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T -system and thermodynamic Bethe ansatz
equations for solvable lattice models associated

with superalgebras ∗

Zengo Tsuboi
Graduate School of Mathematical Sciences, University of Tokyo †

Abstract

An analytic Bethe ansatz is carried out related to the Lie superal-
gebra osp(1|2s). We present an eigenvalue formula of a transfer matrix
in dressed vacuum form (DVF) labeled by a Young (super) diagram.
Remarkable duality among DVFs is found. A complete set of transfer
matrix functional relations (T -system) is proposed as a reduction of a
Hirota-Miwa equation. We also derive a thermodynamic Bethe ansatz
(TBA) equation from this T -system and the quantum transfer matrix
method. This TBA equation is identical to the one from the string
hypothesis.
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1 Introduction

Solvable lattice models related to Lie superalgebras [1] have received much
attentions [2, 3, 4, 5, 6, 7, 8, 9]. To construct eigenvalue formulae of transfer
matrices for such models is an important problem in mathematical physics.
To achieve this program, the Bethe ansatz has been often used.

∗This is a review paper submitted to the proceedings of the workshop: ‘Bilinear Method
in the Study of Integrable Systems and Related Topics’, RIMS, Kyoto, July, 2001 (URL:
http://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/40854). For more details, see
the original papers [31, 40].
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Kyoyama, Okayama 700-0015, Japan
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Nowadays, there is much literature (see for example, [4, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] and references therein.) on
Bethe ansatz analysis for solvable lattice models related to Lie superalgebras.
However, most of it deals only with models related to simple representations
like fundamental ones. Only a few people (see for example, [16, 18]) tried to
deal with more complicated models such as fusion models [26] by the Bethe
ansatz; while there was no systematic study on this subject.

To address such situations, we have recently executed [27, 28, 29, 30, 31]
an analytic Bethe ansatz [32, 33, 34, 35] systematically related to the Lie
superalgebras sl(r + 1|s + 1), B(r|s), C(s), D(r|s) cases. Namely, we have
proposed a set of dressed vacuum forms (DVFs) and a class of functional rela-
tions (T -system) for it. Moreover we have also studied thermodynamic Bethe
ansatz (TBA) equations [36] related to osp(1|2) [37, 38, 39] and osp(1|2s)
[40] from the point of view of the string hypothesis [41, 42] and the quantum
transfer matrix (QTM) method [43, 44, 45, 46, 47, 22].

In this paper, we briefly review the T -system and the TBA equation
related to the Lie superalgebra osp(1|2s) = B(0|s) based on [31, 40]. Af-
ter a brief review on the Lie superalgebra osp(1|2s), we introduce a QTM
for osp(1|2s) model[17] in section 3. In section 4, we carry out an analytic
Bethe ansatz based on the Bethe ansatz equation (BAE) (13) and obtain
the eigenvalue formula for the QTM. We define the dressed vacuum form
(DVF) Tλ⊂µ(v) labeled by a skew-Young (super) diagram λ ⊂ µ as a sum-
mation over semi-standard tableaux. This DVF has a determinant expression
(quantum supersymmetric Jacobi-Trudi formula). In particular, for a rect-
angular Young (super) diagram, this DVF satisfies a kind of Hirota-Miwa
equation[48, 49]. By considering a reduction to this equation, we derive the
osp(1|2s) version of the T -system. Based on this T -system, we derive the
TBA equation from the QTM method in section 5. Namely, we consider
a dependant variable transformation, and derive the Y -system from the T -
system. Then we transform the Y -system with certain analytical conditions
into the TBA equation. Moreover we find that this TBA equation coincides
with the one from the string hypothesis. This indicates the validity of the
string hypothesis for the osp(1|2s) model.

2 The Lie superalgebra osp(1|2s)

In this section, we briefly mention the Lie superalgebra B(0|s) = osp(1|2s)
for s ∈ Z≥1 (see for example [1, 50, 51]).

In contrast to other Lie superalgebras, the simple root system of osp(1|2s)
is unique and given as follows (see Figure 1):
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Figure 1: Dynkin diagram for the Lie superalgebra B(0|s) = osp(1|2s) (s ≥
1): white circles denote even roots; a black circle denotes an odd root.

αi = δi − δi+1 for i = 1, 2, . . . , s− 1,

αs = δs (1)

where δ1, . . . , δs are the bases of the dual space of the Cartan subalgebra with
the bilinear form ( | ) such that

(δi|δj) = −δi j (2)

{αi}i 6=s are even roots and αs is an odd root with (αs|αs) 6= 0. Let λ ⊂ µ
be a skew-Young (super) diagram labeled by the sequences of non-negative
integers λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) such that µi ≥ λi : i = 1, 2, . . . ;
λ1 ≥ λ2 ≥ · · · ≥ 0; µ1 ≥ µ2 ≥ · · · ≥ 0 and µ′ = (µ′

1, µ
′
2, . . . ) be the conjugate

of µ. In particular, for λ = φ, µ1 ≤ s case, the Kac-Dynkin label [b1, b2, . . . , bs]
is related to the Young (super) diagram with shape µ = (µ1, µ2, . . . ) as
follows:

bi = µ′
i − µ′

i+1 for i ∈ {1, 2, . . . , s− 1},

bs = 2µ′
s. (3)

An irreducible representation with the Kac-Dynkin label [b1, b2, . . . , bs] is fi-
nite dimensional if and only if

bj ∈ Z≥0 for j ∈ {1, 2, . . . , s− 1},

bs ∈ 2Z≥0. (4)

3 osp(1|2s) model and QTM method

In this section, we introduce an integrable spin chain[17, 19] associated with
the fundamental representation of osp(1|2s), and define a QTM. The Ř-
matrix[5, 8, 9, 19] of the model is given as

Ř(v) = I + vP −
2v

2v − g
E, (5)
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where g = 2s + 1; P cd
ab = (−1)p(a)p(b)δadδbc; E

cd
ab = αab(α

−1)cd; a, b, c, d ∈ J =
{1, 2, . . . , s, 0, s, . . . , 2, 1} (1 ≺ 2 ≺ · · · ≺ s ≺ 0 ≺ s ≺ · · · ≺ 2 ≺ 1); α is
(2s+1)× (2s+1) anti-diagonal matrix whose non-zero elements are αa,a = 1
for a ∈ {1, 2, . . . , s, 0} and αa,a = −1 for a ∈ {s, s− 1, . . . , 1}; a = a; p(a) = 0
for a = 0; p(a) = 1 for a ∈ {1, 2, . . . , s} ⊔ {s, . . . , 2, 1}. The Hamiltonian of
the present model for the periodic boundary condition is given by

H = J
L∑

k=1

(
Pk,k+1 +

2

g
Ek,k+1

)
, (6)

where L is the number of the lattice sites; Pk,k+1 and Ek,k+1 act nontrivially
on the k th site and k + 1 th site. There are several formulations of QTM
for graded vertex models. We consider the case where the transfer matrix is
defined as the ordinary trace of a monodromy matrix. The QTM is defined
as

T
(1)
1 (u, v) = Trj

N
2∏

k=1

Ra2k,j(u+ iv)R̃a2k−1,j(u− iv), (7)

where Rcd
ab(v) = Řcd

ba(v); R̃jk(v) =
tkRkj(v) (tk is the transposition in the k-th

space); N is the Trotter number and assumed to even. By using the largest

eigenvalue T
(1)
1 (uN , 0) of the QTM (7), the free energy density is expressed

as

F = −
1

β
lim

N→∞
log T

(1)
1 (uN , 0), (8)

where uN = −J β

N
(β = 1/(kBT ); kB: the Boltzmann constant; T : the

temperature). From now on, we abbreviate the parameter u in T
(1)
1 (u, v).

4 Analytic Bethe ansatz and T -system for QTM

One can obtain the eigenvalue formulae of the QTM (7) by replacing the
vacuum part of the DVF for the row-to-row transfer matrix [17, 19] with
that of the QTM. Explicitly we have

T
(1)
1 (v) =

∑

a∈J

a
v
, (9)
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where the functions { a
v
}a∈J are defined as

a
v
= ψa(v)

Qa−1(v +
i
2
(a+ 1))Qa(v +

i
2
(a− 2))

Qa−1(v +
i
2
(a− 1))Qa(v +

i
2
a)

for a ∈ {1, 2, . . . , s},

0
v
= ψ0(v)

Qs(v +
i
2
(s− 1))Qs(v +

i
2
(s+ 2))

Qs(v +
i
2
(s+ 1))Qs(v +

i
2
s)

, (10)

a
v
= ψa(v)

Qa−1(v −
i
2
(a− 2s))Qa(v −

i
2
(a− 2s− 3))

Qa−1(v −
i
2
(a− 2s− 2))Qa(v −

i
2
(a− 2s− 1))

for a ∈ {1, 2, . . . , s},

where Q0(v) := 1; ψa(v) is the vacuum part

ψa(v) =





ζ1
φ+(v)φ−(v+i)φ+(v− 2s−1

2
i)

φ+(v− 2s+1
2

i)
for a = 1,

ζaφ+(v)φ−(v) for 2 � a � 2,

ζ1
φ−(v)φ+(v−i)φ−(v+ 2s−1

2
i)

φ−(v+ 2s+1
2

i)
for a = 1,

(11)

where φ±(v) = (v ± iu)
N
2 ; ζa is a phase factor:

ζa =





(−1)N−M1 if a = 1
(−1)Ma−1−Ma if a ∈ {2, 3, . . . , s}
1 if a = 0
(−1)Ma−1−Ma if a ∈ {s, . . . , 3, 2}
(−1)N−M1 if a = 1,

(12)

where a = a. The complex variables {v(a)k } are roots of the following Bethe
ansatz equation

N∏

j=1

(
v
(a)
k − w

(a)
j + i

2
δa1

v
(a)
k − w

(a)
j − i

2
δa1

)
= −(−1)Ma−1−Mσ(a+1)

s+1∏

d=1

Qσ(d)(v
(a)
k + i

2
Bad)

Qσ(d)(v
(a)
k − i

2
Bad)

, (13)

where k ∈ {1, 2, . . . ,Ma}; a ∈ {1, 2, . . . , s}; σ(d) = d for 1 ≤ d ≤ s; σ(s +

1) = s; Bad = 2δad − δa,d+1 − δa,d−1; Qa(v) =
∏Ma

k=1(v − v
(a)
k ); Ma ∈ Z≥0;

M0 = N . The parameter σ expresses an effect of ‘a peculiar two-body self-
interaction for the root {v(s)k }’ [19], which originates from the odd simple root
αs with (αs|αs) 6= 0. One may interpret the QTM as a transfer matrix of
an inhomogeneous vertex model. In our case, the inhomogeneity parameters
w

(a)
j ∈ C take the values: w

(a)
j = iuδa1 for j ∈ 2Z≥1; w

(a)
j = (−iu+ ig

2
)δa1 for

j ∈ 2Z≥0 + 1. The dress part of the DVF (9) is free of poles under the BAE
(13). This is a requirement from the analytic Bethe ansatz [32].
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Now we will present a DVF Tλ⊂µ(v) for a ‘fusion QTM’. We can derive
the explicit expression of Tλ⊂µ(v) by modifying the vacuum part of the DVF
in Ref. [31] so that the vacuum part is compatible with the left hand side of
the BAE (13). We assign coordinates (i, j) ∈ Z

2 on the skew-Young (super)
diagram λ ⊂ µ such that the row index i increases as we go downwards and
the column index j increases as we go from the left to the right and that
(1, 1) is on the top left corner of µ. We define an admissible tableau b on the
skew-Young (super) diagram λ ⊂ µ as a set of elements b(i, j) ∈ J labeled by
the coordinates (i, j) mentioned above, with the following rule (admissibility
conditions).

b(i, j) ≺ b(i, j + 1), b(i, j) � b(i+ 1, j). (14)

Let B(λ ⊂ µ) be the set of admissible tableaux on λ ⊂ µ. For any skew-
Young (super) diagram λ ⊂ µ, define Tλ⊂µ(v) as follows

Tλ⊂µ(v) =
∑

b∈B(λ⊂µ)

∏

(j,k)∈(λ⊂µ)

b(j, k)
v− i

2
(−µ1+µ′

1−2j+2k)
, (15)

where the product is taken over the coordinates (j, k) on λ ⊂ µ. Let

T
(a)
m (v) := T(am)(v). The following determinant formula (quantum super-

symmetric Jacobi-Trudi formula) should be valid (cf. [35]).

Tλ⊂µ(v) = det1≤j,k≤µ′

1
(T

(µk−λj+j−k)
1 (v −

i

2
(−µ1 + µ′

1 + µ′
k + λ′j − j − k + 1))). (16)

We may think of (15) as an osp(1|2s) version of the Bazhanov and Reshetikhin’s
eigenvalue formula [33]. In particular, for λ = φ, µ1 ≤ s case, the ‘top term’
of Tµ(v) will be the term corresponding to the tableau b(i, j) = j (1 ≤ i ≤ µ′

j,
1 ≤ j ≤ s). This term carries the osp(1|2s) weight with the Kac-Dynkin label
(3) (in the sense in Ref. [34]). DVFs have so called Bethe-strap structures
[34] and we confirmed, for several examples, that Tλ⊂µ(v) coincides with
the Bethe-strap of the minimal connected component which includes the top
term as the examples in Figure 2, Figure 3 and Figure 4. Tλ⊂µ(v) may be
viewed as a prototype of a ‘q-supercharacter’ (cf. [52]).

Now we introduce the functional relations among DVFs. The following
relation follows from the determinant formula (16).

T (a)
m (v +

i

2
)T (a)

m (v −
i

2
) = T

(a)
m+1(v)T

(a)
m−1(v) + T (a−1)

m (v)T (a+1)
m (v), (17)

where a,m ∈ Z≥1. This functional relation is a kind of Hirota-Miwa equation
[48, 49] and can be proved by the Jacobi identity. The following theorem
follows from the admissible condition (14).
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1 -
(1, 1)

2 -
(2, 2)

0 -
(2, 3)

2 -
(1, 4)

1

Figure 2: The Bethe-strap structure of T
(1)
1 (v) for osp(1|4): The pair (a, b)

denotes the common pole v
(a)
k − i

2
b of the pair of the tableaux connected by

the arrow. This common pole vanishes under the BAE (13). The leftmost
tableau corresponds to the ‘highest weight ’, which is called the top term.
This term carries the osp(1|4) weight δ1.

Theorem 1 Tλ⊂µ(v) = 0 if λ ⊂ µ contains m × a rectangular subdiagram
(m: the number of row, a: the number of column) with a ∈ Z≥2s+2 and
m ∈ Z≥1. In particular, we have

T (a)
m (v) = 0 if a ∈ Z≥2s+2 and m ∈ Z≥1. (18)

There is a remarkable duality for T
(a)
m (v).

Theorem 2 For any a ∈ {1, . . . , s} and m ∈ Z≥0, we have

T (a)
m (v) = M(a)

m (v)T (2s−a+1)
m (v), (19)

where M(a)
m (v) is given as

M(a)
m (v) =

m∏

j=1

{
ψ1(v −

i
2
(m− a− 2j + 2))

ψ1(v −
i
2
(m− 2s+ a− 2j + 1))

×

∏a

k=2 ψ2(v −
i
2
(m− a− 2j + 2k))

∏2s−a+1
k=2 ψ2(v −

i
2
(m− 2s+ a− 2j + 2k − 1))

}
. (20)

For a ∈ {1, 2, . . . , s} and m ∈ Z≥1, we define a normalization function

N (a)
m (v) =

∏m

j=1

∏a

k=1 φ−(v −
m−a−2j+2k

2
i)φ+(v −

m−a−2j+2k
2

i)

φ−(v −
m−a
2
i)φ+(v +

m−a
2
i)

. (21)

We reset T
(a)
m (v)/N (a)

m (v) to T
(a)
m (v), where T

(a)
m (v) is defined by (15). By

using the Theorem 1,2, we can obtain the T -system as a reduction of the
Hirota-Miwa equation (17).

T (a)
m (v +

i

2
)T (a)

m (v −
i

2
) = T

(a)
m+1(v)T

(a)
m−1(v) + T (a−1)

m (v)T (a+1)
m (v)

for a ∈ 1, 2, . . . , s− 1, (22)

T (s)
m (v +

i

2
)T (s)

m (v −
i

2
) = T

(s)
m+1(v)T

(s)
m−1(v) + g(s)m (v)T (s−1)

m (v)T (s)
m (v),

7
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Figure 3: The Bethe-strap structure of T
(1)
2 (v) for osp(1|4): The topmost

tableau corresponds to the ‘highest weight ’, which is called the top term.
This term carries the osp(1|4) weight 2δ1
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This term carries the osp(1|4) weight δ1 + δ2
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where

T
(a)
0 (v) = φ−(v +

a

2
i)φ+(v −

a

2
i) for a ∈ Z≥1,

T (0)
m (v) = φ−(v −

m

2
i)φ+(v +

m

2
i) for m ∈ Z≥1, (23)

g(s)m (v) =
φ−(v +

m+s+1
2

i)φ+(v −
m+s+1

2
i)

φ−(v +
m+s
2
i)φ+(v −

m+s
2
i)

for m ∈ Z≥1.

For s = 1, g
(1)
m (v)T

(0)
m (v) coincides with the function T

(0)
m (v) in Ref. [38].

Since the dress part of the DVF T
(a)
m (v) is same as the row-to-row case,

this functional equation (22) has essentially the same form as the osp(1|2s)
T -system in Ref.[31].

5 TBA equation

For m ∈ Z≥1, we define the Y -functions:

Y (a)
m (v) =

T
(a)
m+1(v)T

(a)
m−1(v)

T
(a−1)
m (v)T

(a+1)
m (v)

for a ∈ {1, 2, . . . , s− 1},

Y (s)
m (v) =

T
(s)
m+1(v)T

(s)
m−1(v)

g
(s)
m (v)T

(s−1)
m (v)T

(s)
m (v)

. (24)

By using the T -system (22), one can show that the Y -functions satisfy the
following Y -system:

Y (a)
m (v +

i

2
)Y (a)

m (v −
i

2
) =

(1 + Y
(a)
m+1(v))(1 + Y

(a)
m−1(v))∏s

d=1(1 + (Y
(d)
m (v))−1)Iad

, (25)

where Y
(a)
0 (v) = 0, a ∈ {1, 2, . . . , s} andm ∈ Z≥1; Iad = δa,d−1+δa,d+1+δadδas.

A numerical analysis for finite N, u, s indicates that a two-string solution (for
every color) in the sectorN =M1 =M2 = · · · =Ms of the BAE (13) provides
the largest eigenvalue of the QTM (7) at v = 0. Moreover, we expect the
following conjecture is valid for this two-string solution.

Conjecture 1 For small u (|u| ≪ 1) and a ∈ {1, 2, . . . , s}, every zero of

T
(a)
m (v) is located outside of the physical strip Imv ∈ [−1

2
, 1
2
].

Based on this conjecture, we shall establish the ANZC property in some
domain for the Y -functions (24) to transform the Y -system (25) to nonlin-
ear integral equations. Here ANZC means Analytic NonZero and Constant
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asymptotics in the limit |v| → ∞. One can show that the Y -function has
the following asymptotic value

lim
|v|→∞

Y (a)
m (v) =

m(g +m)

a(g − a)
, (26)

which is identified to the solution of the constant Y -system

(Y (a)
m )2 =

(1 + Y
(a)
m−1)(1 + Y

(a)
m+1)∏s

d=1(1 + (Y
(d)
m )−1)Iad

, (27)

where Y
(a)
0 := 0, a ∈ {1, 2, . . . , s} and m ∈ Z≥1. From the Conjecture 1 and

(26), we find that the functions 1 + Y
(a)
m (v), 1 + (Y

(a)
m (v))−1 in the domain

Imv ∈ [−δ, δ] (0 < δ ≪ 1) and Y
(a)
m (v) for (a,m) 6= (1, 1) in the domain

Imv ∈ [−1
2
, 1
2
] (physical strip) have the ANZC property. On the other hand,

Y
(1)
1 (v) has zeros of order N/2 at ±i(1

2
− u) if u > 0 (J < 0), poles of order

N/2 at ±i(1
2
+ u) if u < 0 (J > 0) in the physical strip. Then we must

modify Y
(1)
1 (v) as

Ỹ (a)
m (v) = Y (a)

m (v)

{
tanh

π

2
(v + i(

1

2
± u)) tanh

π

2
(v − i(

1

2
± u))

}±
Nδa1δm1

2

, (28)

where the sign ± is identical to that of −u. Taking note on the relation

tanh
π

4
(v + i) tanh

π

4
(v − i) = 1, (29)

one can modify the lhs of the Y -system (25) as

Ỹ (a)
m (v −

i

2
)Ỹ (a)

m (v +
i

2
) =

(1 + Y
(a)
m+1(v))(1 + Y

(a)
m−1(v))∏s

d=1(1 + (Y
(d)
m (v))−1)Iad

, (30)

for m ∈ Z≥1 and a ∈ {1, 2, . . . , s}.

Now that the ANZC property has been established for the Y -system, we can
transform (30) into a system of nonlinear integral equations by a standard
procedure.

log Y (a)
m (v) = ∓

Nδa1δm1

2
log

{
tanh

π

2
(v + i(

1

2
± u)) tanh

π

2
(v − i(

1

2
± u))

}

+K ∗ log

{
(1 + Y

(a)
m−1)(1 + Y

(a)
m+1)∏s

d=1(1 + (Y
(d)
m )−1)Iad

}
(v), (31)
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where Y
(a)
0 (v) = 0, a ∈ {1, 2, . . . , s} and m ∈ Z≥1; ∗ is a convolution

(f ∗ h)(v) =

∫ ∞

−∞

dwf(v − w)h(w), (32)

and the kernel is

K(v) =
1

2 cosh πv
. (33)

Substituting u = −βJ
N

and taking the Trotter limit N → ∞, we obtain the
TBA equation

log Y (a)
m (v) =

πJ βδapδmb

cosh πv
+K ∗ log

{
(1 + Y

(a)
m−1)(1 + Y

(a)
m+1)∏s

d=1(1 + (Y
(d)
m )−1)Iad

}
(v), (34)

where a ∈ {1, 2, . . . , s}, m ∈ Z≥1, Y
(a)
0 (v) := 0. This TBA equation (34) is

identical to the one from the string hypothesis. Taking note on the relations

Cad(v) =

min(a,d)∑

l=1

G|a−d|+2l−1(v),

Ga(v) =
4

2s+ 1

cos (2s+1−2a)π
4s+2

cosh 2πv
2s+1

cos (2s+1−2a)π
2s+1

+ cosh 4πv
2s+1

,

Ĉad(k) =

∫ ∞

−∞

dvCad(v)e
−ikv,

s∑

c=1

Ĉac(k)D̂cd(k) = δad, (35)

D̂cd(k) = 2δcd cosh
k

2
− Icd,

one can also rewrite this TBA equation as

log Y (a)
m (v) = 2πβJ δm1Ga(v)

+
s∑

b=1

Cab ∗ log

{
(1 + Y

(b)
m−1)(1 + Y

(b)
m+1)∏s

d=1(1 + Y
(d)
m )Ibd

}
(v), (36)

where Y
(a)
0 (v) = 0, a ∈ {1, 2, . . . , s} and m ∈ Z≥1. In contrast to (34), (36)

does not contain 1+ (Y
(a)
m (v))−1 which is not relevant to evaluate the central
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charge for the case J < 0. One can also derive the following relation from
(22) for m = 1, (24) and (35).

log T
(1)
1 (v) = log φ−(v + i)φ+(v − i) +

s∑

a=1

Ga ∗ log(1 + Y
(a)
1 )

+N

∫ ∞

0

dk
2e−

k
2 sinh(ku) cos(kv) cosh(2s−1

4
k)

k cosh(2s+1
4
k)

. (37)

Taking the Trotter limit N → ∞ with u = −J β

N
, we obtain the free energy

density F = − 1
β
log T

(1)
1 (0) without infinite sum.

F = J

{
2

2s+ 1

(
2 log 2− ψ(

1

2s+ 1
) + ψ(

3 + 2s

2 + 4s
)

)
− 1

}

−kBT
s∑

a=1

∫ ∞

−∞

dvGa(v) log(1 + Y
(a)
1 (v)), (38)

where ψ(z) is the digamma function

ψ(z) =
d

dz
log Γ(z). (39)

The first term in the rhs of (38) for J = −1 coincides with the grand state
energy of the osp(1|2s) model in [17]. Using the result of this section, we can
show that the central charge of the corresponding system is s.

6 Discussion

In this paper, we have derived the TBA equation from the osp(1|2s) version
of the T -system. The osp(r|2s) integrable spin chain is related to interesting
physical problems, such as the loop model which is related to statistical
properties of polymers[23], and the fractional quantum Hall effect [53], etc.
So it is desirable to study the osp(r|2s) integrable spin chain beyond the
osp(1|2s) case. For r > 0 case, we have only the T -system for tensor-like
representations [31]. To construct a complete set of the T -system which is
relevant for the QTM method, we have to treat spinorial representations.

In closing this paper, we shall mention the sl(r + 1|s + 1) version of the
T -system [27, 28, 29] which is omitted in this paper. The osp(1|2s) T -system
is obtained as a reduction of a kind of Hirota-Miwa equation. This is also
the case with sl(r + 1|s+ 1). For m, a ∈ Z≥1, sl(r + 1|s+ 1) T -system leads

13



as follows.

T (a)
m (v − 1)T (a)

m (v + 1) = T
(a)
m+1(v)T

(a)
m−1(v) + T (a−1)

m (v)T (a+1)
m (v)

for 1 ≤ a ≤ r or 1 ≤ m ≤ s or (a,m) = (r + 1, s+ 1),

T (r+1)
m (v − 1)T (r+1)

m (v + 1) = T
(r+1)
m+1 (v)T

(r+1)
m−1 (v) for m ≥ s+ 2,

T
(a)
s+1(v − 1)T

(a)
s+1(v + 1) = T

(a+1)
s+1 (v)T

(a−1)
s+1 (v) for a ≥ r + 2.

where,

T
(a)
s+1(v) = ǫaT

(r+1)
a+s−r(v) for a ≥ r + 1,

T (0)
m (v) = T

(a)
0 (v) = 1.

Here we omit the vacuum part which can be easily recovered so as to be
compatible with the lhs (vacuum part) of the BAE. The phase factor ǫa de-
pends on the definition of the transfer matrix. For example, if the transfer
matrix is defined as a supertrace of a monodromy matrix, we have ǫa =
(−1)(s+1)(a+r+1). Note that above functional equation reduces to the T -
system for slr+1 [33] (see also [54, 55]) if we set s = −1.
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