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Abstract

We extend the notion of pseudo-differential operators that are used
to represent the Gelfand-Dickey hierarchies, and obtain a similar rep-
resentation for the full Drinfeld-Sokolov hierarchies of Dn type. By
using such pseudo-differential operators we introduce the tau functions
of these bi-Hamiltonian hierarchies, and prove that these hierarchies
are equivalent to the integrable hierarchies defined by Date-Jimbo-
Kashiware-Miwa and Kac-Wakimoto from the basic representation of

the Kac-Moody algebra D
(1)
n .
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1 Introduction

For every affine Lie algebra g and a choice of a vertex cm of the extended
Dynkin diagram, Drinfeld and Sokolov constructed in [6] a hierarchy of
integrable systems which generalizes the prototypical soliton equation–the
Korteweg-de Vries equation. This construction provides a big class of in-
tegrable hierarchies that are important in different areas of mathematical
physics. In particular, the integrable hierarchies that are associated to the
affine Lie algebras of A-D-E type are shown to be closely related to 2d topo-
logical field theory and Gromov-Witten invariants, see [7, 10, 12, 13, 20,
21, 27, 32] and references therein. In establishing such relationships the tau
functions of the integrable hierarchies play a crucial role, they correspond
to the partition functions of topological field theory models. The unknown
functions of the hierarchy are related to some special two point correlation
functions.

The definition of the tau functions for the Drinfeld-Sokolov hierarchies
and their generalizations [22] was given in [23, 15] by using the dressing
operators of the hierarchies. In terms of the tau functions such integrable
hierarchies and their generalizations are represented as systems of Hirota
bilinear equations, they can also be constructed by using the representa-
tion theoretical approach to solition equations developed by Date, Jimbo,
Kashiwara, Miwa [4, 2] and by Kac, Wakimoto [26, 25]. In this approach
the systems of Hirota bilinear equations are constructed from an integrable
highest weight representation of g and its vertex operator realization, the
tau functions that satisfy these equations are elements of the orbit of the
highest weight vector of the representation under the action of the affine Lie
group. Note that tau functions of the Drinfeld-Sokolov hierarchies are also
defined in [11, 31] via certain symmetry (called tau-symmetry in [10]) of the
Hamiltonian densities of the hierarchies represented in forms of modified
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KdV type. Here the unknown functions of the Drinfeld-Sokolov hierarchies
in forms of modified KdV type and in that of KdV type are related by Miura
type transformations.

For general Drinfeld-Sokolov hierarchies there are no canonical choices
for their unknown functions, and the definition of the tau functions given
in [11, 15, 23] in terms of the dressing operators is in certain sense im-

plicit. However, in the particular case when the affine Lie algebra is A
(1)
n

the Drinfeld-Sokolov hierarchy coincides with the Gelfand-Dickey hierarchy
[17], the unknown functions can be taken as the coefficients of a differential
operator

L = Dn+1 + unDn−1 + . . .+ u2D + u1, D =
d

dx
,

and the integrable hierarchy can be represented in the form

∂L

∂tk
= [(L

k
n+1 )+, L], k = Z+ \ (n+ 1)Z+. (1.1)

Here ui are functions of the spatial variable x and the time variables t1, t2, . . . .
This integrable hierarchy has the Hamiltonian structure

∂ui

∂tk
= {ui(x),Hk+n+1},

where the Poisson bracket is defined by

{F,G} =

∫
res

([
δF

δL
,L

]
δG

δL

)
dx

for local functionals F , G, and the densities of the Hamiltonians Hk =∫
hk(u, ux, . . . )dx can be chosen as

hk =
n+ 1

k
resL

k
n+1 .

The advantage of such a choice of the Hamiltonian densities lies in the fact
that they satisfy the tau symmetry condition

k

n+ 1

∂hk

∂tl
=

l

n+ 1

∂hl

∂tk
.

Due to this property of the densities the tau function of the Gelfand-Dickey
hierarchy can be introduced, as it was done in [4, 10, 14, 31], by the equations

∂2 log τ

∂x∂tk
=

k

n+ 1
hk, k = Z+ \ (n+ 1)Z+. (1.2)

Note that the Hamiltonians for the general Drinfeld-Sokolov hierarchies are
also given in [6], however the densities given there do not satisfy the tau
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symmetry condition. In order to fulfill such a condition these densities
should be modified by adding certain terms which are total x-derivatives of
some differential polynomials of the unknown functions.

In the above formalism of the Drinfeld-Sokolov hierarchy associated to

the affine Lie algebra A
(1)
n , the integrable hierarchy and the relation of its

unknown functions with the tau function are relatively explicitly given. The
purpose of the present paper is to give a similar representation for the

Drinfeld-Sokolov hierarchy associated to the affine Lie algebra D
(1)
n and the

vertex c0 of the Dynkin diagram. Such a formalism is helpful for people
to have a clear picture of the relation of integrable systems with Gromov-
Witten invariants and topological field models associated to A-D-E singu-
larities [12, 13, 16, 19, 20, 21, 33]. In fact, Drinfeld and Sokolov already
represented in [6] part of the integrable hierarchy in terms of a pseudo-
differential operator of the form

L = D2n−2 +
n−1∑

i=1

D−1
(
uiD2i−1 +D2i−1ui

)
+D−1ρD−1ρ, (1.3)

where the functions u1, . . . , un−1, un = ρ serve as the unknown functions of
the hierarchy. The integrable systems of the hierarchy can be labeled by the
elements of a chosen base

{Λj ∈ g
j,Γj ∈ g

j(n−1) | j ∈ 2Z + 1} (1.4)

of the principal Heisenberg subalgebra of D
(1)
n (see Sec. 4 for the definition

of these symbols). Denote by P the fractional power L
1

2n−2 of L which is a
pseudo-differential operator of the form

P = D + w1D
−1 + w2D

−2 + . . . ,

then the part of the integrable hierarchy that corresponds to the elements
Λj can be represented as [6]

∂L

∂tk
= [(P k)+, L], k ∈ Z

odd
+ . (1.5)

The other part that corresponds to the elements Γj can not be represented
in this way by using only the pseudo-differential operators L,P .

Inspired by the Lax pair representations of the dispersionless integrable
hierarchy that appear in 2D topological field theory [7, 30], we attempt to
represent the flows corresponding to the elements Γj by the square root Q
of L which takes the form

Q = D−1ρ+
∑

k≥0

wkD
k.
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However, this operator is not a pseudo-differential operator in the usual
sense, because it contains infinitely many terms with positive powers of D,
so one cannot compute the square of Q. We note that in the dispersionless
case, with D replaced by its symbol p, one can define the square of Q, and
define the dispersionless hierarchy by using L,P and Q.

We are to show in this paper that there exists a new kind of pseudo-
differential operators which are allowed to contain infinitely many terms
with positive power of D such as Q, so we can define the square root of
the pseudo-differential operator L in the space of such operators. Then by
using the pseudo-differential operators L and Q we can get the Lax pair
representation of the remaining part of the integrable hierarchy and define
its tau function in a way that one does for the Gelfand-Dickey hierarchy,
see Theorem 4.11. By using this new kind of pseudo-differential operators,
we also find a Lax pair representation of the two-component BKP hierarchy
(see [3], c.f. [29]). We show that the Drinfeld-Sokolov hierarchy of Dn

type becomes the (2n−2, 2)-reduction of the two-component BKP hierarchy
[2]. In this way we also prove that the square root of the tau function
satisfies the Hirota bilinear equations that are constructed in [2, 26] from
the principal vertex operator realization of the basic representation of the

affine Lie algebra D
(1)
n , see (5.21), (5.22) and Theorem 5.2.

In order to obtain the above mentioned results, we first extend, in Section
2, the usual definition of the ring of pseudo-differential operators. Then in
Section 3 we define a hierarchy of integrable systems and its tau function by
using the pseudo-differential operator L of the form (1.3) and its fractional
powers P,Q. In Section 4 we show that the constructed hierarchy coincides

with the Drinfeld-Sokolov hierarchy associated to the affine Lie algebra D
(1)
n

and the vertex c0 of its Dynkin diagram. In Section 5 we give a Lax pair
representation of the two-component BKP hierarchy, its tau function, and its
(2n−2, 2)-reductions. In the final section we give some concluding remarks.

2 Pseudo-differential operators

In this section we generalize the concept of pseudo-differential operators and
list some useful properties of them.

2.1 Definitions

Let A be a commutative ring with unity, and D : A → A be a derivation.
The algebra of pseudo-differential operators over A is defined to be

D− =

{
∑

i<∞

fiD
i | fi ∈ A

}
.
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This is a complete topological ring, whose topological basis is given by the
following filtration

· · · ⊂ D−
(d−1) ⊂ D−

(d) ⊂ D−
(d+1) ⊂ · · · , D−

(d) =





∑

i≤d

fiD
i | fi ∈ A




 .

The product of two pseudo-differential operators A =
∑

i≤k fiD
i ∈ D− and

B =
∑

j≤l gjD
j ∈ D− is defined by

A ·B =
∑

i≤k

∑

j≤l

∑

r≥0

(
i

r

)
fiD

r(gj)D
i+j−r ∈ D−. (2.1)

It is easy to see that for every s ∈ Z, the coefficient of Ds in (2.1) is a finite
sum of elements of A, so the above product is well defined.

In our formalism of the Drinfeld-Sokolov hierarchy of Dn type below,
one need not only operators in D− but also operators in the following larger
abelian group

D =

{
∑

i∈Z

fiD
i | fi ∈ A

}
.

However, it is impossible to extend the product (2.1) to D because when
expanding the product of two elements of D one meets summations of in-
finitely many elements of A, which are not well defined unless A possesses
certain topology.

Now we assume that on A there is a gradation

A =
∏

i≥0

Ai, Ai · Aj ⊂ Ai+j

such that A is topologically complete w.r.t. the induced decreasing filtration

A = A0 ⊃ · · · ⊃ A(d−1) ⊃ A(d) ⊃ A(d+1) ⊃ · · · , A(d) =
∏

i≥d

Ai.

Let D : A → A be a derivation of degree one, i.e. D(Ai) ⊂ Ai+1. An
operator A ∈ D− ⊂ D is said to be homogeneous if there exists an integer
k ∈ Z such that

A =
∑

i≤k

fiD
i, fi ∈ Ak−i,

and the integer k is called the degree of A. We denote by Dk the subgroup
that consists of all homogeneous pseudo-differential operators of degree k,
then the abelian group D has the following decomposition

D =
∏

k∈Z

Dk.
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We introduce the following subgroups of D:

D+
(d) =

∏

k≥d

Dk, D+ =
⋃

d∈Z

D+
(d).

It is easy to see that D+ is topologically complete w.r.t. the filtration

· · · ⊃ D+
(d−1) ⊃ D+

(d) ⊃ D+
(d+1) ⊃ · · · .

For any A ∈ Dk and B ∈ Dl, it is easy to see that their product defined
by (2.1) belongs to Dk+l, so we can extend this product to D+ such that
D+ becomes a ring.

Definition 2.1 Elements of D− (resp. D+) are called pseudo-differential
operators of the first type (resp. the second type) over A. The intersection
of D− and D+ in D is denoted by

Db = D− ∩ D+,

and its elements are called bounded pseudo-differential operators.

Sometimes to indicate the algebra A and the derivation D, we will use
the notations D±(A,D) instead of D±.

The general form of A ∈ D reads

A =
∑

i∈Z

∑

j≥0

ai,jD
i, ai,j ∈ Aj. (2.2)

The following lemma is obvious.

Lemma 2.2 Suppose A ∈ D is given in (2.2), then

i) A ∈ Dk iff the coefficients ai,j are supported on the ray {(i, j) | i+ j =
k, j ≥ 0};

ii) A ∈ D+ iff there exists m ∈ Z such that ai,j are supported on the
domain {(i, j) | j ≥ max{0,m− i}};

iii) A ∈ D− iff there exists n ∈ Z such that ai,j are supported on the
domain {(i, j) | i ≤ n, j ≥ 0}.
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This lemma has a graphic interpretation as follows:
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(a) A ∈ Dk (b) A ∈ D+ (c) A ∈ D−

From this interpretations it is easy to see the following alternative expres-
sions of the elements of A ∈ D±.

i) If A ∈ D+, then there exists m ∈ Z and ai,j ∈ Aj such that A can be
written as the following two forms:

A =
∑

i∈Z




∑

j≥max{0,m−i}

ai,j



Di, (2.3)

A =
∑

j≥0




∑

i≥m−j

ai,jD
i



 . (2.4)

ii) If A ∈ D−, then there exists n ∈ Z and ai,j ∈ Aj such that A can be
written as follows:

A =
∑

i≤n




∑

j≥0

ai,j



Di, (2.5)

A =
∑

j≥0




∑

i≤n

ai,jD
i



 . (2.6)

We call the expressions (2.3) and (2.5) the normal expansion of A, while the
expressions (2.4) and (2.6) the dispersion expansion of A.

Properties of pseudo-differential operators of the first type are well known.
Similar to the operators in D−, we can define the adjoint operator, the
residue, the positive part and the negative part of a pseudo-differential op-
erator of the second type. Let A ∈ D+ be given by (2.2), then

A∗ =
∑

i∈Z

∑

j≥0

(−1)iDi · ai,j, resA =
∑

j≥0

a−1,j ,
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A+ =
∑

i≥0

∑

j≥0

ai,jD
i, A− =

∑

i<0

∑

j≥0

ai,jD
i.

It is easy to see that A∗, A+, A− ∈ D+ and resA ∈ A. In particular, if
A ∈ D±, then A∓ ∈ Db.

An operator A ∈ D± is called a differential operator if its negative part
A− vanishes. Note that every differential operator in D− is of finite order,
while the ones in D+ may be not. The differential operators in D± form
subrings of D± respectively, and they can act on A in the obvious way.
Given a differential operator A ∈ D±, we denote by A(f) the action of A on
f ∈ A.

Let us introduce some other notations to be used latter. Elements of
the quotient space F = A/D(A) are called local functionals, and they are
represented in the form

∫
fdx = f +D(A), f ∈ A.

Introduce the map

〈 〉 : D → F , A 7→ 〈A〉 =

∫
resAdx.

We then define the pairing

〈A,B〉 = 〈AB〉 (2.7)

on each of the following four spaces:

D+ ×D+, D− ×D−, Db ×D, D ×Db.

It is easy to see that this pairing is symmetric and is nondegenerate on each
of the above spaces.

2.2 Properties of pseudo-differential operators

Now we present some useful properties of pseudo-differential operators.

Lemma 2.3 Let A,B ∈ D±. If the commutator [Am, B] = 0 for some
positive integer m, then [A,B] = 0.

Proof The D− case is well known, we only prove the D+ case. Suppose
C = [A,B] 6= 0. We take the dispersion expansions

A =
∑

j≥a

∑

i≥kj

Ai,jD
i, C =

∑

j≥c

∑

i≥lj

Ci,jD
i,
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such that neither Aka,a nor Clc,c vanishes, then the coefficient of D(m−1)ka+lc

in
[Am, B] = [A,B]Am−1 +A[A,B]Am−2 + · · · +Am−1[A,B]

reads
mAm−1

ka,a Clc,c + · · · ,
where · · · denote the terms with higher degrees in A. This contradicts
with [Am, B] = 0. The lemma is proved. �

Let ρ ∈ A be an invertible element, we consider the operator

Q = D−1ρ+Q+ ∈ D+, (2.8)

where Q+ is a differential operator in D+. Such an operator Q is invertible,
whose inverse reads

Q−1 =
(
D−1ρ(1 + ρ−1DQ+)

)−1

=
(
1 − ρ−1DQ+ + ρ−1DQ+ρ

−1DQ+ − · · ·
)
ρ−1D. (2.9)

Note that Q−1 is a differential operator in D+.

Lemma 2.4 Let Q ∈ D+ be given in (2.8), then D can be uniquely expressed
as the following form

D =
∑

i≥1

hiQ
−i, hi ∈ A. (2.10)

Moreover, mhm − resQm ∈ D(A) for every m ≥ 1.

Proof The first assertion follows from a simple induction. We are going to
prove the second one by using the following fact

resQm = (DQm)+ −D(Qm)+.

The first assertion shows that

(DQm)+ =




∑

i≥1

hiQ
m−i





+

=
∑

i≥1

hi

(
Qm−i

)
+
.

We assume (Qm)+ =
∑

i≥0 am,iQ
−i with am,i ∈ A, then

D(Qm)+ =
∑

i≥0

a′m,iQ
−i +

∑

i≥0

am,i

∑

j≥1

hjQ
−i−j

=
∑

i≥0

a′m,iQ
−i +

∑

j≥1

hj(Q
m)+Q

−j,

10



where a′m,i = D(am,i).

By using the above three formulae, one can obtain

∑

m≥1

(resQm)Q−m =
∑

i≥1

0∑

m=1−i

hi(Q
m)+Q

−m−i −
∑

m≥1

∑

i≥0

a′m,iQ
−i−m.

Note that (Qm)+ = Qm when m ≤ 0, so by comparing the coefficients of
Q−m we have

mhm − resQm =
m−1∑

i=0

a′m−i,i.

The lemma is proved. �

Lemma 2.5 Let A be a pseudo-differential operator in D+, and ρ ∈ A be an
invertible element. Then there exists a unique pseudo-differential operator
B ∈ D+ such that A = ρBD + DBρ. Furthermore, if A∗ = ±A, then
B∗ = ∓B.

Proof Without loss of generality, we can assume A to be homogeneous,
i.e., A =

∑
i≤k aiD

i, ai ∈ Ak−i. Suppose B =
∑

i≤k−1 biD
i, then one can

determine bk−1, bk−2, . . . recursively by A = ρBD+DBρ. So we derive the
first part of the lemma.

If A∗ = ±A, then

ρ(B∗ ±B)D +D(B∗ ±B)ρ = 0,

hence B∗ ± B = 0 due to the uniqueness in the first part. The lemma is
proved. �

3 An integrable hierarchy represented by pseudo-

differential operators

In this section we are to construct a hierarchy of evolutionary partial differ-
ential equations starting from a pseudo-differential operator L. This hier-
archy possesses a bihamiltonian structure which coincides with that of the
Drinfeld-Sokolov hierarchy of Dn type, moreover, it possesses a tau function.

3.1 Construction of the hierarchy

Let M be an open ball of dimension n with coordinates (u1, u2, . . . , un). We
define the algebra A of differential polynomials on M to be

A = C∞(M)[[ui,s | i = 1, . . . , n, s = 1, 2, . . . ]].

11



There is a gradation on A defined by

deg f = 0 for f ∈ C∞(M), degui,s = s,

then it is easy to see that A is topologically complete. We introduce a
derivation D of degree one over A as follows

D : A → A, D =
∑

s≥0

n∑

i=1

ui,s+1 ∂

∂ui,s
,

where ui,0 = ui. Now let us construct the algebras D± starting from A and
D as we did in the last section.

Let L be the following pseudo-differential operator given in (1.3). Ob-
viously L belongs to Db = D− ∩ D+ and satisfies L∗ = DLD−1. Here we
re-denote the coordinate un by ρ, and will use this notation frequently in
what follows.

Firstly, we regard L as an element of D−, then by using properties of
the usual pseudo-differential operators we have the following lemma.

Lemma 3.1 There exists a unique pseudo-differential operator P ∈ D− of
the form

P = D + u1D
−1 + u2D

−2 + · · · (3.1)

such that P 2n−2 = L. Moreover, the operator P satisfies [P,L] = 0 and

P ∗ = −DPD−1. (3.2)

In [4], Date, Jimbo, Kashiwara and Miwa proved the following lemma.

Lemma 3.2 ([4]) The constraint (3.2) to an operator P of the form (3.1)
is equivalent to the condition that for every k ∈ Z

odd
+ the free term of (P k)+

vanishes, i.e. (P k)+(1) = 0.

The above two lemmas imply that the following equations

∂L

∂tk
= [(P k)+, L], k ∈ Z

odd
+ (3.3)

are well defined, and they give evolutionary partial differential equations
of u1, . . . un. In particular, D = d

dx with x = t1, and by taking residue of

D
(

∂L
∂tk

− [(P k)+, L]
)

one has

∂ρ

∂tk
= −(P k)∗+(ρ). (3.4)

The flows in (3.3) first appeared in [6] as part of the Drinfeld-Sokolov hier-
archy of Dn type.
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Note that the Drinfeld-Sokolov hierarchy of Dn type contains n series of
commuting flows, but there are only n−1 series of flows given in (3.3), so in
this sense the equations (3.3) do not form a complete integrable hierarchy.
One main result in the present paper is that the nth series of flows of the
Drinfeld-Sokolov hierarchy of Dn type can be represented by the square root
of L regarded as an element of D+.

Lemma 3.3 There exists a unique pseudo-differential operator Q ∈ D+ of
the following form

Q = D−1ρ+
∑

m≥0

QmD (3.5)

such that Q2 = L. Here Qm are homogeneous differential operators in Db

with degree 2m, and satisfy Q∗
m = Qm. Moreover, the operator Q satisfies

Q∗ = −DQD−1, (3.6)

−Q∗
+(ρ) =

1

2
DL+(1). (3.7)

Proof By substituting (1.3) and (3.5) into DQ2 = DL and comparing the
homogeneous terms, we can obtain

ρQmD +DQmρ = Am, m = 0, 1, 2, . . . . (3.8)

Here Am are differential operators depending on L,Q0, Q1, . . . , Qm−1 and
satisfy Am +A∗

m = 0. Then according to Lemma 2.5, Qm can be determined
by induction, and they satisfy Q∗

m = Qm.

The symmetry property (3.6) is trivial. To show (3.7), we consider the
free terms on both hand sides of (3.8):

DQm(ρ) =





um+1,2m+1, m = 0, 1, . . . , n − 2,

0, m ≥ n− 1.

Hence

−Q∗
+(ρ) =

∑

m≥0

DQm(ρ) =

n−2∑

m=0

um+1,2m+1 =
1

2
DL+(1).

The lemma is proved. �

According to Lemmas 2.3 and 3.3, the following evolutionary equations
are well defined:

∂L

∂t̂k
= [−(Qk)−, L] = [(Qk)+, L], k ∈ Z

odd
+ . (3.9)

13



In particular, we have

∂ρ

∂t̂k
= −(Qk)∗+(ρ), k ∈ Z

odd
+ . (3.10)

Whe k = 1 we obtain ∂ρ/∂t̂1 = 1
2DL+(1), this flow is linearly independent

with ∂ρ/∂t2i−1 (1 ≤ i ≤ n−1), so from the bihamiltonian recursion relation
(see below) we see that the equations given in (3.3) are linearly independent
with that defined in (3.9).

Theorem 3.4 The flows in (3.3), (3.9) commute with each other.

Proof The commutativity of these flows follows from the following equivalent
representations of (3.3), (3.9):

∂P

∂tk
= [(P k)+, P ],

∂P

∂t̂k
= [−(Qk)−, P ], (3.11)

∂Q

∂tk
= [(P k)+, Q],

∂Q

∂t̂k
= [−(Qk)−, Q], (3.12)

which can be verified as Lemma 2.3. The theorem is proved. �

The dispersionless limit of the flows ∂
∂t̂k

was first given by Takasaki

in [30], but the dispersionful one was not given there. Following [30], we
call the flows (3.3) and (3.9) the positive and the negative flows respectively.
The above theorem shows that the negative and the positive flows form an
integrable hierarchy. We will show that it is equivalent to the Drinfeld-
Sokolov hierarchy of Dn type.

3.2 Bihamiltonian structure and tau structure

In this subsection we show that the hierarchy (3.3), (3.9) carries a bihamil-
tonian structure, and the densities of the Hamiltonians can be chosen to
satisfy the tau symmetry condition. We then define the tau function of the
hierarchy by using this tau symmetry following the approach of [10].

Let L = DL, it has the form

L = D2n−1 +

n−1∑

i=1

(
uiD2i−1 +D2i−1ui

)
+ ρD−1ρ. (3.13)

Given a local functional F =
∫
f dx ∈ A/D(A), we define its variational

derivative w.r.t. L to be an element X = δF/δL ∈ D such that

δF = 〈X, δL〉, X = X∗. (3.14)
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The existence of such an element can be verified by taking

X =
1

2

n−1∑

i=0

(
D−2i δF

δvi(x)
+

δF

δvi(x)
D−2i

)
. (3.15)

where v0 = ρ2 and v1, . . . , vn−1 are determined by representing the operator
L in the following form

L = D2n−1 +
n−1∑

i=1

viD2i−1 +
n−1∑

i=1

ṽiD2i−2 + ρD−1ρ.

Note that the new coordinates v1, . . . , vn−1 are related to u1, . . . , un−1 by a
Miura-type transformation, and the functions ṽi determined by the condition
L + L∗ = 0 are linear functions of the derivatives of v1, . . . , vn−1.

On the other hand, the variational derivative X defined in (3.14) is
determined up to the addition of a kernel part Z that satisfies

Z+(ρ) = 0, Z− =
∑

i≤n

(
wiD

−2i +D−2iwi

)
, wi ∈ A.

The following compatible Poisson brackets are given in Proposition 8.3
of [6] (see also [9]) for the bihamiltonian structure of the Drinfeld-Sokolov
hierarchy of Dn type:

{F,G}1(L) = 〈X, (DY+L)− − (LY+D)− + (LY−D)+ − (DY−L)+〉, (3.16)

{F,G}2(L) = 〈X, (LY )+L − L(Y L)+〉, (3.17)

where F and G are two arbitrary local functionals, and

X =
δF

δL , Y =
δG

δL .

Note that in the above formulae of the Poisson brackets the second compo-
nent in the pairing 〈 , 〉 belongs to Db for any Y ∈ D, so from the definition
of 〈 , 〉 given in (2.7) we see that the first component X is not restricted
to the space D+ or D−. One can show by a direct computation that the
definition of these Poisson brackets is independent of the choice of the kernel
parts of X and Y , so they are well defined.

Theorem 3.5 The hierarchy (3.3), (3.9) has the following bihamiltonian
representation:

∂F

∂tk
= {F,Hk+2n−2}1 = {F,Hk}2, (3.18)

∂F

∂t̂k
= {F, Ĥk+2}1 = {F, Ĥk}2. (3.19)
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Here F ∈ F is any local functional, and the Hamiltonians are given by

Hk =
2n− 2

k
〈P k〉, Ĥk =

2

k
〈Qk〉, k ∈ Z

odd
+ . (3.20)

Proof Let us start with the computation of the variational derivatives of
the Hamiltonians Hk. By using the identity P 2n−2 = L (see Lemma 3.1)
and the symmetric property of the pairing 〈 , 〉 we have

δHk = (2n − 2)〈P k−1, δP 〉 = (2n − 2)〈P k−2n+2, P 2n−3δP 〉
= 〈P k−2n+2, δL〉 = 〈P k−2n+2D−1, δL〉 = 〈Yk, δL〉, (3.21)

where Yk = P k−2n+2D−1 ∈ D. From (3.2) it follows that Y ∗
k = Yk, so we

can take
δHk

δL = Yk = P k−2n+2D−1. (3.22)

To show (3.18), we first note due to Lemma 3.2 the validity of

D(P k)+D
−1 = D(P kD−1)+ = (DP kD−1)+,

(P kD−1D)− = (P kD−1)−D (3.23)

for any k ∈ Z
odd
+ . So from (3.3) we have

∂L
∂tk

= D(P k)+L−DL(P k)+ = (DP kD−1)+L − L(P k)+

= (LYk)+L − L(YkL)+.

On the other hand, by using the commutativity between L and P (see
Lemma 3.1) we can also represent ∂L

∂tk
in the following form:

∂L
∂tk

= D(P k)+L−DL(P k)+

=
(
D(P k)+L−DL(P k)+

)

+
+
(
D(P k)+L−DL(P k)+

)

−

=
(
−D(P k)−L+DL(P k)−

)

+
+
(
D(P k)+L−DL(P k)+

)

−

= (L(Yk+2n−2)−D −D(Yk+2n−2)−L)+
+ (D(Yk+2n−2)+L − L(Yk+2n−2)+D)−

Now the equivalence of the flows (3.3) with (3.18) follows from the above
identities together with the relation

∂F

∂tk
=

〈
δF

δL ,
∂L
∂tk

〉
.

By using the property (3.6) of the operator Q we know that for any
k ∈ Z

odd
+ the free term of Qk vanishes, then a similar argument as above
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leads to the equivalence of the flows (3.9) with (3.19). The theorem is proved.
�

By using the formula (3.22) and

δĤk

δL = Qk−2D−1,

we obtain the following proposition.

Proposition 3.6 The local functionals H1,H3, . . . ,H2n−3 and Ĥ1 are lin-
early independent Casimirs of the first Poisson bracket { , }1.

We now verify that the above defined densities of the Hamiltonians sat-
isfy the tau symmetry condition, and we can thus define the tau function
for the integrable hierarchy (3.3), (3.9). To this end let us introduce a series
of rescaled time variables

Tα,p =






(2n − 2)Γ(p + 1 + 2α−1
2n−2 )

Γ(2α−1
2n−2 )

t(2n−2)p+2α−1, α = 1, . . . , n− 1,

2Γ(p+ 1 + 1
2)

Γ(1
2)

t̂2p+1, α = n

with p = 0, 1, 2, . . . . Then the Hamiltonian equations (3.18), (3.19) read

∂F

∂Tα,p
= {F,Hα,p}1 =

(
p+

1

2
+ µα

)−1

{F,Hα,p−1}2,

where the densities of the Hamiltonians Hα,p are given by

hα,p−1 =






Γ(2α−1
2n−2 )

(2n− 2) Γ(p + 1 + 2α−1
2n−2 )

resP (2n−2)p+2α−1, α = 1, . . . , n− 1,

Γ(1
2)

2Γ(p+ 1 + 1
2)

resQ2p+1, α = n,

and the constants µα are the spectrum of the underlying Frobenius manifold
[7, 9], read

µα =






2α − n

2n− 2
, α = 1, . . . , n− 1,

0, α = n.

Then we have tau symmetry

∂hα,p−1

∂T β,q
=
∂hβ,q−1

∂Tα,p
,
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and the differential polynomials

Ωα,p;β,q = ∂−1
x

∂hα,p−1

∂T β,q
, α, β = 1, 2, . . . , n; p, q ≥ 0.

have the property
Ωα,p;β,q = Ωβ,q;α,p.

Hence the chosen hα,p give a tau structure, in the sense of [10], of the
bihamiltonian structure of the integrable hierarchy (3.3), (3.9). This tau
structure defines the tau function τ̂ of the integrable hierarchy by

∂2 log τ̂

∂Tα,p∂T β,q
= Ωα,p;β,q. (3.24)

4 Drinfeld-Sokolov hierarchies and pseudo-differential

operators

In this section we first recall some facts about the Drinfeld-Sokolov hierar-
chies associated to untwisted affine Lie algebras, see details in [6]. Then we
consider the Drinfeld-Sokolov hierarchy of Dn type and identify it with the
hierarchy (3.3), (3.9) constructed in the last section.

4.1 Definition of the Drinfeld-Sokolov hierarchies

Let g be an untwisted affine Lie algebra, and {ei, fi, hi | i = 0, 1, 2, . . . , n}
be a set of Weyl generators of g. In Drinfeld and Sokolov’s construction, the
central element c is not used, so we always assume c = 0. We need to use
the following two gradations on g [6, 25]:

i) the principal/canonical gradation

g =
⊕

j∈Z

g
j, deg ei = − deg fi = 1, i = 0, 1, . . . , n;

ii) the homogeneous/standard gradation

g =
⊕

j∈Z

gj, deg ei = − deg fi = δi0, i = 0, 1, . . . , n.

We will use notations such as g
<0 =

∑
i<0 g

i below.

In [6] Drinfeld and Sokolov assigned a standard gradation to any chosen
vertex ci of the Dynkin diagram of g and used the standard gradation to
construct an integrable hierarchy. As mentioned in the beginning of the
present paper, we only consider the case that the vertex is chosen to be c0
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which is the special one added to the Dynkin diagram of the corresponding
simple Lie algebra. Integrable hierarchies that associated to different choices
of the vertices are related by Miura type transformations.

Denote by E (resp. E+) the set of exponents (resp. positive exponents)
of g. Let s be the Heisenberg subalgebra associated to the principal grada-
tion, which is defined to be the centralizer of Λ =

∑n
i=0 ei. One can fix a

basis λj ∈ g
j (j ∈ E) of s.

Let C∞(R,W ) be the set of smooth functions from R to a linear space
W . We consider operators of the form

L = D + Λ + q, q ∈ C∞(R, g0 ∩ g
≤0), (4.1)

where D = d
dx , and x is the coordinate on R.

Proposition 4.1 ([6]) There exists an element U ∈ C∞(R, g<0) such that
the operator L0 = e−adU L has the form

L0 = D + Λ +H, H ∈ C∞(R, s ∩ g
<0), (4.2)

and for different choices of U , the map H differs by the addition of the total
derivative of a differential polynomial of q.

We fix a U as given in the above proposition, and introduce a map

ϕ : C∞(R, g) → C∞(R, g), A 7→ eadUA. (4.3)

The Drinfeld-Sokolov hierarchy is a hierarchy of partial differential equations
of gauge equivalence classes of L defined by

∂L

∂tj
= [ϕ(λj)

+,L ], j ∈ E+. (4.4)

Here ϕ(λj)
+ stands for the projection of ϕ(λj) onto C∞(R, g>0), and the

gauge transformations of L read

L 7→ eadN L , N ∈ C∞(R, g0 ∩ g
<0). (4.5)

Theorem 4.2 ([6]) The Drinfeld-Sokolov hierarchy carries a bihamiltonian
structure, and the Hamiltonian densities are given by the expansion coeffi-
cients of the map H (4.2) in the basis {λ−j | j ∈ E+}.

For the classical untwisted affine Lie algebras, Drinfeld and Sokolov
proposed a way to represent their hierarchies via certain scalar pseudo-
differential operators over A, the algebra of gauge invariant differential poly-
nomials of q in (4.1). They gave such representations for the full hierarchies

of the A
(1)
n , B

(1)
n , C

(1)
n types by using pseudo-differential operators of the first
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type. However, for the D
(1)
n case, as pointed out by Drinfeld and Sokolov,

the pseudo-differential operators in D− are not enough to represent the full
hierarchy. Our purpose of introducing the space D+ in the present paper is
to represent the full Drinfeld-Sokolov hierarchy of Dn type in terms of scalar
pseudo-differential operators.

The following lemma tells how to construct scalar pseudo-differential
operators from the operator L .

Lemma 4.3 ([6]) Let R be a ring with unity. We consider matrices of the
form

R =



 αt a

R1 β



 ∈ Rm×m,

in which the block R1 ∈ R(m−1)×(m−1) is invertible, α, β are (m − 1)-
dimensional column vectors, and the superscript t means the transpose of
matrices. Define ∆(R) = a − αtR−1

1 β, then the following statements are
true.

i) Suppose x1, x2, . . . , xm, y belong to some R-module such that

R · (x1, x2, . . . , xm)t = (y, 0, . . . , 0)t,

then ∆(R) · xm = y.

ii) For any upper triangular matrix Ñ ∈ Rm×m with unity on the main
diagonal one has ∆(ÑRÑ−1) = ∆(R).

iii) Given an anti-isomorphism ∗ of R, one can define an anti-isomorphism
T of Rm×m by (RT )ij = R∗

m+1−j,m+1−i. It satisfies ∆(RT ) = ∆(R)∗.

4.2 Positive flows of the Drinfeld-Sokolov hierarchy of Dn

type

In this subsection, we recall the approach given in [6] that represents part
of the Drinfeld-Sokolov hierarchy of Dn type as the positive flows (3.3) by
using pseudo-diferential operators.

We first recall the matrix realization of the affine Lie algebra g of D
(1)
n

type [25, 6]. Denote by ei,j the 2n×2n matrix that takes value 1 at the (i, j)-
entry and zero elsewhere, then one can realize g by choosing the Weyl gen-
erators as follows:

e0 =
λ

2
(e1,2n−1 + e2,2n), en =

1

2
(en+1,n−1 + en+2,n), (4.6)

ei = ei+1,i + e2n+1−i,2n−i (1 ≤ i ≤ n− 1), (4.7)
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f0 =
2

λ
(e2n−1,1 + e2n,2), fn = 2(en−1,n+1 + en,n+2), (4.8)

fi = ei,i+1 + e2n−i,2n+1−i (1 ≤ i ≤ n− 1), (4.9)

hi = [ei, fi] (0 ≤ i ≤ n). (4.10)

In particular, the associated simple Lie algebra g0 of Dn type is realized as

g0 =
{
A ∈ C

2n×2n | A = −SATS−1
}
, (4.11)

where S is the following matrix

S =

n∑

i=1

(−1)i−1(ei,i + e2n+1−i,2n+1−i),

and AT = (al+1−j,k+1−i) for any k × l matrix A = (aij). Note that in this
realization the algebra g is just g0 ⊗ C[λ, λ−1].

The set of exponents of g is given by

E = {1, 3, 5, . . . , 2n − 3} ∪ {(n− 1)′} + (2n − 2)Z,

where (n−1)′ indicates that when n is even the multiplicity of each exponent
congruent to n− 1 modulo 2n− 2 is 2. A basis of the principal Heisenberg
subalgebra s can be chosen as

{−Λk ∈ g
k,Γk ∈ g

k(n−1) | k ∈ 2Z + 1},

where Λ =
∑n

i=0 ei, and

Γ =κ
(
en,1 −

1

2
en+1,1 −

λ

2
en,2n +

λ

4
en+1,2n

+ (−1)n
(
e2n,n+1 −

1

2
e2n,n − λ

2
e1,n+1 +

λ

4
e1,n

))
(4.12)

with κ = 1 when n is even and
√
−1 when n is odd. Here Λj and Γj are

define to be the j-th power of Λ and Γ respectively for j > 0, while for j < 0

Λj = (λ−1Λ2n−3)−j , Γj = (λ−1Γ)−j . (4.13)

We now rewrite the Drinfeld-Sokolov hierarchy of Dn type (4.4) into the
form

∂L

∂tk
= [ϕ(−Λk)+,L ],

∂L

∂t̂k
= [ϕ(Γk)+,L ], k ∈ Z

odd
+ . (4.14)

We call the flows ∂
∂tk

and ∂
∂t̂k

the positive and the negative flows of the

Drinfeld-Sokolov hierarchy of Dn type respectively. We will show that these
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flows coincide with the positive and negative flows (3.3) and (3.9) defined
by the pseudo-differential operator L.

It is shown in [6] that in the orbit of gauge transformations of L , one
can find a canonical representative L can of the form

L
can = D + Λ + qcan,

where qcan reads

qcan =

[ n−1
2

]∑

j=1

(
qj(e1,2j + e2n+1−2j,2n) + qn−j(e1,2n+1−2j + e2j,2n)

)
+ q̂ (4.15)

with

q̂ =






1
2(qn/2 + ρ)(e1,n + en+1,2n) + (qn/2 − ρ)(e1,n+1 + en,2n), n even,

−
√
−1ρ(1

2e1,n − e1,n+1 + en,2n − 1
2en+1,2n), n odd.

The coefficients q1, . . . , qn−1 and ρ are gauge invariant differential polynomi-
als of q that appears in (4.1). They serve as coordinates of the orbit space
of gauge transformations, and we will use them as unknown functions of the
Drinfeld-Sokolov hierarchy.

Let A be the algebra of differential polynomials of q1, . . . , qn−1 and ρ,
denote A− = A((λ−1)), we introduce a free A−-module

V =
(
A−
)2n

=

{
∑

i<∞

αiλ
i | αi ∈ A2n

}

.

Let us fix a basis {ψ̂2n, ψ2n−1, . . . , ψ1} of V , where ψ̂2n = λ
2ψ1 +ψ2n, and ψi

is the column vector whose i-th entry is 1 and others are zero.

In the notions of Lemma 4.3, we let R = D− and denote by R+ the sub-
algebra of R consisting of differential operators. We define an R+-module
structure on V by

D · α = L
canα, α ∈ V. (4.16)

Note that L can|λ=0 ∈ R2n×2n
+ , let

R = (L can|λ=0)
T = −diag(D,D, . . . ,D) + Λ|λ=0 + (qcan)T ,

then it is straightforward to verify that

R · (ψ̂2n, ψ2n−1, . . . , ψ1)
t = (−λψ2, 0, . . . , 0)

t = (−λD · ψ1, 0, . . . , 0)
t. (4.17)

Denote L = −∆(R), where ∆ is the operation defined in Lemma 4.3,
then L∗ = −L by using (4.11) and the third part of Lemma 4.3. It is
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easy to see that L has the form (3.13). This observation gives a Miura-
type transformation between u1, . . . , un and q1, . . . , qn−1, ρ, so the algebra
A defined above coincides with the one that is given in the last section.
Moreover, the second part of Lemma 4.3 implies that L is invariant w.r.t.
the gauge transformations (4.5), thus the Drinfeld-Sokolov hierarchy can be
represented by the operator L, or equivalently by L = D−1L.

Note that the operator L /∈ R+, since V is only an R+-module L cannot
act on V , and the first part of Lemma 4.3 cannot be applied directly. To
resolve this problem, Drinfeld and Sokolov decomposed V into two subspaces
such that D− can act on one of them, then the first part of Lemma 4.3 can
be applied. In this way, the positive flows of the Drinfeld-Sokolov hierarchy
(4.14) are represented in the form (3.3) as the positive flows given by the
pseudo-differential operataor L of the form (1.3).

In the matrix realization of g, the elements Λ and Γ are 2n×2n matrices
with entries in C[λ], so they can act on the space V . One can verify that
the following decomposition holds true

V = V1 ⊕ V2, V1 = ImΛ = Ker Γ, V2 = KerΛ = ImΓ.

Denote T = eU , where U is the matrix appeared in Proposition 4.1 with
L = L can, then we also have

V = V ′
1 ⊕ V ′

2 , V ′
1 = TV1, V ′

2 = TV2. (4.18)

Since the operator λ−1Λ2n−2 is the identity operator when restricted to
V1, let P = ϕ(λ−1Λ2n−2) with ϕ being defined in (4.3), then P is the
projection from V to V ′

1 . We denote the projection of α ∈ V in V ′
1 by

α′ = Pα, and define the action

D−1 · α′ = (L can)−1 α′ = T
(
Λ − (Λ − L0)

)−1
T−1α′

=T
(
Λ−1 + Λ−1(Λ − L0)Λ

−1 + (Λ−1(Λ − L0))
2Λ−1 + · · ·

)
T−1α′.

Here the operator L0 defined in (4.2) now reads

L0 = e−U
L

caneU = D + Λ +
∑

k∈Z
odd
+

fkΛ
−k +

∑

k∈Z
odd
+

gkΓ
−k (4.19)

with fk, gk ∈ A and the negative powers Λ, Γ defined in (4.13). Note that
Im Λ−1 ⊂ Im Λ, ImΓ−1 ⊂ ker Λ, then D−1 · α′ ∈ V ′

1 , so V ′
1 becomes an

R-module.

It follows from [L0,Λ] = 0 that [P,L can] = 0, then by acting P on
both sides of (4.17) one has

R · (ψ̂′
2n, ψ

′
2n−1, . . . , ψ

′
1)

t = (−λD · ψ′
1, 0, . . . , 0)

t.

Now the first part of Lemma 4.3 can be employed to prove the following
lemma.
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Lemma 4.4 ([6]) Let L = −∆(R), L = D−1L, then L takes the form

(1.3). Define P = L
1

2n−2 ∈ D− as in Lemma 3.1, then for any i ∈ Z the
following equalities hold true

ϕ(Λi)ψ′
1 = P i · ψ′

1, (4.20)
(
ϕ(Λ2i+1)+ψ1

)′
= (P 2i+1)+ · ψ′

1. (4.21)

By using the second equality, one can represent the positive flows ∂
∂tk

of
the Drifeld-Sokolov hierarchy (4.14) in the form (3.3). We are to explain in
the next subsection that the negative flows of (4.14) can be represented as
(3.9).

The first equality of the above lemma gives the following result.

Proposition 4.5 ([6]) Let fk be the coefficients that appear in (4.19), then
fk + 1

k resP k ∈ D(A) for all k ∈ Z
odd
+ .

From Theorem 4.2 and (3.20) we know that this proposition related the
densities of the Hamiltonians of the positive flows of the Drinfeld-Sokolov
hierarchy with that of the positive flow (3.3) defined in the last section.

4.3 Negative flows of the Drinfeld-Sokolov hierarchy of Dn

type

In the last subsection, the pseudo-differential operator representation for the
positive flows of the Drinfeld-Sokolov hierarchy of Dn type is obtained by
introducing a D−-module structure on the space V ′

1 and using Lemma 4.3 as
was done in [6]. In order to obtain a similar representation for the negative
flows, we try to assign a D+-module structure to V ′

2 . However, it seems that
there is no such a structure on V ′

2 , so we first extend the space V ′
2 to a larger

one V ′′
2 which admits a D+-module structure, then we employ Lemma 4.3

and obtain the pseudo-differential operator representation for the negative
flows of the Drinfeld-Sokolov hierarchy of Dn type.

Recall that V2 as an A−-module is spanned by the following two vectors:

ψ̂1 =
1

2
ψ1 −

1

λ
ψ2n, ψ̂2 = Γψ̂1 = κ

(
ψn − 1

2
ψn+1

)
. (4.22)

The action of Γ restricted to V2 satisfies Γ2 = λ, so we introduce Γ−1 = λ−1Γ,
see (4.13). It is easy to see that every vector α ∈ V2 can be uniquely
expressed in the form

α =
∑

i≤m

aiΓ
iψ̂1, ai ∈ A, m ∈ Z. (4.23)
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This observation shows that the space V2 is in fact a rank-one free module
of the following algebra

D−(A,Γ) =

{
∑

i<∞

aiΓ
i | ai ∈ A

}
.

This is the algebra of “pseudo-differential operators of the first type” (see
Sec. 2.1) over the algebra A with the derivation “D” being the following
trivial map

Γ : A → A, f 7→ 0,

which surely gives a derivation of degree one over A.

By regarding another trivial map

Γ−1 : A → A, f 7→ 0,

as a derivation of degree one, one can also define the algebra of “pseudo-
differential operators of the second type” with respect to the algebra A and
the derivation Γ−1 as

D+(A,Γ−1) =





∑

j≥0

∑

i≤m+j

ai,jΓ
i | ai,j ∈ Aj, m ∈ Z




 .

We denote by V̂2 the rank-one free module of the algebra D+(A,Γ−1) with
generator ψ̂1, which has a linear topology induced from that of D+(A,Γ−1).
It is easy to see that the algebra D−(A,Γ) is a subalgebra of D+(A,Γ−1)
(see Lemma 2.2), hence V2 is a subspace of V̂2.

To define the space V ′′
2 , we need to extend the space V to certain space

V̂ that involves V̂2 as a subspace. Since the space V is defined to be (A−)
2n

,
in which the algebra A− = A((λ−1)) can also be defined as D−(A, λ) with
λ being the trivial derivation, we similarly extend the space V to

V̂ = Â2n, Â = D+(A, λ−1).

The space V̂ has a linear topology induced from that of Â. It is easy to
see that the linear transformations Λ,Γ, T = eU : V → V can be extended
naturally to V̂ . Then the expression

α =
∑

j≥0

∑

i≤m+j

ai,jΓ
iψ̂1 ∈ V̂2 (4.24)

is also convergent in V̂ according to its topology, hence the space V̂2 is indeed
a subspace of V̂ .

Now let us introduce another subspace of V̂ :

V ′′
2 = T V̂2 ⊂ V̂ ,
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then V ′
2 is a subspace of V ′′

2 . As in the previous subsection we define a map

Q : V → V ′
2 , Q = ϕ(λ−1Γ2)

with ϕ defined in (4.3). Then we have the following commutative diagram

V
λ−1Γ2

//

T∼=

��

V2
�

� i
//

T∼=
��

V̂2

T∼=
��

V
Q

// V ′
2

�

� i
// V ′′

2

We also denote the composition of Q and the inclusion V ′
2 →֒ V ′′

2 by Q, and
write α′′ = Qα for any vector α ∈ V .

Lemma 4.6 The space V̂2 is a free D+(A,Γ−1)-module with generator T−1ψ′′
1 .

Proof To see that T−1ψ′′
1 is another generator besides ψ̂1, we only need to

show that these two vectors are related by the action of a unit of the algebra
D+(A,Γ−1).

Recall T = eU , in which according to the present matrix realization the
element U given in Proposition 4.1 has the form U0 +O(λ−1) with U0 being
a strictly upper triangular matrix, and that the vector ψ̂1 defined in (4.22)
can be represented as

ψ̂1 = λ−1Γ2ψ1,

so we have

ψ′′
1 = Qψ1 = Tλ−1Γ2T−1ψ1 = T (ψ̂1 +O(λ−1)) ∈ V ′

2 .

By using the general form (4.23) of elements of V2 and the identity Γ2j+1|V2 =
λjΓ, one can represent T−1ψ′′

1 ∈ V2 in the following form:

T−1ψ′′
1 =

(

1 +
∑

i<0

biΓ
i

)

ψ̂1, bi ∈ A. (4.25)

Obviously the element 1+
∑

i<0 biΓ
i ∈ D+(A,Γ−1) is invertible. The lemma

is proved. �

Aiming at a D+-module structure on the space V ′′
2 such that the action

of D coincides with (4.16) when restricted to the subspace V ′
2 , we need to

define the action of (L can)i (i ∈ Z) on the space V ′′
2 . Note that the operator

L0 : V → V given in (4.19) can be extended to V̂ , we denote its restriction
on the space V̂2 by L̂0, which reads

L̂0 = L0|V̂2
= D +

∑

k∈Z
odd
+

gkΓ
−k.
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Here g1 ∈ A is invertible as indicated in [6], so the operator L̂0 is invertible
on V̂2, and its inverse is given by

L̂
−1
0 =

(
g1Γ

−1(1 + g−1
1 ΓD +M)

)−1

=
(
1 − (g−1

1 ΓD +M) + (g−1
1 ΓD +M)2 − · · ·

)
g−1
1 Γ,

where M = g−1
1

∑
j≥1 g2j+1 Γ−2j . One can expand the right hand side and

obtain

L̂
−1
0 =

∑

s≥0

∑

r≤s

Ars Γr+1, Ars =

s∑

j=0

crsjD
j, crsj ∈ As−j, (4.26)

in which A00 = c000 = g−1
10 with g10 being the projection of g1 onto A0. Note

that g10/ρ is a positive constant, where ρ appears in the definition (4.15) of
L can, and we have normalized Γ such that this constant is 1. Since Ars are
differential operators of degree s, i.e., Ars(Ad) ⊂ Ad+s, then by using the
expressions (4.26) and (4.24) one can verify that the action of L̂

−1
0 on V̂2

is well defined. Also note that the image L̂
−1
0 (V2) is not contained in V2

though L̂0(V2) ⊂ V2, which is why we extend V2 to V̂2.

To go forward, we need to present another expression for vectors in V̂2.

Lemma 4.7 Every vector α ∈ V̂2 can be uniquely expressed in the form

α =
∑

j≥0

∑

i≤m+j

bi,jL̂
−i
0 T−1ψ′′

1 , bi,j ∈ Aj, m ∈ Z. (4.27)

Proof According to Lemma 4.6, we suppose α ∈ V̂2 has the form

α =
∑

j≥k

∑

i≤m+j

ai,jΓ
i T−1ψ′′

1 + · · · , ai,j ∈ Aj,

where · · · stands for the terms of the form (4.27). Let us proceed to prove
the lemma by induction on the lower bound k of the index j.

First, we have

α =
∑

i≤m+k

ai,kΓ
i T−1ψ′′

1 +
∑

j≥k+1

∑

i≤m+j

ai,jΓ
iT−1ψ′′

1 + · · ·

=am+k,kΓ
m+k T−1ψ′′

1 +
∑

i≤m−1+k

ai,kΓ
i T−1ψ′′

1

+
∑

j≥k+1

∑

i≤m+j

ai,jΓ
i T−1ψ′′

1 + · · · . (4.28)

From the expansion (4.26) it follows that

L̂
−l
0 =

∑

s≥0

∑

r≤s

A(l)
rs Γr+l, A(l)

rs ∈ (D−)+, degA(l)
rs = s, (4.29)
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where A
(l)
00 = g−l

10 , hence by using (4.25) we have

L̂
−l
0 T−1 ψ′′

1 − g−l
10 Γl T−1ψ′′

1

=




∑

r≤−1

A
(l)
r0Γr+l +

∑

s≥1

∑

r≤s

A(l)
rs Γr+l



T−1ψ′′
1

=




∑

r≤−1

A
(l)
r0Γr+l +

∑

s≥1

∑

r≤s

A(l)
rs Γr+l




(

1 +
∑

i<0

biΓ
i

)
ψ̂1

=




∑

r≤−1

cr,0Γ
r+l +

∑

s≥1

∑

r≤s

cr,sΓ
r+l



 ψ̂1

=




∑

r≤−1

c̃r,0Γ
r+l +

∑

s≥1

∑

r≤s

c̃r,sΓ
r+l



T−1ψ′′
1 , (4.30)

where cr,s, c̃r,s ∈ As. The above computation represents the action of the

operator L̂
−l
0 (4.29) on certain vector in V̂2 by an element in D+(A,Γ−1).

By using equation (4.30), we can eliminate the term am+k,kΓ
m+k T−1ψ′′

1 in
(4.28) and arrive at

α =
∑

i≤m−1+k

ãi,kΓ
i T−1ψ′′

1 +
∑

j≥k+1

∑

i≤m+j

ãi,jΓ
i T−1ψ′′

1 + · · · , ãi,j ∈ Aj .

Then by induction on the upper bound of the index i appearing in the
first summation we have

α =
∑

j≥k+1

∑

i≤m+j

˜̃ai,jΓ
i T−1ψ′′

1 + · · · ,

which shows that the lower bound of the index j has increased by one. The
lemma is proved. �

Now we are ready to introduce a D+-module structure on the space V ′′
2

by defining the action

Di · α′′ = ϕ(L̂ i
0 )α′′, α′′ ∈ V ′′

2 , i ∈ Z, (4.31)

which extends the action (4.16) on V ′
2 to an action on V ′′

2 . Then Lemma 4.7
is equivalent to the following theorem.

Theorem 4.8 The D+-module V ′′
2 is a free module with generator ψ′′

1 .

Let us apply Lemma 4.3 to the algebra R = D+ and the module V ′′
2 . By

acting the projection operator Q to both sides of (4.17), we have

R · (ψ̂′′
2n, ψ

′′
2n−1, . . . , ψ

′′
1 )t = (−λD · ψ′′

1 , 0, . . . , 0)
t,
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hence L · ψ′′
1 = λψ′′

1 , where L = −D−1∆(R) as given before. According to
Lemma 3.3 we introduce a pseudo-differential operator Q ∈ D+ such that
L = Q2, and consider the action of Qi on V ′′

2 for any integer i.

Lemma 4.9 For any integer i the following equality holds true:

ϕ(Γi)ψ′′
1 = Qi · ψ′′

1 . (4.32)

Proof We only need to prove the case i = 1. Since V ′′
2 is a free D+-module,

there exists an element A ∈ D+ such that ϕ(Γ)ψ′′
1 = A · ψ′′

1 . Note that
[ϕ(Γ),L can] = 0, so the action of ϕ(Γ) on V ′′

2 commutes with D ∈ D+,
hence

A2 · ψ′′
1 = ϕ(Γ2)ψ′′

1 = λψ′′
1 = L · ψ′′

1 .

By using the freeness of V ′′
2 , we have A2 = L = Q2. It follows that A = ±Q.

To show A = Q, we only need to compare their leading terms. Equation
(4.30) leads to

ϕ(Γ)ψ′′
1 = ϕ(g10L̂

−1
0 + · · · )ψ′′

1 = (g10D
−1 + · · · ) · ψ′′

1 ,

which implies that the leading term of resA is g10. On the other hand g10
takes the same sign with ρ = resQ, thus A = Q. The lemma is proved. �

By using Lemmas 2.4 and 4.9, one can prove the following proposition.
The argument is almost the same with the one for Proposition 4.5 in [6], so
we omit the details here.

Proposition 4.10 Let gk be the coefficients that appear in (4.19), then gk−
1
k resQk ∈ D(A) for all k ∈ Z

odd
+ .

This proposition connects the Hamiltonians of the negative flows of the
Drinfeld-Sokolov hierarchy of Dn type to those (3.20) corresponding to the
negative flows (3.9).

Now we arrive at the main result of the present section.

Theorem 4.11 The flows (4.14) of the Drinfeld-Sokolov hierarchy of Dn

type coincide with the flows of the integrable hierarchy (3.3), (3.9).

Proof It is shown in [6] that the Drinfeld-Sokolov hierarchy of Dn type has
a bihamiltonian structure given by the two Poisson brackets (3.16), (3.17).
For the flow (4.4) corresponding to the element λj, the Hamiltonian with
respect to the second Poisson bracket is given by

Hj =

∫
(H | λj)dx, j ∈ E+,

where H is given in (4.2) and (· | ·) is the trace form defined by

(G | H) = resλ

(
λ−1tr(GH)

)
.
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We choose a basis (1.4) of the Heisenberg subalgebra s. as

λk = −Λk, λk(n−1)′ = Γk, k ∈ 2Z + 1.

Note that

(Λk | Λl) = (2n − 2)δk,−l, (Λk | Γl) = 0, (Γk | Γl) = 2 δk,−l,

where k, l run over all odd integers, hence by using (4.19) we have

Hk = −(2n− 2)

∫
fk dx, Hk(n−1)′ = 2

∫
gk dx, k ∈ Z

odd
+ .

They are the Hamiltonians for the positive and negative flows of the Drinfeld-
Sokolov hierarchy (4.14) w.r.t. the second Poisson bracket (3.17).

According to Propositions 4.5, 4.10 and Theorem 3.5, these Hamiltonians
satisfy

Hk = Hk, Hk(n−1)′ = Ĥk, k ∈ Z
odd
+ ,

where Hk, Ĥk are the Hamiltonians of the integrable hierarchy (3.3), (3.9)
with respect to the second Poisson bracket (3.17). So the Drinfeld-Sokolov
hierarchy of Dn type (4.14) and the integrable hierarchy (3.3),(3.9) coincide.
The theorem is proved. �

5 The two-component BKP hierarchy and its re-

ductions

In this section we represent the two-component BKP hierarchy that is intro-
duced in [3] via pseudo-differential operators, and show that the hierarchy
(3.3), (3.9) is just a reduction, which was considered in [2], of the two-
component BKP hierarchy.

5.1 The two-component BKP hierarchy

Let M̃ be an infinite-dimensional manifold with local coordinates

(a1, a3, a5, . . . , b1, b3, b5, . . . ),

and Ã be the algebra of differential polynomials on M̃ :

Ã = C∞(M̃ )[[as
i , b

s
i | i ∈ Z

odd
+ , s ≥ 1]].

As in Section 3, we assign a gradation on Ã such that Ã is topologically
complete. Define a derivation D by

D =
∑

s≥0

∑

i∈Z
odd
+

(
as+1

i

∂

∂as
i

+ bs+1
i

∂

∂bsi

)
,
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then the algebras D̃± = D±(Ã,D) of pseudo-differential operators can be
constructed as we did in Section 2.1.

Introduce two pseudo-differential operators

Φ =1 +
∑

i≥1

aiD
−i ∈ D̃−, (5.1)

Ψ =1 +
∑

i≥1

biD
i ∈ D̃+, (5.2)

where a2, a4, a6, . . . , b2, b4, b6, · · · ∈ Ã are determined by the following cond-
tions

Φ∗ = DΦ−1D−1, Ψ∗ = DΨ−1D−1. (5.3)

Now let us define a pair of operators

P = ΦDΦ−1 ∈ D̃−, Q = ΨD−1Ψ−1 ∈ D̃+.

Lemma 5.1 The operators P,Q have the following expressions (c.f. (3.1),
(3.5)):

P = D +
∑

i≥1

uiD
−i, Q = D−1ρ+

∑

i≥1

viD
i,

where ρ = (Ψ−1)∗(1). They satisfy

P ∗ = −DPD−1, Q∗ = −DQD−1, (5.4)

and that for any k ∈ Z
odd
+

(P k)+(1) = 0, (Qk)+(1) = 0. (5.5)

Proof The expression of P is obvious. To show that of Q, we consider its
negative part:

Q− =
(
ΨD−1Ψ−1

)
−

=
(
D−1Ψ−1

)
−

=
((
D−1Ψ−1

)∗)∗
−

= −
(
(Ψ−1)∗D−1

)∗
−

= −
(
(Ψ−1)∗(1)D−1

)∗
= D−1ρ.

The symmetry property (5.4) is obvious, which implies (5.5). The lemma is
proved. �

We define the following evolutionary equations:

∂Φ

∂tk
= −(P k)−Φ,

∂Ψ

∂tk
=
(
(P k)+ − δk1Q

−1
)
Ψ, (5.6)

∂Φ

∂t̂k
= −(Qk)−Φ,

∂Ψ

∂t̂k
= (Qk)+Ψ, (5.7)
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where k ∈ Z
odd
+ . According to (5.3) and (5.5), it is easy to see that these

flows are well defined, and they yield the Lax equations of the form (3.11),
(3.12). By a straightforward calculation one can verify the commutativity of
these flows, hence they form an integrable hierarchy indeed. We will show
that this hierarchy possesses tau functions, and that these tau functions
satisfy the same bilinear equations of the two-component BKP hierarchy
defined in [3].

First, let us introduce two wave functions

w = w(t, t̂; z) = Φeξ(t;z), ŵ = ŵ(t, t̂; z) = Ψexz+ξ(t̂;−z−1), (5.8)

where x = t1, the function ξ is defined by

ξ(t; z) =
∑

k∈Z
odd
+

tkz
k, (5.9)

and for any i ∈ Z the action of Di on exz is set to be Diexz = ziexz.

It is easy to see that P w = zw, Q ŵ = z−1ŵ, and that the flows (5.6),
(5.7) are equivalent to the following equations

∂w

∂tk
= (P k)+w,

∂ŵ

∂tk
= (P k)+ŵ, (5.10)

∂w

∂t̂k
= −(Qk)−w,

∂ŵ

∂t̂k
= −(Qk)−ŵ. (5.11)

Here (Qk)−w is understood as
(
(Qk)−Φ

)
eξ(t;z), and (Qk)−ŵ is defined sim-

ilarly. The following theorem can be proved as it was done for the KP
hierarchy given in [4, 5].

Theorem 5.2 The hierarchy (5.6), (5.7) is equivalent to the following bi-
linear equation

reszz
−1w(t, t̂; z)w(t′, t̂′;−z) = reszz

−1ŵ(t, t̂; z)ŵ(t′, t̂′;−z). (5.12)

Here and below the residue of a Laurent series is defined as resz
∑

i fiz
i =

f−1.

Let ω be the following 1-form

ω =
∑

k∈Z
odd
+

(
resP k dtk + resQk dt̂k

)
. (5.13)

By using the equations (5.6) and (5.7), one can show that ω is closed, so
given any solution of the hierarchy (5.6), (5.7) there exists a function τ(t, t̂)
such that

ω = d (2∂x log τ) . (5.14)
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Moreover, one can fix a tau function such that the wave functions can be
written as

w(t, t̂; z) =
τ(. . . , tk − 2

kzk , . . . , t̂)

τ(t, t̂)
eξ(t;z), (5.15)

ŵ(t, t̂; z) =
τ(t, . . . , t̂k + 2zk

k , . . .)

τ(t, t̂)
eξ(t̂;−z−1). (5.16)

Introduce a vertex operator X as

X(t; z) = exp




∑

k∈Z
odd
+

tkz
k



 exp



−
∑

k∈Z
odd
+

2

kzk

∂

∂tk



 ,

then the bilinear equation (5.12) reads

reszz
−1X(t; z)τ(t, t̂)X(t′;−z)τ(t′, t̂′)

=reszz
−1X(t̂;−z−1)τ(t, t̂)X(t̂′; z−1)τ(t′, t̂′),

which is equivalent to

reszz
−1X(t; z)τ(t, t̂)X(t′;−z)τ(t′, t̂′)

=reszz
−1X(t̂; z)τ(t, t̂)X(t̂′;−z)τ(t′, t̂′). (5.17)

Recall that in [3, 24], Date, Jimbo, Kashiwara and Miwa defined the
two-component BKP hierarchy from a two-component neutral free fermions
realization of the basic representation of an infinite-dimensional Lie algebra
g∞, which corresponds to the Dynkin diagram of D∞ type [25]. The tau
function of their hierarchy satisfies the bilinear equations (5.17) and defines
two wave functions as (5.15), (5.16), so the equations (5.6), (5.7) give a
representation of the two-component BKP hierarchy in terms of pseudo-
differential operators.

Remark 5.3 In [29], Shiota gave a Lax pair representation of the two-
component BKP hierarchy as follows. Let φ(ν) (ν = 0, 1) be the following
pseudo-differential operators of the first type

φ(ν) = 1 +
∑

i≥1

a
(ν)
i D−i

ν

satisfying
(
φ(ν)

)∗
= Dν

(
φ(ν)

)−1
D−1

ν , where D0,D1 are two commuting
derivations. Let

P (ν) = φ(ν)Dν

(
φ(ν)

)−1
,
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then the two-component BKP hierarchy can be defined as

∂φ(ν)

∂t
(ν)
k

= −
(
P (ν)

)k

−
φ(ν),

∂φ(ν)

∂t
(1−ν)
k

=
(
P (1−ν)

)k

+

(
φ(ν)

)
, k ∈ Z

odd
+ .

(5.18)
Here on the right hand side of the second equation it means the action of

the differential operator
(
P (1−ν)

)k
+

on the coefficients of φ(ν). It is easy to

see that Dν = ∂

∂t
(ν)
1

. We identify t
(0)
k = tk, t

(1)
k = t̂k henceforth.

Introduce the wave functions

w(ν)(t, t̂; z(ν)) = φ(ν)eξ
(ν)
, ξ(ν) = ξ(t(ν); z(ν))

with ξ given in (5.9). The hierarchy (5.18) was shown [29] equivalent to the
following bilinear equation

resz(0)

(
z(0)
)−1

w(0)(t, t̂; z(0))w(0)(t′, t̂′;−z(0))

=resz(1)

(
z(1)
)−1

w(1)(t, t̂; z(1))w(1)(t′, t̂′;−z(1)). (5.19)

By comparing the bilinear equations (5.19) and (5.12), it is easy to see
that Shiota’s wave functions are related to ours by

w(0)(t, t̂; z) = w(t, t̂; z), w(1)(t, t̂; z) = ŵ(t, t̂;−z−1),

from which one can obtain the relations between a
(0)
i , a

(1)
i and ai, bi.

5.2 Reductions of the two-component BKP hierarchy

Given an integer n ≥ 3, the condition P 2n−2 = Q2 defines a differential ideal
of Ã, which is denoted by I. It is easy to see that this ideal is preserved by
the flows (5.6), (5.7), so we obtain a reduction of the two-component BKP
hierarchy.

Let L = P 2n−2 = Q2, then according to Lemma 5.1 the operator L has
the form (1.3). Hence the algebra A defined in Section 3.1 is isomorphic
to Ã/I, and the reduced hierarchy is an integrable hierarchy over A. It
is easy to see that the derivatives of L with respect to tk, t̂k are exactly
given by (3.3), (3.9). Namely the hierarchy (3.3),(3.9) is the reduction of
the two-component BKP hierarchy under the condition P 2n−2 = Q2.

It can be shown that the condition P 2n−2 = Q2 reduces the bilinear
equations (5.12) to the form

reszz
(2n−2)j−1w(t, t̂; z)w(t′, t̂′;−z) = reszz

−2j−1ŵ(t, t̂; z)ŵ(t′, t̂′;−z)
(5.20)

with j ≥ 0, and that conversely the equations (5.20) impose the constraint
P 2n−2 = Q2 to the two-component BKP hierarchy. Hence we establish the

34



equivalence between the bilinear equations (5.20) and the hierarchy (3.3),
(3.9). The proof is lengthy and technical (c.f. the reduction from the KP
hierarchy to the Gelfand-Dickey hierarchies in [5]), so we omit the details
here. In terms of the tau function, the bilinear equations (5.20) can be
expressed as

reszz
(2n−2)j−1X(t; z)τ(t, t̂)X(t′;−z)τ(t′, t̂′)

=reszz
2j−1X(t̂; z)τ(t, t̂)X(t̂′;−z)τ(t′, t̂′), j ≥ 0. (5.21)

Note that these bilinear equations are precisely the ones obtained from the
(2n− 2, 2)-reduction of the two-component BKP hierarchy [2, 24].

From the definition (3.24) and (5.14) of the tau functions τ̂ and τ it
follows that they are related by

τ2 = τ̂ . (5.22)

6 Conclusion

We represent the full Drinfeld-Sokolov hierarchy of Dn type into Lax equa-
tions of pseudo-differential operators, which is analogous to the Gelfand-
Dickey hierarchies. We also give a Lax pair representation for the two-
component BKP hierarchy, and show that the Drinfeld-Sokolov hierarchy
of Dn type is the (2n − 2, 2)-reduction of the two-component BKP hierar-
chy. The key step in our approach is to introduce the concept of pseudo-
differential operators of the second type, which are defined over a topologi-
cally complete differential algebra, so that they may contain infinitely many
terms with positive power of the derivation D.

Our Lax pair representations of the Drinfeld-Sokolov hierarchy of Dn

type and the two-component BKP hierarchy are convenient for further stud-
ies. In a subsequent publication [34], we will show that the two-component
BKP hierarchy carries a bihamiltonian structure, which is expected to cor-
respond to an infinite-dimensional Frobenius manifold (c.f. [1]).

Note that the bilinear equation (5.17) corresponds to the basic represen-
tation of the affine Lie algebra D′

∞ in the notion of [24]. It is shown in [28]
that the (2n− 2, 2)-reduction (5.21) corresponds to the basic representation

of the affine Lie algebra D
(1)
n . Then according to [25, 26], the bilinear equa-

tion (5.21) is equivalent to the Kac-Wakimoto hierarchy constructed from
the principal vertex operator realization of the basic representation of the

affine Lie algebra D
(1)
n [26]. By comparing the boson-fermion correspon-

dences, one can obtain the relation between the time variables t, t̂ of the
Drinfeld-Sokolov hierarchy of Dn type (or the Date-Jimbo-Kashiwara-Miwa
hierarchy) and the time variables sj (j ∈ E+) of the the Kac-Wakimoto
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hierarchy
tk =

√
2 sk, t̂k =

√
2n− 2 sk(n−1)′ .

In [21], Givental and Milanov proved that the total descendant potential for
semisimple Frobenius manifolds associated to a simple singularity satisfies
a certain hierarchy of Hirota bilinear/quadratic equations, see also [18, 19,
20]. Such a hierarchy of bilinear equation is shown to be equivalent to
the corresponding Kac-Wakimoto hierarchy constructed from the principal
vertex operator realization of the basic representation of the untwisted affine
Lie algebra [21, 33, 16]. So we arrive at the following result.

Theorem 6.1 Up to a rescaling of the flows, the following integrable hier-
archies are equivalent:

i) the hierarchy (3.3), (3.9);

ii) the Drinfeld-Sokolov hierarchy associated to D
(1)
n and the c0 vertex of

its Dynkin diagram;

iii) the Date-Jimbo-Kashiwara-Miwa hierarchy constructed from the basic

representation of the affine Lie algebra D
(1)
n ;

iv) the Kac-Wakimoto hierarchy corresponding to the principal vertex op-
erator realization of the basic representation of the affine Lie algebra

D
(1)
n ;

v) the Givental-Milanov hierarchy for the simple singularity of Dn type.

Remark 6.2 The equivalence between the hierarchies ii) and iv) was also
contained in a general result obtained by Hollowood and Miramontes in [23].

Note that the bihamiltonian structure (3.16), (3.17) is of topological
type [8, 10, 9], its leading term comes from the Frobenius manifold associ-
ated to the Coxeter group of Dn type. In [10] a hierarchy of dispersionless
bihamiltonian integrable systems is associated to any semisimple Frobenius
manifold, such an integrable hierarchy is called the Principal Hierarchy. It
is also shown that there is a so called topological deformation of the Prin-
cipal Hierarchy which satisfies the condition that its Virasoro symmetries
can be represented by the action of some linear operators, called the Vi-
rasoro operators, on the tau function of the hierarchy. We expect that the

Drinfeld-Sokolov hierarchy associated toD
(1)
n and the c0 vertex of its Dynkin

diagram coincides, after a rescaling of the time variables, with the topologi-
cal deformation of the Principal Hierarchy of the Frobenius manifold that is
associated to the Coxeter group of type Dn. We will investigate this aspect
of the hierarchy in a subsequent publication.
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