21+ e22+ e23+ e24
and z. This involves the solution of a third order algebraic equation, therefore the result
is a complicated formula that we do not write here. This example shows that the function
h (which is G(Y1, Y2) in the present case) can be complicated even though h ◦ f∗ is a
quadratic polynomial.

The geodesic graph can be calculated directly by solving the equations in lemma 3.3
or in lemma 2.4, as is done in [4] (it is the equation (15) that is actually used); it is not
necessary for this to know h. The result, which can be found written explicitly below
in equation (63) and in [4], has a relatively simple form. The geodesic graph can also
be calculated from the formula ξ = dh ◦ f∗, where the necessary derivatives of h can be
determined from (42). As a third approach, one can utilize the knowledge of the invariant
polynomials Y1 and Y2 to calculate dh ◦ f∗. Here we calculate the geodesic graph in this
way, using (44), (50) and (45). We have

d(G(Y1, Y2)) =
∂G

∂Y1
dY1 +

∂G

∂Y2
dY2, (51)

thus we have to calculate the partial derivatives of G. (45), (44) and (50) can be written
as

G(y1, y2) = αr2 + βz2 (52)

y1 = z2 + r2 (53)

y2 =
2

3
z3 + zr2, (54)

where
r2 = e21 + e22 + e23 + e24. (55)

We have

∂G

∂y1
=

∂G

∂r

∂r

∂y1
+

∂G

∂z

∂z

∂y1
(56)

∂G

∂y2
=

∂G

∂r

∂r

∂y2
+

∂G

∂z

∂z

∂y2
. (57)

For ∂G
∂r

and ∂G
∂z

we obtain
∂G

∂r
= 2αr

∂G

∂z
= 2βz (58)
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from (52). The partial derivatives ∂r
∂y1

, ∂r
∂y2

, ∂z
∂y1

and ∂z
∂y2

can be calculated by taking partial
derivatives of the equations (53) and (54) with respect to y1 and y2, and then solving the
obtained four equations for ∂r

∂y1
, ∂r
∂y2

, ∂z
∂y1

and ∂z
∂y2

. The result is

∂r

∂y1
=

z2

r3
+

1

2r

∂r

∂y2
=

z

r3
(59)

∂z

∂y1
= − z

r2
∂z

∂y2
= − 1

r2
. (60)

Taking into consideration (56) and (57) and using the results (58), (59) and (60) we obtain
for ∂G

∂y1
and ∂G

∂y2
that

∂G

∂y1
= α+ (α− β)

2z2

r2
(61)

∂G

∂y2
= −(α− β)

2z

r2
. (62)

dY1 and dY2 are straightforward to calculate, and the result for the geodesic graph is

[dG(Y1, Y2) ◦ f∗](e1E1 + e1E2 + e3E3 + e4E4 + zZ) =

2α(e1E1 + e2E2 + e3E3 + e4E4) + 2βzZ

+(β − α)
2
√
3z

r2
[(e21 + e22 − e23 − e24)A

′

+2(e1e4 − e2e3)B
′ − 2(e1e3 + e2e4)C

′], (63)

which agrees with the result obtained in [4], if we take into consideration the differences
between the definitions in this paper and in [4]. One difference that is worth noting is
that in [4] the geodesic graph is defined in such a way that only the k-component is kept,
i.e. the obvious 2α(e1E1 + e2E2 + e3E3 + e4E4) + 2βzZ part is subtracted.

(63) is well defined on an open dense subset of T ∗
oM , but it does not have well-defined

values at r = 0 if α 6= β. It can be verified using (27) and (28) that at zZ (i.e. when
r = 0) all vectors 2βzZ + aA′ + bB′ + cC ′, a, b, c ∈ R, are geodesic vectors.

Several other examples of Riemannian g.o. spaces can be found in the literature (see
e.g. [2, 4, 3]), which would also be interesting to discuss in a similar way.
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