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Fixation in Evolutionary Games under Non-Vanishing Selection
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One of the most striking effect of fluctuations in evolutionary game theory is the possibility
for mutants to fixate (take over) an entire population. Here, we formulate a WKB (Wentzel-
Kramers-Brillouin) based theory to study fixation in evolutionary games under non-vanishing se-
lection. Within this approach, we accurately account for large fluctuations and compute the mean
times and probability of fixation for finite selection intensity w, beyond the weak selection limit. The
power of our theory is demonstrated on prototypical models of cooperation dilemmas with multiple
absorbing states. Our predictions compare excellently with numerical simulations, and we show that
our method is superior to the Fokker-Planck approach and has a broader applicability for finite w.

PACS numbers: 05.40.-a, 02.50.Ey, 87.23.Kg, 89.75.-k

Evolutionary game theory (EGT) provides a natural
theoretical framework to describe the dynamics of sys-
tems where successful types or behaviors, as those aris-
ing in biology, ecology and economics [1, 2], are copied
by imitation and spread. Evolutionary stability is a cru-
cial concept in EGT and specifies under which circum-
stances a population is proof against invasion from mu-
tants [1, 2]. This notion was shown to be altered by
finite-size fluctuations and led to the key concept of evolu-
tionary stability in finite populations (ESFP) [2]. ESFP is
closely related to the concept of fixation [2, 3], referring to
the possibility for mutants to take over (fixate) an entire
population of wild species. Furthermore, evolutionary
dynamics is characterized by the interplay between ran-
dom fluctuations [4] and selection, that underlies adapta-
tion in terms of the different reproduction potential (fit-
ness) of individuals. Thus, a parameter was introduced
to measure the selection intensity [2]. In this context, the
fixation probability of a species has been calculated for a
finite two-species population in the weak selection limit
of vanishingly small selection intensity [2, 3, 5]. This
limit is often biologically relevant and greatly simplifies
the analysis (treating selection as a linear perturbation).
However, the behaviors obtained under strong and weak
selection are often qualitatively different (see e.g. [5, 6])
and it is thus desirable to understand the combined influ-
ence of non-vanishing selection and random fluctuations.
In this Letter, we study fixation under non-vanishing se-
lection in EGT. As exact results for the fixation probabil-
ity and mean fixation times (MFTs) are rarely available
and often unwieldy (see e.g. [2, 3, 7]), there is need to
develop general and reliable methods to treat the evolu-
tionary dynamics. Here, we formulate a dissipative ver-
sion of the WKB theory [8] that allows us to accurately
account for large fluctuations, not aptly captured [9, 10]
by the Fokker-Planck approximation (FPA) [7]. In par-
ticular, we generalize the WKB method to account for
systems with multiple absorbing states. Our method is
illustrated for two classes of prototypical models of coop-
eration dilemmas (see below), where a coexistence state

separates two absorbing states in which the population is
composed of only the fixated species while the other goes
extinct [1, 2]. We compute the fixation probabilities, the
MFTs, as well as the complete probability distribution
function (PDF) of population sizes, and show that our
theory is superior to the FPA for finite selection strength.

The models. In EGT, the fitness, or reproduction po-
tential of an individual, is determined by the outcome,
called payoff, of its interaction with the others as pre-
scribed by the underlying game [1]. In fact, when two
A−individuals interact, both receive a payoff a. If an in-
dividual of type A interacts with another of type B, the
former receives b while the latter gets a payoff c. Simi-
larly, when two B−individuals interact, both get a payoff
d. Now, assume that in a population of size N there are
n individuals of type A (“mutants”) and N−n of species
B (“wild type”). Their respective average payoffs (per
individual) are ΠA(n) = (n/N)a + [(N − n)/N ] b and
ΠB(n) = (n/N)c + [(N − n)/N ] d, while the population
mean payoff is Π̄(n) = [nΠA(n) + (N − n)ΠB(n)] /N .
For infinite (N → ∞) and well-mixed populations, the
density x ≡ n/N of the A species changes according to its
relative payoff and obeys the replicator dynamics (RD),
given by the rate equation ẋ = x(ΠA − Π̄) [1, 2]. Here,
we are particularly interested in anti-coordination games
(ACG), where c > a and b > d, and in coordination
games (CG), where a > c and d > b. In addition to the
absorbing states n = 0 and n = N , ACG and CG admit
an interior fixed point associated with the coexistence of
A and B species at a density x∗ = (d− b)/(a− b− c+ d)
of A’s. According to the RD, x∗ is stable in ACG and
unstable in CG, whereas x = 0 and x = 1 are unstable
fixed points in ACG and stable in CG.

To account for fluctuations arising when the popula-
tion size is finite, the evolutionary dynamics is imple-
mented in terms of fitness-dependent birth-death pro-
cesses [2, 3] describing, e.g., the evolution of the prob-
ability Pn(t) to have n individuals of type A at time t:

dPn(t)/dt = T+
n−1Pn−1+T−

n+1Pn+1− [T+
n +T−

n ]Pn. (1)
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Here, an individual chosen proportionally to its fitness
produces an identical offspring which replaces a randomly
chosen individual [11], and the total population size N is
conserved. Thus, in the master equation (1), the reaction
rates for the birth/death transitions n → n± 1 are given
by T±

n = χ±(fA(n), fB(n))n(N − n)/N2. Here, χ± are
(positive definite, well-behaved) functions of the fitness
of each species, fA(n) = 1 − w + wΠA(n) and fB(n) =
1 − w + wΠB(n), and satisfy χ+(Nx∗) = χ−(Nx∗) (to
recover the properties of the RD when N → ∞ [1–3]).
The fitnesses are comprised of a baseline contribution
[the constant (1−w)] and a term accounting for selection
[i.e. wΠA(n) for fA(n)], while the parameter 0 ≤ w ≤ 1
measures the selection intensity [2, 3]. Thus, the latter is
weak for w → 0, when T±

n ∝ n(N − n)/N2, and strong
for w → 1, when the baseline fitness becomes negligible.
As n ∈ [0, N ] and n = 0 and n = N are absorbing, the
boundary conditions to Eq. (1) are T±(0) = T±(N) = 0.

WKB theory of ACG. Our WKB-based approach is
presented in the framework of ACG (e.g. snowdrift and
hawk-dove games [1]), where the absorbing states n = 0
or x = 0 (all B

′s), and n = N or x = 1 (all A
′s)

are separated by the interior stable (in the language of
the RD) fixed point x∗. However, in the presence of
noise x∗ becomes metastable, which is very naturally ac-
counted by our theory. We assume that after a short
relaxation time tr, the system settles into a long-lived
metastable state whose population size distribution is
peaked about Nx∗ ≫ 1 [10, 13]. This implies that fix-
ation of either species occurs only in the aftermath of a
long-lasting coexistence. At t ≫ tr, only the first ex-
cited eigenvector of (1), πn, called the quasi-stationary
distribution (QSD), has not decayed and hence deter-
mines the metastable PDF [10, 13]. In fact, as n = 0
and n = N are absorbing, the metastable PDF decays
according to Pn(t) ≃ πne

−t/τ , for n ∈ [1, N − 1], while
P0(t) ≃ φ(1 − e−t/τ ) and PN (t) ≃ (1 − φ)(1 − e−t/τ ).
Here, φB = φ and φA = 1− φ are the fixation probabili-
ties of the B and A species, respectively, while τ ≫ tr is
the (unconditional) MFT. As the fluxes into the absorb-
ing states determine both the fixation probability and the
MFT, using Eq. (1) for n = 0 and n = N , one obtains

τ =
[

T−

1 π1 + T+
N−1πN−1

]−1
, and φ = T−

1 π1τ. (2)

The respective conditional MFTs of species A and B (con-
ditioned on the fixation of type A and B, respectively)

are τA =
[

T−

N−1πN−1

]−1
and τB =

[

T+
1 π1

]−1
. To com-

pute these quantities and those of Eq. (2), it suffices to
calculate π1 and πN−1. Furthermore, the QSD satisfies
the quasi-stationary master equation (QSME) [12, 13]:
T+
n−1πn−1 + T−

n+1πn+1 − [T+
n + T−

n ]πn = 0, obtained by

substituting Pn(t) ≃ πne
−t/τ into (1) and neglecting the

exponentially small term πn/τ . For N ≫ 1, we define the
transition rates T±(x) = T±

n [14] as continuous functions

of x and treat the QSME by the WKB ansatz [8, 12, 13]

πn ≡ πxN = π(x) = A exp[−NS(x)− S1(x)] , (3)

where S(x) and S1(x) are respectively the system’s ac-
tion and its amplitude, while A is a constant prefactor.
In fact, introducing the ansatz (3) into the QSME yields
closed equations for S(x) and S1(x). In the leading or-
der, in analogy to Hamiltonian systems, the action obeys
the Hamilton-Jacobi equation H(x, S′) = 0. Here, the
underlying Hamiltonian is H(x, p) = T+(x)(e

p − 1) +
T−(x)(e

−p − 1) [13], where we have introduced the aux-
iliary momentum p(x) = dS/dx [8, 12, 13]. There-
fore, to leading order, the “optimal-path” followed by
the stochastic system, from the metastable state to fix-
ation, is pa(x) = − ln [T+(x)/T−(x)], corresponding to
the zero-energy trajectory H(x, pa) = 0 with non-zero
momentum [8, 12, 13]. The action along pa(x) is

S(x) = −

∫ x

ln [T+(ξ)/T−(ξ)] dξ. (4)

Performing the subleading-order calculations, one ob-
tains S1(x) = (1/2) ln[T+(x)T−(x)] [12, 13]. Imposing
the normalization of the Gaussian expansion of the QSD
(3) about x = x∗, one finds the constant A, yielding

π(x) = T+(x
∗)

√

S′′(x∗)

2πN T+(x)T−(x)
e−N [S(x)−S(x∗)] . (5)

This expression is valid sufficiently far from the bound-
aries, where T±(x) = O(1) [13], and generally leads to a
non-Gaussian QSD with systematic deviations from the
Gaussian approximation near the tails, as illustrated in
Fig. 1(a). To obtain the full QSD we need to match the
WKB solution (5) with the solution of the QSME in the
vicinity of the absorbing boundaries, where the transi-
tion rates can be linearized [13]. For instance, near x = 0,
T±(x) ≃ xT ′

±(0), so the QSME yields (n−1)T ′
+(0)πn−1+

(n + 1)T ′
−(0)πn+1 − n[T ′

+(0) + T ′
−(0)]πn = 0. Its recur-

sive solution is πn = (π1/n)(R
n
0 − 1)/(R0 − 1), where

R0 = T ′
+(0)/T

′
−(0) [13]. Matching this expression with

the leading order of (5) about x = 0 yields

π1=

√

NS′′(x∗)

2π

T+(x
∗) (R0 − 1)

√

T ′
+(0)T

′
−(0)

eN [S(x∗)−S(0)]. (6)

A similar analysis at x ≃ 1 with R1 = T ′
−(1)/T

′
+(1) gives

πN−1=

√

NS′′(x∗)

2π

T+(x
∗)(R1 − 1)

√

T ′
+(1)T

′
−(1)

eN [S(x∗)−S(1)]. (7)

Fixation in ACG. As an application of the results (5)-
(7), we study fixation in ACG evolving according to the
fitness-dependent Moran process (fMP) [2, 11]. The fMP
is often considered in EGT and defined by the transition
rates T±

n with χ+ = fA[(n/N)fA + (1 − n/N)fB]
−1 and
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FIG. 1: (Color online). (a) lnπn vs. n (with N = 150):
theoretical predictions [Eqs. (5)-(8)] (solid) compared with
numerical results (dashed) and with the Gaussian approxi-
mation of the QSD (dashed-dotted). (b) ln τ−1 as a function
of N : theoretical predictions [Eqs. (2), (6)-(8)] (solid) and
numerical results (symbols). Parameters are a = 0.1, b = 0.7,
c = 0.6, d = 0.2, w = 0.5 and the system follows the fMP.
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FIG. 2: (Color online). (a) ln τ vs w: theoretical [Eqs. (2),
(6)-(8)] (solid) and numerical results (symbols). (b) Depen-
dence of ln τ on the initial number n of A’s, for w = 0.2,
0.5 and 0.8 (bottom to top): comparison between theoret-
ical (solid) and numerical (dashed) results. (c) Theoretical
[Eq. (9)] (solid) and numerical (symbols) results for the ra-
tio φA/φB vs w. (d) Same as in panel (b) for φA/φB (w
grows from top to bottom). Parameters are a = 0.1, b = 0.7,
c = 0.6, d = 0.2, N = 200 and the system follows the fMP. In
the numerical results of (a) and (c), n is chosen sufficiently
large so that fixation does not occur immediately (see text).

χ− = fB[(n/N)fA+(1−n/N)fB]
−1. Here, using Eq. (4),

the action (with A = 1 − w + wa, B = 1 − w + wb,
C = 1− w + wc, and D = 1− w + wd [15]), reads

S(x) = [B/(B −A)− x] ln[Ax+B(1 − x)]

+ [D/(C −D) + x] ln[Cx+D(1− x)]. (8)

Provided that N [S(1) − S(x∗)] ≫ 1, and N [S(0) −
S(x∗)] ≫ 1 (which imposes a lower bound on w), the
MFTs and fixation probability are obtained from Eqs. (2)
and (6)-(8) with T−

1 = T+
N−1 ≃ N−1. These results

generalize those obtained previously in the limiting cases
Nw ≪ 1 [3, 5] and w = 1 (for which A = a, B = b,
C = c, and D = d) [6]. As illustrated in Fig. 1(b),
one finds that the unconditional MFT asymptotically
exhibits an exponential dependence on the population
size N , τ ∝ N1/2eN(Σ−S(x∗)), where the governing ex-

ponent Σ ≡ max [S(0), S(1)] is readily obtained from
(8). For 0 < w < 1, one finds that Σ increases mono-
tonically with w, as shown in Fig. 2(a). Here (as in
our other figures), the theoretical predictions are com-
pared with the numerical solution of (1) yielding ex-
cellent agreement. It also follows from (2),(6)-(8) that
for N ≫ 1 and small (but not too small) selection
intensity, N−1 ≪ w ≪ 1, the MFTs grow exponen-
tially as τA ∼ N1/2eNw(a−c)2/[2(c−a+b−d)], and τB ∼
N1/2eNw(b−d)2/[2(c−a+b−d)]. As our approach assumes
that fixation occurs after the metastable state is reached,
the expressions obtained for the MFTs are independent of
the initial number n of A’s. This is confirmed in Fig. 2(b),
showing a comparison between analytical and numerical
results for w > 0, and n ≫ 1.
The ratio φA/φB = φ−1 − 1 allows to understand the

influence of selection by comparing the fixation probabil-
ity of A’s and B’s. Using Eqs. (2,6-8), our theory yields

φA

φB
=
πN−1

π1
=

√

BD

AC

(

C−A

B−D

)

BN( B
B−A )DN( D

C−D )

AN( A
B−A )CN( C

C−D )
. (9)

In Fig. 2(c), we show the ratio φA/φB as a function of
the selection strength w and find a nonlinear dependence
characterized by a sigmoid shape, in excellent agreement
with numerical calculations. Contrary to the neutral case
(w = 0) [2], not covered by our theory, (9) is independent
of the initial condition. In fact, the numerical results of
Fig. 2(d) confirm that the ratio φA/φB becomes inde-
pendent of n (with n ≫ 1) and coincides with (9) when
w > 0 (for w ≪ 1 the convergence requires n ∼ Nx∗).
WKB theory and fixation in CG. As a further illustra-

tion of our theory, we accurately compute the fixation
probability in CG (e.g. stag-hunt game [1]). Here, the
fixed point x∗ is unstable while x = 0, 1 are stable. Thus,
with an initial minority of A’s, n < Nx∗, the fixation of
B’s is almost certain, while there is an exponentially small
probability φA

n that A’s fixate. This probability satisfies
T+
n φA

n+1 + T−
n φA

n−1 − [T+
n + T−

n ]φA
n = 0, with boundary

conditions φA
0 = 0, φA

N = 1 [2, 3, 6]. It is convenient to in-
troduce Pn ≡ φA

n+1 − φA
n ≃ dφA

n /dn = (1/N)dφA(x)/dx,
satisfying P0 = φA

1 and PN−1 = 1 − φA
N−1. Here, we

use the WKB theory to treat the equation T +(x)P(x)−
T −(x)P(x − 1/N) = 0 for P(x) ≡ Pn, and recover
the asymptotically exact results [6, 16]. Using the
ansatz P(x) = Ae−NS(x), in the leading order one has
T+(x)−T−(x)e

S
′(x) = 0, whose solution is S(x) = −S(x)

[given by Eq. (4)]. (Here S1(x), the subleading correc-
tion omitted in the ansatz for P(x), is found to be a con-

stant [16]). Normalizing
∑N−1

n=0 Pn ≃ N
∫ 1

0 P(x)dx = 1,
and assuming that the main contribution arises from the
Gaussian region around x∗, one obtains the amplitude
A ≃

√

|S′′(x∗)|/(2πN)e−NS(x∗). The fixation probabil-
ity, φA(x) ≃ N

∫ x

0
P(x′)dx′, is therefore given by

φA(x) =
√

N |S′′(x∗)|/(2π)

∫ x

0

eN [S(x′)−S(x∗)]dx′. (10)
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FIG. 3: (Color online). The fixation probability φA(x) for the
fMP process: theoretical result (10) (solid), numerical calcu-
lations (dashed) and FPA (dash-dotted), with a = 4, b =
0.2, c = 0.3, d = 3.8, N = 100. Insets: ratio between theoret-
ical results and those of the FPA, see text. (a) For w = 0.1,
Nw2 = 1 and all curves agree well, with an error of about 7%
in the predictions of the FPA for x → 0. (b) For w = 0.75,
Nw2

≫ 1, the curve obtained from the FPA systematically
deviates from the others and yields exponentially large errors.
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FIG. 4: (Color online). (a) Fixation probability φA(x) as
function of w: theoretical result (10) (solid), numerical calcu-
lations (dashed) and FPA (dash-dotted), for a = 1, b = 0.2,
c = 0.3, d = 0.8, and N = 200. (b) Ratio between the predic-
tions of the FPA and those of our theory vs N , for w = 0.25,
a = 4, b = 0.2, c = 0.3, and d = 3.8. The results of the
FPA deteriorate when both w and N increase. In (a) and
(b), n = 10 thus x = 10/N , and the system follows the fMP.

Eq. (10) asymptotically coincides with the exact result
for N ≫ 1 and holds for any 0 ≤ x ≤ 1 [16]. For the fMP,
an analytical expression of φA(x) is readily inferred from
(8). In Figs. 3 and 4(a) we find an excellent agreement,
for any value of x and w, between theory and numerics.
To compare with the FPA, we rewrite (10) as φA(x) =

Ψ(x)/Ψ(1), with Ψ(x) =
∫ x

0 dy e−
∫

y

0
dzΘ(z) and Θ =

N ln [T+(z)/T−(z)]. For the FPA, Θ(z) is replaced by
ΘFP(z) = 2Nz

[

T ′
+(x

∗)− T ′
−(x

∗)
]

/ [T+(x
∗) + T−(x

∗)]
(linear noise approximation) [7]. As a result, for the fMP
we find Θ(x) − ΘFP(x) ∼ Nw2(x − x∗)2 around x∗ [16].
Thus, while it is applicable when Nw ≪ 1 [3, 5], the FPA
is unable to account for fixation, and is plagued by expo-
nentially large errors, for finite w (w & N−1/2). This is
shown in Figs. 3 and 4 where our predictions and those
of the FPA are compared for various values of w and N .
Conclusion. We have derived a WKB-based the-

ory that naturally accounts for non-Gaussian behavior
and allows the accurate calculation of important large-
fluctuation-induced phenomena. With this approach,

generalized to account for multiple absorbing states, we
have studied fixation in evolutionary games under non-
vanishing selection. In the framework of models of co-
operation dilemmas, we have analytically computed the
QSD (shape of the metastable PDF), MFTs and the fixa-
tion probabilities beyond the weak selection limit. While
it does not cover the w → 0 limit (where the FPA
holds), our theory agrees excellently with numerical sim-
ulations over a broad range of finite selection strength
(0 < w ≤ 1), where the FPA generally fails. For concrete-
ness, our approach has been illustrated for two classes of
(formally solvable) 2× 2 games, but is neither restricted
to linear payoffs nor to a specific choice of the transition
rates [16]. Importantly, our theory can be adapted to
study evolutionary processes for which there is no rigor-
ous analytical treatment (e.g. 3× 3 games [1]) and help
generalize the concept of evolutionary stability.
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