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Abstract

In the framework of the free field representation we obtain exact form factors of local operators in
the two-dimensional affine Toda theories of the A

(1)
L−1 series. The construction generalizes Lukyanov’s

well-known construction to the case of descendant operators. Besides, we propose a free field rep-
resentation with a countable number of generators for the ‘stripped’ form factors, which generalizes
the recent proposal for the sine/sinh-Gordon model. As a check of the construction we compare
numbers of the operators defined by these form factors in level subspaces of the chiral sectors with
the corresponding numbers in the Lagrangian formalism. We argue that the construction provides a
correct counting for operators with both chiralities. At last we study the properties of the operators
with respect to the Weyl group. We show that for generic values of parameters there exist Weyl
invariant analytic families of the bases in the level subspaces.

1. Introduction

The bootstrap approach to form factors in two-dimensional integrable quantum field theory makes it
possible to calculate the form factors exactly by solving a set of difference equations for analytic functions
called form factor axioms [1–3]. Any solution to these equation provides a local operator in the theory.
The main conjecture of the approach is that vice versa the set of form factors of any local operator is a
solution to the bootstrap equations. Thought a very general approach to solving the form factor axioms
was proposed by Smirnov [3], the problem of identification of the operators defined by the bootstrap form
factors to the fields defined in the usual Lagrangian formalism is not solved in full generality. Moreover,
the integral form of Smirnov’s solution and many other proposals make it difficult to study them.

Here we consider the two-dimensional affine Toda models of the A
(1)
L−1 series [4]. These models are

models of an (L − 1)-component real scalar field ϕ(x) with exponential interaction potential. In the
particular case L = 2, i. e. of the sinh-Gordon model, different approaches for the form factors were
developed [3,5–9]. For generic values of L Babujian and Karowski [10] proposed earlier a general form of
the solution to the form factor axioms in this case in an integral form. We propose a solution in terms
of finite sums based on Lukyanov’s free field formalism for form factors [11]. Lukyanov [12] found the
solutions to the bootstrap equations that correspond to the exponential operators eiαϕ(x) and completely
identified them. Following the guidelines of [9] we find a representation for form factors of the so called
descendant operators, i. e. the operators of the form (∂k1

µ1
ϕi1 ) . . . (∂

kr
µr
ϕir )e

iαϕ. These operators may be
considered as Fock spaces generated by modes of the field ϕ(x) from the exponential operator in the
radial quantization picture. Though up to now we are unable to identify these descendant operators
with particular solutions to the bootstrap equations, we can identify some spaces of solutions with the
Fock spaces over given exponential operators. Besides, in the case of the so called chiral descendants we
are able to find bootstrap counterparts of the level subspaces of the Fock spaces.

An important feature of the affine Toda models is the existence of the so called reflection relations
between the operators in the theory [13–16]. These relations connect operators with different values of
α related by the action of the Weyl group. We prove the existence of these reflection relations for our
solutions. Moreover, we show that there are analytic in α families of Weyl invariant bases in the Fock
spaces. We hope this proof to be a step towards solution of the identification problem.

The paper is organized as follows. In Sec. 2 we describe the model, fix the notation and recall the main
results of Lukyanov’s free field representation. In Sec. 3 we introduce an auxiliary commutative algebra
that allows us to generalize the free field representation to the descendant operators. We also cite several
simple physical consequences of the construction and carry out the counting of the descendant operators
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defined by the bootstrap form factors. Sect. 4 is dedicated to an alternative free field construction, which
is an important ingredient in the proof of the reflection relations in Secs. 5, 6. In Sec. 5 we use some
recurrent relations to prove the explicit form of the reflection relations of the exponential operators,
while in Sec. 6 they are used to prove the existence of reflection relations for the descendant operators.
The explicit reflection relations for the level 1 descendant operators are given in Sec. 7.

2. Preliminaries

Let h be the (L − 1)-dimensional Cartan subalgebra of the simple Lie algebra AL−1 and h∗ be its dual,
the bracket 〈·, ·〉 be either the Killing form restricted to h or its dual on h∗. Let αi ∈ h∗, i = 1, . . . , L− 1

be simple roots of the algebra, 〈αi, αj〉 = 2δij − δi,j+1 − δi,j−1. Let α0 = −∑L−1
i=1 αi be the affine

root. Let ρ be the half sum of the positive roots. In terms of the simple roots ρ =
∑L−1

i=1
i(L−i)

2 αi and
〈ρ, αi〉 = 1, i > 0. Let Hs, s = 1, . . . , L be the set of weights of the first fundamental representation π1

of the algebra, 〈αi, Hs〉 = δis − δi,s−1, so that αi = Hi −Hi+1.
Let ϕ(x) ∈ hR be the real (L− 1)-component field with the action

S[ϕ] =

∫
d2x

(
〈∂µϕ, ∂µϕ〉

8π
− µ

2

L−1∑

i=0

ebαiϕ

)
. (2.1)

Let us stress that the sum in the r. h. s. contains the summation over all simple roots of the affine Lie

algebra A
(1)
L−1, including the affine root α0. The theory is called the affine Toda field theory associated

with the algebra A
(1)
L−1.

Below it will be convenient to use the letters ω, Q, p defined as follows:

ω = e2πi/L, Q = b+ b−1, b =

√
p

1− p
. (2.2)

The parameter p is always thought to be irrational.
We shall also use the light-cone variables and derivatives

z = −x1 + x0, z̄ = −x1 − x0, ∂ =
∂

∂z
, ∂̄ =

∂

∂z̄
.

We adjusted the definition of the light-cone coordinates to fit the usual conformal field theory notation
system.

The spectrum of the models consists of L− 1 particles of masses [4]

Mk = [k]M1, k = 1, . . . , L− 1, (2.3)

where we used the q-number type notation:

[k] =
ωk/2 − ω−k/2

ω1/2 − ω−1/2
=

sin πk
L

sin π
L

. (2.4)

The mass of the lightest particle M1 is proportional to µ1/2(1−b2). The exact relation between M1 and
µ is known explicitly [17].

The space of local operators of the model consists of the exponential operators

Va(x) = eQ(a+ρ)ϕ(x) (2.5)

and their descendants, i. e. linear combinations of the fields1

(αi1∂
l1ϕ) · · · (αir∂

lrϕ)(αj1 ∂̄
l̄1ϕ) · · · (αjs ∂̄

l̄sϕ)eiQ(a+ρ)ϕ(x) (2.6)

for any integers r, s ≥ 0 and l1, . . . , l̄s > 0. The pair of numbers (l, l̄), defined as

l =

r∑

p=1

lp, l̄ =

s∑

p=1

l̄p, (2.7)

1We ignore the possible factor ϕm, since it can be obtained as the m-fold derivative in the variable a.
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is called the level of a descendant operator, while the numbers l and l̄ separately will be refereed to
as chiral levels. The difference S = l − l̄ is the Lorentz spin of the operator, while the sum D =
Q2〈a+ ρ, a+ ρ〉+ l+ l̄ is the scaling dimension in the ultraviolet region. The descendant operators with
l̄ = 0 are called chiral, while those with l = 0 are called antichiral.

In the radial quantization picture operators at some point, e. g. x = 0, are put in one-to-one
correspondence to vectors of some auxiliary vector space. Namely, the field ϕ(x) can be expanded in a
kind of Laurent series in the vicinity of the point x = 0:2

αiϕ(x) = Qi − iPi log zz̄ +
∑

n6=0

ain
in

z−n +
∑

n6=0

āin
in

z̄−n, i = 1, . . . , L− 1, (2.8)

where the operators Qi, Pi, ain, āin form a Heisenberg algebra with the commutation relations

[Pi,Qj] = −i〈αi, αj〉, [aim, ajn] = m〈αi, αj〉δm+n,0, [āim, ājn] = m〈αi, αj〉δm+n,0. (2.9)

The operator Va(0) corresponds in this picture to the vector |a〉rad, such that

ain|a〉rad = āin|a〉rad = 0 (n > 0), Pi|a〉rad = Q〈αi, a+ ρ〉|a〉rad. (2.10)

The radial vacuum vector |vac〉rad = | − ρ〉rad corresponds to the unit operator so that |a〉rad =
eiQ(a+ρ)Q|vac〉rad. Up to some c-number factors the operators (2.6) correspond to the vectors

ai1,−l1 · · · air ,−lr āj1,−l̄1 · · · ājs,−l̄s |a〉rad. (2.11)

These vectors span a Fock module with the highest weight vector |a〉rad, which can be written as a tensor
product Fa ⊗ F̄a of two chiral components. The module Fa is the Fock module spanned on the vectors
(2.11) with l̄ = 0, while the module F̄a is spanned on those with l = 0. In turn, each of the modules can
be splitted into a sum of the level subspaces. For example, Fa ≃⊕∞

l=0 Fa,l, where Fa,l is spanned by the
level l vectors. The dimensions of the subspaces Fa,l are given by the well-known generating function:

∞∑

l=0

ql dimFa,l =

∞∏

m=1

1

(1− qm)L−1
. (2.12)

Besides, there is a natural isomorphism T : Fa → F̄a due to the (time-reversal) map ain ↔ āin. This
isomorphism preserves the level: T : Fa,l → F̄a,l.

For any vector v ∈ Fa ⊗ F̄a we define an operator Φa[v](x) as the operator corresponding to the
state v|a〉rad. The reflection symmetry conjecture [13–16] declares the following property. Let W be the
Weyl group of the AL−1 simple Lie algebra. Then for a generic value of the parameter a and any element
w ∈ W there exists a map Ra(w) : F ⊗ F → F ⊗F , such that

Φwa[v](x) = Φa[Ra(w)v](x). (2.13)

Since this property originates from the conformal field theory, it preserves the level of the operators:

Ra(w)Fal ⊗ F̄al̄ = Fwa,l ⊗ F̄wa,l̄.

Besides, it factorizes into chiral components:

Ra(w) = ra(w) ⊗ Tra(w)T
−1, ra(w) : Fa → Fwa. (2.14)

We shall see below, that there is another bijection between Fa and F̄a′ , which is natural from the
point of view of the expressions for form factors. Let w∗ ∈ W be the element defined by the relation

w∗αi = −αL−i ⇔ w∗Hs = HL+1−s. (2.15)

The Weyl group is known to be generated by the reflections wi such that

wia = a− 〈a, αi〉αi, i = 1, . . . , L− 1.

2Surely, this expansion only holds for very small vicinity of zero, |z|, |z′| ≪ M−1
1 , where the field can be considered as

a massless free boson field.
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In terms of these generators the element w∗ is given by

w∗ = w1(w2w1)(w3w2w1) · · · (wL−1wL−2 · · ·w1).

Since w2
∗ = 1, we can define an automorphism of the Weyl group

w̃ = w∗ww∗, (2.16)

so that
w̃i = wL−i.

For generic values of a there exists an bijection T ∗
a : Fw∗a → F̄a, preserving the level, T ∗

aFw∗a,l = F̄a,l,
such that the factorization property of the reflection operator reads

Ra(w) = ra(w)⊗ T ∗
warw∗a(w̃)T

∗−1
a . (2.17)

Such correspondence, seeming utterly artificial from the Lagrangian point of view, turns out to be a
symmetry of the expressions for form factors.

Consider the exponential fields. Since dimF0 = 1, we have

G−1
a Va(x) = G−1

waVwa(x), ∀w ∈ W . (2.18)

where Ga = 〈Va(x)〉 is the vacuum expectation value of the operator Va(x), which is known exactly [16].
Now we recall Lukyanov’s representation [12] for form factors of exponential operators in the mod-

els (2.1). We do not need the detailed description in terms of the auxiliary free field, and we only
formulate the result. Let us introduce the vertex operators Λs(θ), s = 1, . . . , L, with the two-point trace
functions

〈〈Λs(θ
′)Λs(θ)〉〉 = R(θ − θ′),

〈〈Λs′(θ
′)Λs(θ)〉〉 = R(θ − θ′)F

(
θ − θ′ + sign(s− s′)

iπ

L

)
,

(2.19)

where

logR(θ) = −4

∫
dt

t

sh(L− 1)t sh pt sh(1− p)t

sh2 Lt
ch

L(π − iθ)t

π

and

F

(
θ ± iπ

L

)
=

sh
(
θ
2 ± iπp

L

)
sh
(

θ
2 ± iπ(1−p)

L

)

sh θ
2 sh

(
θ
2 ± iπ

L

) . (2.20)

Below we need generic multipoint trace functions and the normal product :· · ·:. We define both by the
equations

ΛsN (θN ) · · ·Λs1(θ1) = :ΛsN (θN ) · · ·Λs1(θ1):
∏

1≤m<n≤N

〈〈Λsn(θn)Λsm(θm)〉〉,

〈〈:ΛsN (θN ) · · ·Λs1(θ1):〉〉 = 1.

(2.21)

Define the operators

Λs1...sk(θ) = :
k∏

j=1

Λsj

(
θ +

iπ(n+ 1− 2j)

L

)
:, 1 ≤ s1 < · · · < sk ≤ L. (2.22)

In particular,
Λ12...L(θ) = 1. (2.23)

It is convenient to introduce the central element â with the values in h∗ and the trace function 〈〈· · ·〉〉a
such that

〈〈X(â)〉〉a = 〈〈X(a)〉〉
for any operator function X(a). With this notation Lukyanov’s generators are given by

Tk(θ) = λ′
k

∑

1≤s1<···<sk≤L

ω〈â,Hs1...sk
〉Λs1...sk(θ), Hs1...sk = Hs1 + · · ·+Hsk (2.24)
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with the normalization constants

λ′
k =

√
L

2 sinπp
exp

∫
dt

t

sh pt sh(1 − p)t

sh t sh2 Lt

(
sh2 kt+ sh2(L− k)t

)
.

The form factors of the exponential operators are given by [12]

〈vac|Va(0)|k1θ1, . . . , kNθN 〉 ≡ Gafa(θ1, . . . , θN )k1...kN
= Ga〈〈TkN

(θN ) . . . Tk1(θ1)〉〉a. (2.25)

The functions fa are analytic functions of the parameters θn with complicated analytic structure.
Nevertheless, it is easy to see that they can be reduced to functions with simpler analytic properties.
Indeed, it is easy to see that

fa(θ1, . . . , θN )k1...kN
= JN,a(e

θ1 , . . . , eθN )k1,...,kN

N∏

n=1

λ′
kn

N∏

m<n

Rkmkn
(θm − θn),

Rkl(θ) =

k∏

i=1

l∏

j=1

R

(
θ +

iπ

L
(k − l − 2i+ 2j)

)
.

(2.26)

The functions JN,a(x1, . . . , xN )k1...kN
are rational in the variables xn and symmetric with respect to

permutations of the pairs (kn, xn). We suppose that form factors of descendants operators possess the
same structure with appropriate rational J functions.

The functions JN,a possess the property

JN,a(x
−1
1 , . . . , x−1

N ) = JN,w∗a(x1, . . . , xN ) (2.27)

with the element w∗ defined in (2.15). Indeed, if we substitute xn → x−1
n for all n, the functions

F (θm − θn + iπ/L) and F (θm − θn − iπ/L) trade their places. It is equivalent to the substitution

Λs(θ) → ΛL+1−s(θ). To adapt the factors ω
〈a,Hs1...ski

〉
to this situation we can use the identity 〈a,Hs〉 =

〈a, w∗HL+1−s〉 = 〈w∗a,HL+1−s〉. That is why the subscript w∗a appears in the r. h. s. of (2.27). Surely,
due to the reflection relation (2.18), which will be proven later, the element w∗ can be eliminated from
the r. h. s., but the form (2.27) will be convenient for generalization to descendant operators.

Remark. In the case L = 2 this reduces to the sinh/sine-Gordon model. In this case we may set

α1 = −α0 =
√
2, H1 = −H2 = ρ =

1√
2
.

The relation to the notation of [9] is given by substitutions:

p → −p, ωp → ω−1, b → − iβ√
2
, a →

√
2a, Λ1(θ) → Λ−(θ), Λ2(θ) → Λ+(θ).

The Weyl group contains the only nontrivial element w1 such that w1a = −a and w∗ = w1.

3. Descendant operators and a commutative algebra

Define an algebra A = ⊕∞
l=0Al as a commutative algebra generated by elements 〈αi, c−n〉 with positive

integers n, so that we shall operate with the symbols c−n as with vectors in h. Each level l subspace Al

is spanned by the vectors
∏

c−ni
such that

∑
ni = l. We shall also need another copy Ā of the algebra

A generated by the components of the vectors c̄−n ∈ h. The canonical homomorphism from A to Ā will
be denoted by bar: c−n = c̄−n.

Let us define a bracket on the algebra A:

(
∞∏

n=1

(unc−n)
µn ,

∞∏

n=1

(vnc−n)
νn

)
=

∞∏

n=1

µn! 〈un, vn〉µnδµnνn , ∀un, vn ∈ h∗. (3.1)

It is not difficult to check the consistency of this definition.
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Define the currents

as(z) = exp

(
Hs

∞∑

n=1

c−nω
−L+1−2s

2 nzn

)
. (3.2)

Let

as1...sk(z) =
k∏

j=1

asj

(
ω

n+1−2sj
2 z

)
, 1 ≤ s1 < · · · < sk ≤ L. (3.3)

From the fact that
∑L

s=1 Hs = 0 it is easily deduced that

a12...L(z) = 1. (3.4)

Let
bs1...sk(z) = aL+1−sk,...,L+1−s1(z). (3.5)

Now we can define the modified T -operators as

Tk(θ) = λ′
k

∑

1≤s1<···<sk≤L

ω〈â,Hs1...sk
〉Λs1...sk(θ)as1...sk(e

θ)b̄s1...sk(e
−θ). (3.6)

For any g ∈ A⊗ Ā the functions

fg
a (θ1, . . . , θN )k1...kN

= (〈〈TkN
(θN ) . . . Tk1(θ1)〉〉a, g) (3.7)

define an operator V g
a (z) by its form factors

〈vac|V g
a (x)|k1θ1, . . . , kNθN〉 = Gaf

g
a (θ1, . . . , θN )k1...kN

. (3.8)

The collection of all functions fg
a (θ1, . . . , θN )k1...kN

with N = 0, 1, 2, . . . will be denoted below as fg
a .

We also need the identity

(
as1(x1) . . . asN (xN ),

∞∏

n=1

(unc−n)
µn

)
=

∞∏

n=1

(
N∑

j=1

〈un, Hsj 〉ω−
L+1−2sj

2 nxn
j

)µn

. (3.9)

The rules (2.19) – (2.21) and (3.9) are sufficient to explicitly calculate the form factors defined in (3.7).
Now we are ready to extract the factor in the expression for form factors that is rational in the

variables eθn , as we promised above. Indeed, one can write the form factors in the form

fg
a (θ1, . . . , θN )k1...kN

= Jg
N,a(e

θ1 , . . . , eθN )k1,...,kN

N∏

i=1

λ′
ki

N∏

i<j

Rkikj
(θi − θj). (3.10)

where the functions Jg
N,a(x1, . . . , xN )k1...kN

are rational functions of the variables x1, . . . , xN symmetric

with respect to permutations of the pairs (ki, xi). Evidently, J
1
N,a = JN,a. Though it is possible to write

down these functions explicitly, their explicit expression is rather cumbersome and not too useful. In the
next section we describe a free field representation that allows one to study these functions effectively.

Consider any element g ∈ An⊗An̄. The spin of the corresponding local operator V g
a is evidently equal

to n− n̄ due to the form factor axioms [3]. The situation with the (ultraviolet) conformal dimension is
more complicated. From some experience in scaling limits of the lattice models we may expect that, if we
normalize the form factors in a physical way, the element g brought the factor Mn+n̄

1 . It means that the
element g increases the scaling dimension by n+ n̄ in comparison with that of the exponential operators.
But we cannot control mixing in any operators of lesser dimensions and the same spin. We may conclude
that the elements g ∈ An correspond to chiral level n (spin n) descendants, while the elements g ∈ Ān̄

correspond to antichiral level n̄ (spin −n̄) descendants. As far as generic g are concerned, we may only
say that they correspond to a linear combination of the level (l, l̄) descendants with l ≤ n, l̄ ≤ n̄. Vice
versa, any level (l, l̄) descendant operator is a linear combination of the operators V g

a with g beings
elements of the subspaces Fn⊗F̄n̄ with n ≤ l, n̄ ≤ l̄. This conclusion will be supported by the properties
described below in Subsec. 3.1–3.3.
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Note that the definition (3.5) has been chosen in such a way that the resulting functions Jg
N,a satisfy

the relation very similar to (2.27) for JN,a:

Jhh̄′

N,a(x
−1
1 , . . . , x−1

N ) = Jh′h̄
N,w∗a(x1, . . . , xN ) (3.11)

for h, h′ ∈ A. Though this property is not very important by itself, it will be helpful for obtaining
formulas in the anti-chiral sector immediately from those for the chiral sector.

The form factors fg
a also possess two periodicity properties. Let A =

∑L−1
i=1 iαi. Then

fg
a+A(θ1, . . . , θN )k1...kN

= ωk1+···+kN fg
a (θ1, . . . , θN )k1...kN

, (3.12)

fg
a+Lα0

(θ1, . . . , θN )k1...kN
= fg

a (θ1, . . . , θN )k1...kN
. (3.13)

The sense of these properties can be clarified in the case g = 1. Consider the Weyl group transformations
w±:

w+ = w−1
− = w1w2 · · ·wL−1.

These transformations act on the affine roots αi, i = 0, 1, . . . , L−1 as cyclic permutations: w±αi = αi±1.
The cyclic permutations are symmetry transformations of the action (2.1):

S[w+ϕ] = S[ϕ].

Therefore, under the action of w+ the form factors must be invariant:

w+(〈0|Va(0)|k1θ1 . . . kNθN 〉) = 〈0|Va(0)|k1θ1 . . . kNθN 〉.

The breather states are transformed as follows3

w±(|k1θ1 . . . kNθN 〉) = ω±(k1+···+kN )|k1θ1 . . . kNθN 〉.

This can be extracted, for example, from the quasiclassic picture of the eigentones in the vicinity of the
minimum of the potential U(ϕ) = µ

2

∑L−1
i=0 ebαiϕ.

It is easy to check that
w+ρ = ρ+A+ Lα0, w−ρ = ρ−A.

Hence,
w+(Va(x)) = eQ(a+ρ)(w+ϕ(x)) = eQ(w−(a+ρ))ϕ(x) = eQ(w−a−A+ρ)ϕ(x) = Vw−a−A(x).

We have
ωk1+···+kN 〈0|Vw−a−A(0)|k1θ1 . . . kNθN 〉 = 〈0|Va(0)|k1θ1 . . . kNθN 〉,

With the reflection relation (2.18) for the exponential operators it is consistent with (3.12) and (3.13).

Thus, the periodicity properties reflect, in a sense, the cyclic symmetry of the A
(1)
L−1 Dynkin diagram.

Now let us cite several important properties of the expressions for form factors obtained above.

3.1. Integrals of motion

Let

ιn =
L−1∑

i=1

ω
L−i
2 n[in](αic−n), ι−n = ιn, n ∈ Z>0 \ LZ>0. (3.14)

It is straightforward to check that, according to (3.9), the element ιn produce a common factor in all
terms in (3.7) related to the sums (3.6), resulting in the identity

f ιng
a (θ1, . . . , θN )k1...kN

=

(
N∑

m=1

[kmn]

[n]
enθm

)
fg
a (θ1, . . . , θN)k1...kN

, n ∈ Z \ LZ. (3.15)

for any g ∈ A⊗ Ā. In the factor in parentheses, one can recognize the eigenvalue of the (appropriately
normalized) spin n integral of motion In. It means that

V ιng
a (x) = [V g

a (x), In]. (3.16)

3In fact, the overall sign in the exponent of ω can be assumed arbitrarily. Change of this sign only redefines ki → L−ki.
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This result is consistent with [18, 19]. Note also that the set of the integrals of motion In is the natural
deformation of the set of the integrals of motion in the massless (conformal) limit, and the commutators
(3.16) add the value n to the spin of the operator and the value |n| to the chiral (antichiral) level of
the descendant operator for n > 0 (n < 0). It means that if we could identify some operator V g

a with
a descendant operator in the Lagrangian formulation, we would have a large subspace of Fa ⊗ F̄a that
consists of the operators generated from V g

a by the integrals of motion identified.

3.2. Factorization property

Let h, h′ ∈ A. Consider the Λ → ∞ asymptotics of the function

fhh̄′

a (θ1, . . . , θM , θM+1 + Λ, . . . , θN + Λ)k1...kMkM+1...kN
.

It is easy to check that F (θ±Λ), R(θ±Λ) → 1 in this limit. Let si = (s
(1)
i , . . . , s

(ki)
i ) be sets of integers

1 ≤ s
(1)
i < · · · < s

(ki)
i ≤ L. From (3.9) we immediately get

(as1(x1) . . . as
M
(xM )as

M+1
(xM+1e

Λ) . . . as
N
(xN eΛ), h) = (as

M+1
(xM+1e

Λ) . . . as
N
(xN eΛ), h),

(as1(x1) . . . as
M
(xM )as

M+1
(xM+1e

−Λ) . . . as
N
(xN e−Λ), h) = (as1(x1) . . . as

M
(xM ), h)

for h ∈ A. Finally, we obtain the following asymptotic factorization property [20]:

fhh̄′

a (θ1, . . . , θM , θM+1 + Λ, . . . , θN + Λ)k1...kMkM+1...kN

= fh
a (θM+1 + Λ, . . . , θN + Λ)kM+1...kN

f h̄′

a (θ1, . . . , θM )k1...kM
as Λ → +∞. (3.17)

This property means that it is always possible to extract chiral parts of descendants using this limit.
Roughly speaking, the high velocity right moving particles only know about the chiral part of a local
operator, while the high velocity left moving particles only know about its antichiral part.

From the factorization property together with (3.11) we immediately obtain that if the reflection
property holds, it should possess the factorized form (2.17). In other words, if it is possible define an

action of Ra(w) on the algebra A⊗ Ā such that V
Ra(w)hh̄′

a (x) = V hh̄′

a (x), we necessarily have

V hh̄′

a (x) = V
(ra(w)h)(rw∗a(w̃)h′)
a (x), (3.18)

where ra(w) is the restriction of Ra(w) on A ≃ A ⊗ Ā0. The possibility to define such action will be
proven in Sec. 6.

Another consequence concerns the identification of operators. For any h ∈ An and h′ ∈ An̄ define the
operator Vhh̄′

a (x) = Mn+n̄
1 V hh̄′

a (x). The operators Vh
a and V h̄′

a are level (n, 0) and level (0, n̄) descendants
correspondingly. Moreover, they must be linear combinations of the vectors of the form (2.6) with µ-

independent coefficients. Hence, their form factors are proportional to GaM
n
1 ∝ M

Q2〈ρ+a,ρ+a〉+n
1 and

GaM
n̄
1 ∝ M

Q2〈ρ+a,ρ+a〉+n̄
1 . It follows from (3.17) and (3.8) that the leading term in the operator Vhh̄′

a

is proportional to GaM
n+n̄
1 ∝ M

Q2〈ρ+a,ρ+a〉+n+n̄
1 . It means that the operators V hh̄′

a is a nonzero level
(n, n̄) descendant plus some operators of lesser dimensions.

3.3. Descendants counting

We want to prove that, for generic values of a, the operators V g
a with different values of g differ. For

this purpose we first prove this fact for a particular asymptotics in a. Then we apply the deformation
argument.

Let

a(τ) =
Lτ

2πi
ρ, a(τ)Hs =

Lτ

2πi

(
L+ 1

2
− s

)
.

We shall consider the limit τ → +∞. Evidently,

2πi

Lτ
a(τ)H12...k =

k(N − k)

2
,

2πi

Lτ
a(τ)Hs1s2...sk >

k(N − k)

2
for sk > k.
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Therefore
e−τ k(L−k)

2 Tk(z)|â=a(τ) = Λ12...k(z) +O(e−τ ) as τ → +∞. (3.19)

Then the functions Jg
N,a have the following asymptotics:

e−
τ
2

∑N
i=1 ki(L−ki)Jg

N,a(x1, . . . , xN )k1...kN

∣∣∣
τ→∞

= P g(X1| . . . |XL−1), Xk = {xi|ki = k}. (3.20)

The functions P g are polynomials defined by the following relations:

P g1g2 = P g1P g2 , PC1g1+C2g2 = C1P
g1 + C2P

g2 (∀g1, g2 ∈ A, C1, C2 ∈ C). (3.21a)

Pαic−n(X1| . . . |XL−1) = ω
i−1
2 Sn(Xi) +

L−1∑

k=i+1

ω
i−k
2 (1− ω)Sn(Xk), (3.21b)

PαL−ic̄−n(X1| . . . |XL−1) = −ω− i−1
2 S−n(Xi) +

L−1∑

k=i+1

ω
k−i−1

2 (1− ω)S−n(Xk), (3.21c)

Here

Sn(x1, . . . , xN ) =

N∑

i=1

xn
i .

The products of polynomials Sn for n > 0 of a given power form a basis of the symmetric polynomials
of the respective power for a large enough number of variables.

First, consider the case g ∈ A. Since we are interested in the whole collections of form factors rather
than the form factors for particular numbers of particles, we may consider the functions zin = Sn(Xi),
i = 1, . . . , L− 1 as independent variables. The equation (3.21b) defines a map from the algebra A to the
algebra of polynomials in the variables zin. This map is invertible. Indeed, Eq. (3.21b) makes it possible
to express any monomial zin in terms of Pαic−n and the monomials zjn, j > i. Applying it recursively
we can express any monomial zin in terms of a linear combination of the polynomials Pαjc−n with j ≥ i.
Hence, zin = P gin , where gin =

∑L−1
j=i Ajαjc−n with some uniquely defined coefficients Aj . This defines

a map from the algebra of polynomials in the variables zin to the algebra A.
This proves that different elements g1 6= g2 ∈ A produce different polynomials P g1 6= P g2 of the

variables zkn. Since the form factors are analytic functions of the variable a, these elements produce
different collections of form factors fg1

a 6= fg2
a .

Now suppose that g =
∑

hih̄
′
i, where {hi}, {h′

i} ⊂ Al are sets of linearly independent elements.
Suppose that fg

a = 0. Then due to the factorization property the combination

∑
fhi

a (θ1, . . . , θM )f
h̄′
i

a (θ′1, . . . , θ
′
N ) = 0.

This contradicts to the linear independence of the form factors fhi for generic a. This proves the

Theorem 1 For generic values of a the linear map g 7→ fg
a from A⊗ Ā into the space of collections of

functions is an injection, i. e. it is invertible as a map onto its image.

As an immediate consequence we have the

Proposition 1 For generic values of a the dimension of the space of the operators V g
a with g ∈ Al ⊗Āl̄

is equal to the dimension of the corresponding subspace of the Fock space dim(Fl ⊗Fl̄) = dimFl ·dimFl̄.
The dimensions of the spaces of the operators, V g

a with g ∈ Al or g ∈ Āl are equal to that of the subspace,
dimFl.

For chiral (antichiral) operators Proposition 1 means that the conjecture that the chiral (antichiral)
descendants are the operators V g

a (x) with g ∈ A (g ∈ Ā) is consistent with the operator counting from
the bosonic picture (2.6), (2.7).
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4. The stripped bosonization

To prove the reflection property for the descendant operators we shall need a free field representation
of the functions Jg

N,a, which is obtained from the functions fg
a by stripping out the R factors. We shall

call it stripped bosonization. This bosonization differs from that described in [11, 12] in that, first, the
Heisenberg algebra is generated by a countable set of elements rather than a continuous one and, second,
the functions Jg

N,a for all g ∈ A⊗ Ā are expressed in terms of matrix elements rather than traces. The
price paid for these advantages is that the residue of the kinematic pole is not a c-number, but a new
vertex operator. We shall see below that this new vertex operator will be an important ingredient of our
proof.

Consider the Heisenberg algebra with the generators d
(s)
n , s = 1, . . . , L, n ∈ Z, n 6= 0 and the

commutation relations

[d(s)m , d(s)n ] = 0, [d(s
′)

m , d(s)n ] = mδm+n,0A
sign(s′−s)
n (s′ 6= s) (4.1)

with
A±

n = (ω∓pn − ω∓n)(1 − ω±pn). (4.2)

Note that
A−

n = A+
−n = ωnA+

n . (4.3)

Let â be an additional central element. Define the vacuums |1〉a and a〈1| by the relations

d(s)n |1〉a = 0, â|1〉a = a|1〉a, a〈1|d(s)−n = 0, a〈1|â = a〈1|a, a〈1|1〉a = 1 (n > 0) (4.4)

and let :· · ·: be the corresponding normal ordering operation. We shall also write

〈. . .〉a ≡ a〈1| . . . |1〉a.

The Fock space generated by the operators d
(s)
n , n > 0, from the vacuum a〈1| will be denoted as DR

a ,

while that generated by d
(s)
−n, n > 0, from the vacuum |1〉a will be denoted as DL

a . They admit a natural

grading DR
a =

⊕∞
n=0 DR

a,n, DL
a =

⊕∞
n=0 DL

a,n so that DR
a,md

(s)
n ⊆ DR

a,m+n, d
(s)
n DL

a,m ⊆ DL
a,m−n.

Let us introduce the vertex operators

λs(z) = exp
∑

n6=0

d
(s)
n

n
z−n. (4.5)

Note that the exponential in the r. h. s. does not need any normal ordering due to commutativity of all

elements d
(s)
n with a given s. It is easy to check that

λs(z
′)λs(z) = :λs(z

′)λs(z):,

λs′(z
′)λs(z) = λs(z)λs′(z

′) = f
( z

z′

)
:λs′ (z

′)λs(z):, s′ > s,
z

z′
6= 1, ω.

(4.6)

Here

f(z) = F

(
log z − iπ

L

)
=

(z − ωp)(z − ω1−p)

(z − 1)(z − ω)
, f(z) = f(ω/z). (4.7)

Let

λs1...sk(z) = :

k∏

m=1

λsm

(
zω

k+1−2m
2

)
:, 1 ≤ s1 < · · · < sk ≤ L. (4.8)

Note that the vertex operator λ12...L(z) is not equal to one and plays an important role below. Its
important property is

λ12...L(z)λs(x) =

L−1∏

m=1

f
( z
x
ω

L+1−2m
2

)
:λ12...L(z)λs(x):. (4.9)

It is necessary to stress that the coefficient in the r. h. s. is s independent.
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Now define the stripped W algebra currents

tk(z) =
∑

1≤s1<···<sk≤L

ω〈a,Hs1...sk
〉λs1...sk(z). (4.10)

It is evident that
JN,a(x1, . . . , xN )k1...kN

= 〈tkN
(xN ) . . . tk1(x1)〉a . (4.11)

To obtain the functions Jg
N,a for an arbitrary element g we need an additional construction. Consider

two representations of the algebra A in the Heisenberg algebra, πR and πL, defined as follows:

πR(αic−n) = R(i)
n =

ω−L+1−2i
2 n

A+
n

(d(i)n − d(i+1)
n ),

πL(αic−n) = L(i)
n =

ω−L+1−2i
2 n

A+
n

(d
(L−i)
−n − d

(L+1−i)
−n ).

(4.12)

These operators satisfy the commutation relations

[πR(αic−n), λs(z)] = 〈αi, Hs〉ω−L+1−2s
2 nznλs(z), (4.13a)

[λs(z), πL(αic−n)] = 〈αi, HL+1−s〉ω
L+1−2s

2 nz−nλs(z), (4.13b)

[πR(αic−m), πL(αjc−n)] = mδmn(A
+
m)−1(δi+j,L−1 + ωmδi+j,L+1 − (1 + ωm)δi+j,L). (4.13c)

Define the ‘physical’ vectors

a〈h| = a〈1|πR(h), |h〉a = πL(h)|1〉a. (4.14)

We call them ‘physical’ due to the following reason. Consider the functions

J̃hh̄′

N,a(x1, . . . , xN )k1...kN
= a〈h|tk1(x1) . . . tkN

(xN )|h′〉a. (4.15)

These functions define the form factors, which will be denoted as f̃hh̄′

a according to the same equation
as (3.10) and can be expressed in terms of the J functions. Indeed, we can push the element πR(h) from
the definition of the vector a〈h| to the right and the element πL(h

′) from the vector |h〉a to the left.
Due to the commutation relation (4.13a) and (4.13b) we get just the functions from the r. h. s. of (3.9),
which enter the definition of Jhh̄′

a . The only complication is the appearance of some extra terms due to
the commutation relation (4.13c).

Precisely, the relation between the functions J̃ and J is as follows. Introduce two maps

πLR(hh̄
′) = πL(h

′)πR(h), πRL(hh̄
′) = πR(h)πL(h

′). (4.16)

These maps are bijections of A ⊗ Ā to the subalgebra of the universal enveloping of the Heisenberg
algebra generated by the elements πL(c−n) and πR(c−n), n > 0. Then

J̃hh̄′

N,a(x1, . . . , xN )k1,...,kN
= J

π−1
LR

◦πRL(hh̄′)

N,a (x1, . . . , xN )k1,...,kN
. (4.17)

More explicitly, take the product πR(h)πL(h
′) and push these two factors through each other. We get a

combination of the form
πR(h)πL(h

′) =
∑

i

πL(h
′
i)πR(hi).

Then
J̃hh̄′

N,a(x1, . . . , xN )k1,...,kN
=
∑

i

J
hih̄

′
i

N,a (x1, . . . , xN )k1,...,kN
.

The most important feature of this expression is that the function J̃hh̄′

with h ∈ Al, h
′ ∈ Al̄ is expressed

in terms of the functions Jhih̄
′
i with hi ∈ Ali , h

′
i ∈ Al̄i such that li ≤ l, l̄i ≤ l̄ and vice versa. It means,

in particular, that the factorization property (3.17) holds as well for the form factors corresponding to
the J̃ functions.
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These ‘physical’ vectors form the ‘physical’ subspaces in the spaces DR
a and DL

a :

DR,phys
a,n =

{
a〈h|

∣∣∣ h ∈ An

}
, DR,phys

a =

∞⊕

n=0

DR,phys
a,n ,

DL,phys
a,n =

{
|h〉a

∣∣∣ h ∈ An

}
, DL,phys

a =

∞⊕

n=0

DL,phys
a,n .

(4.18)

Evidently,
dimDR,phys

a,n = dimDL,phys
a,n = dimFn. (4.19)

It is convenient to find a definition of the subspaces DR,phys, DL,phys as kernels of some operators.
Introduce a set of operators Dn (n 6= 0) such that

[Dn, πR(h)] = [Dn, πL(h)] = 0. (4.20)

They are given by

Dn =

L∑

s=1

ω−L+1−2s
2 nd(s)n . (4.21)

These elements commute with each other:

[Dm, Dn] = 0. (4.22)

Note that

λ1...L(z) = exp
∑

n6=0

Dnz
−n

n
. (4.23)

Let a〈U |, |V 〉a be some states from the Fock modules over a〈1|, |1〉a. It can be shown that

a〈U |D−n = 0 ∀n > 0 ⇔ ∃h ∈ A : a〈U | = a〈1|πR(h),

Dn|V 〉a = 0 ∀n > 0 ⇔ ∃h ∈ A : |V 〉a = πL(h)|1〉a.
(4.24)

Therefore, the ‘physical’ subspaces can be also defined as

DR,phys
a,n =

{
a〈v| ∈ DR

a

∣∣∣ a〈v|D−m = 0 ∀m > 0
}
,

DL,phys
a,n =

{
|v〉a ∈ DL

a

∣∣∣Dm|v〉a = 0 ∀m > 0
}
,

(4.25)

5. Recurrent relations and reflection property for exponential operators

Our first step in the proof of the reflection property is to prove it for the form factors of the exponential
operators Va(x). Since the expressions (2.25), (4.11) are not explicitly invariant under the transformations
of the Weyl group, we need another representation for the JN,a functions. It turns out that such a Weyl
invariant representation can be found in the form of a recurrent relation in the number of particles
N starting form the explicitly invariant expression for N = 0. In this section we set I = (1, . . . , N),
X = (x1, . . . , xN ). Besides, we use the notation În = I \ {n}, X̂n = X \ {xn}.

It follows from Eq. (5.5) below that any function JN,a(. . .)k1...kN
can be expressed in terms of the

function J∑ ki,a(. . .)1...1. Hence, it is sufficient to obtain a recurrent relation for any subset of the J
functions that contains the functions with k1 = · · · = kN = 1. We choose the subset that consists of the
functions with an arbitrary k1 and with fixed k2 = · · · = kN = 1. Namely, consider the function

Jk,N+1,a(z;X) =

N∏

n=1

k−1∏

m=1

f−1

(
z

xi
ω

k+1−2m
2

)
〈tk(z)t1(x1) . . . t1(xN )〉a, (5.1)

which will be considered as an analytic function of the variable z, while the other variables X will be
considered as parameters.
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The prefactor in this expression cancels redundant poles. Indeed, consider the product of two vertex
operators tk(z)t1(x). It possesses four simple (see Appendix A) poles at the points

z = xω±k+1
2 , xω± k−1

2 , (5.2)

(k − 2) double poles at the points

z = xω
k+1−2m

2 , m = 2, . . . , k − 1, (5.3)

and 2(k − 1) simple zeros at the points

z = xω±(p− k+1−2m
2 ) m = 1, . . . , k − 1. (5.4)

Two more simple zeros have no fixed position and depend on a matrix element. The product

k−1∏

m=1

f−1
( z
x
ω

k+1−2m
2

)
=

k−1∏

m=1

(z − xω
k+1−2m

2 )(z − xω− k+1−2m
2 )

(z − xωp− k+1−2m
2 )(z − xω−p+ k+1−2m

2 )

just cancels all fixed zeros and all poles except those at z = xω±(k+1)/2. Thus, the only poles of the
product

k−1∏

m=1

f−1
( z
x
ω

k+1−2m
2

)
tk(z)t1(x)

are located at z = xω±(k+1)/2, where the residues are proportional to tk+1(x):

Res
z=xω±

k+1
2

k−1∏

m=1

f−1
( z
x
ω

k+1−2m
2

)
tk(z)t1(x) = ±xω± k+1

2 κp tk+1(xω
± k

2 ), (5.5)

where

κp =
(ω1−p − 1)(ωp − 1)

ω − 1
=

2i sin πp
L sin π(1−p)

L

sin π
L

. (5.6)

It means that the prefactor in (5.1) essentially reduces the number of poles of the resulting function.
The case k = L− 1 is a special one since both poles coincide: xω±L/2 = −x. From the physical point

of view, it corresponds to a kinematical rather than a dynamical pole. The residue is given by

Res
z=−x

L−2∏

m=1

f−1
(
− z

x
ω−m

)
tL−1(z)t1(x) = xκp

(
tL(−xω1/2)− tL(−xω−1/2)

)
. (5.7)

It is important that tL(z) cannot be extracted from the operator products of tk for k < L. In spite of
its apparent triviality, it is a new substance and this fact will be essentially used in the next section.

The prefactor in (5.1) makes the analytic structure of the function Jk,N+1,a(z;X) to be simple. Its
only dynamic poles are located at z = xiω

±(k+1)/2. The equation (5.5) makes it possible to calculate
residues at these poles:

Res
z=xnω

± k+1
2

Jk,N+1,a(z;X) = ±xnω
±k+1

2 R±
N,n(X)Jk+1,N,a(xnω

± k
2 ; X̂n), (5.8)

where

R±
N,n(X) = κp

∏

m∈În

f

((
xm

xn

)±1)
. (5.9)

For the special case k = L− 1 we have

Res
z=−xn

JL−1,N+1,a(z;X) = xn

(
R−

N,n(X)−R+
N,n(X)

)
J1,N−1,a(X̂n), (5.10)
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since JL,N,a(x; X̂n) = J1,N−1,a(X̂n) due too (4.9). Fortunately, there is no need to consider this case
separately while deriving the recurrent relations. It will be taken into account implicitly by the cyclic
property (5.22) below.

One can separate the pole contributions from the regular part:

Jk,N+1,a(z;X) = J
(∞)
k,N+1,a(z;X)

+
N∑

n=1

xnω
k+1
2

z − xnω
k+1
2

R+
N,n(X)Jk+1,N,a(xnω

k
2 ; X̂n)

−
N∑

n=1

xnω
− k+1

2

z − xnω−k+1
2

R−
N,n(X)Jk+1,N,a(xnω

−k
2 ; X̂n), (5.11)

where the function J
(∞)
k,N+1,a(z;X) is regular in the variable z everywhere except the points z = 0 and

z = ∞. Note, that the sum over the poles is of the order O(z−1) as z → ∞. Thus, the asymptotic

behavior of the function Jk,N+1,a(z;X) as a function of z is governed by J
(∞)
k,N+1,a(z;X):

Jk,N+1,a(z;X)− J
(∞)
k,N+1,a(z;X) = O(z−1) as z → ∞. (5.12)

We may use another expansion

Jk,N+1,a(z;X) = J
(0)
k,N+1,a(z;X)

−
N∑

n=1

x−1
n ω−k+1

2

z−1 − x−1
n ω− k+1

2

R+
N,n(X)Jk+1,N,a(xnω

k
2 ; X̂n)

+

N∑

n=1

x−1
n ω

k+1
2

z−1 − x−1
n ω

k+1
2

R−
N,n(X)Jk+1,N,a(xnω

− k
2 ; X̂n),

(5.13)

where the function J
(0)
k,N+1,a(z;X) is again regular everywhere except z = 0,∞. It is evident that the

behavior of the function Jk,N+1,a(z,X) in the vicinity of the point z = 0 is governed by J
(0)
k,N+1,a(z;X):

Jk,N+1,a(z;X)− J
(0)
k,N+1,a(z;X) = O(z) as z → 0. (5.14)

We shall use the notation

Dk,N,a(X) =

N∑

n=1

R+
N,n(X)Jk+1,N,a(xnω

k
2 ; X̂n)−

N∑

n=1

R−
N,n(X)Jk+1,N,a(xnω

− k
2 ; X̂n). (5.15)

From the definitions (5.11), (5.13) it is easy to derive that

J
(0)
k,N+1,a(z;X)− J

(∞)
k,N+1,a(z;X) = DN,a(X). (5.16)

This relation shows that the both functions are nearly the same except the zero mode in z. It means
that it is sufficient establish the singular parts of J (0) and J (∞) in the vicinity of z = 0 and z = ∞
correspondingly and the zero mode of one of them.

What have been said above pertains equally to form factors of exponential and descendant oper-
ators. Now we want to restrict ourselves to the exponential operators. In order to fix the functions

J
(∞)
k,N+1,a(z;X) and J

(0)
k,N+1,a(z;X) we have to calculate the asymptotics of the function Jk,N+1,a(z;X)

as z → 0 and z → ∞. Since f(0) = f(∞) = 1, it is finite in these limits and we have

J
(0)
k,N+1,a(z;X) = J

(∞)
k,N+1,a(z;X) = Kk,aJ1,N,a(X), (5.17)

where
Kk,a = Jk,1,a(0) = Jk,1,a(∞) =

∑

1≤s1<···<sn≤L

ω〈a,Hs1...sn〉. (5.18)
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The fact that Dk,N,a = 0 for the exponential operators provides a nontrivial identity

N∑

n=1

R+
N,n(X)Jk+1,N,a(xnω

k
2 ; X̂n) =

N∑

n=1

R−
N,n(X)Jk+1,N,a(xnω

−k
2 ; X̂n). (5.19)

We arrive to the

Theorem 2 The recurrent relations

Jk,N+1,a(z;X) = Kk,aJ1,N,a(X)

+

N∑

n=1

xnω
k+1
2

z − xnω
k+1
2

R+
N,n(X)Jk+1,N,a(xnω

k
2 ; X̂n)

−
N∑

n=1

xnω
−k+1

2

z − xnω− k+1
2

R−
N,n(X)Jk+1,N,a(xnω

− k
2 ; X̂n) (5.20)

together with the initial conditions

Jk,0,a = 1, Jk,1,a(z) = Kk,a (5.21)

and with the cyclic property
JL,N+1,a(z;X) = J1,N,a(X) (5.22)

uniquely define the set of functions Jk,N,a.
Here the functions R±

N,n(X) are defined in (5.9) and the factor Kk,a is defined in (5.18).

Due to (5.5) any function JN,a(X)k1,...,kN
with arbitrary ki can be constructed from certain function

(5.1) by taking residues at the dynamic poles. Hence, the recurrent relations (5.20)–(5.22) provide a
general construction for the form factors of exponential operators.

Note, that the function Kk,a is nothing but the character of the fundamental representation πk:

Kk,a = trπk
ω〈a,H〉. (5.23)

Below we make use of the explicit formula

Kk,λαi−ρ = 4ωik[k] sin
πλ

L
sin

π(λ − 1)

L
. (5.24)

Now let us turn our attention to the reflection property for exponential fields. The reflection property
(2.18) is an immediate consequence of theorem

Theorem 3 The functions Ja
k,N are symmetric symmetric under the transformations of the Weyl group

W of Lie algebra A
(1)
L−1:

Jk,N,a(z;X) = Jk,N,wa(z,X) ∀w ∈ W (5.25)

or, equivalently,

JN,a(x1, . . . , xN )k1,...,kN
= JN,wa(x1, . . . , xN )k1,...,kN

∀w ∈ W . (5.26)

Let us prove the theorem. The parameter a only enters the recurrent relations (5.20), (5.21) in terms
of Kk,a. Hence, it is sufficient to prove the reflection property for this function. Since the Weyl group is
generated by the simple reflections wi, it is sufficient to prove the reflection property with respect to wi,
that is

Kk,a = Kk,wia.

It is easy to check from the definitions that

〈wia,Hs〉 =





〈a,Hs+1〉, if s = i,

〈a,Hs−1〉, if s = i+ 1,

〈a,Hs〉 otherwise.
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Therefore
〈wia,Hs1...sm...sk〉 = 〈a,Hs1...,sm+1,...sk〉, if sm = i, sm+1 > i+ 1,

〈wia,Hs1...sm...sk〉 = 〈a,Hs1...,sm−1,...sk〉, if sm = i+ 1, sm−1 < i,

〈wia,Hs1...sk〉 = 〈a,Hs1...sk〉 otherwise.

Thus, any simple reflection acts as a permutation of the set {〈a,Hs1...sk〉} of functions of the variable a.
Since the sum in (5.18) runs over the whole set, the function Kk,a is invariant under simple Weyl
reflections.

As an example of an application of the recurrent relations (5.20)—(5.22) we prove the equation of
motion for quantum fields in Appendix B.

6. Reflection property for descendant operators

The proof of the reflection property repeats in the main features that for the sine/sinh-Gordon model [9].
The idea of the proof stems from the conjecture of [21] that all form factors can be obtained from those
of the primary operators as coefficients of large θ expansions.

Theorem 4 For generic values of a there exists a representation of the Weyl group ra on the algebra A
such that for any h, h′ ∈ A the equation holds

J̃hh̄′

N,a(x1, . . . , xN )k1...kN
= J̃

(ra(w)h)(rw∗a(w̃)h′)
N,wa (x1, . . . , xN )k1...kN

. (6.1)

The first step of the proof is to prove that the whole Fock space of the Heisenberg algebra (4.1) can
be spanned on vectors created by products of the operators tk(x), 1 ≤ k ≤ L. More precisely, consider
the expansion

a〈1|tk1(ξ
−1
1 z) · · · tkK

(ξ−1
K z) =

∞∑

n=0

z−n
a〈n; k1ξ1, . . . , kKξK |. (6.2)

For shortness, we shall write Ξ = (ξ1, n1, . . . , ξK , nK). We want to prove that for generic values of a and
large enough values of k one can choose a set Ξ(i), i = 1, . . . , dimDR

n , such that the vectors a〈n; Ξ(i)|
form a basis in the space DR

n . First, let us prove it in the limit a = a(τ), τ → +∞ already used in
Subsection 3.3. In this limit

e−τ k(L−k)
2 tk(z)|â=a(τ) = λ12...k(z) +O(e−τ ) as τ → ∞, (6.3)

which is the full analog of (3.19). Therefore

e−
τ
2

∑
K
i=1 ki(L−ki)

a(τ)〈1|tk1(ξ
−1
1 z) · · · tkK

(ξ−1
K z) = a(τ)〈1|λ1...k1(ξ

−1
1 z) · · ·λ1...kK

(ξ−1
K z) +O(e−τ )

= F (ξ2/ξ1, . . . , ξK/ξ2)a(τ)〈1|:λ1...k1(ξ
−1
1 z) · · ·λ1...kK

(ξ−1
K z): +O(e−τ ), (6.4)

where F (z2, . . . , zK) is a product of functions f of appropriate arguments. The particular form of this
product is not essential for our purposes. Let us calculate the state in the last line:

a(τ)〈1|:λ1...k1(ξ
−1
1 z) · · ·λ1...kK

(ξ−1
K z): = a(τ)〈1| exp

∞∑

n=1

L∑

s=1

κ
(s)
n d

(s)
n z−n

n
, (6.5)

where

κ(s)
n =

K∑

i=1
ki≥s

ω
ki+1−2s

2 nξni . (6.6)

Consider the expansion

a(τ)〈1|:λ1...k1(ξ
−1
1 z) · · ·λ1...kK

(ξ−1
K z): =

∞∑

n=0

z−n
(−)〈n; Ξ|.
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Then

(−)〈n; Ξ| = a(τ)〈1|
n∑

r=1

∑

n1,...,nr>0
n1+···+nr=n

Cn1...nr

r∏

j=1

L∑

s=1

κ(s)
nj

d(s)nj
(6.7)

with some positive constants Cn1...nr
. It means that all possible products of d

(s)
n enter the r. h. s.

For large enough cardinal numbers #{i|ki = s}, 1 ≤ s ≤ L, the functions κ
(s)
n′ , 1 ≤ s ≤ L, 1 ≤ n′ ≤ n

are functionally independent and can be considered as independent variables. Besides, the monomials

κ
(s1)
n1 · · ·κ(sr)

nr are linearly independent. Hence, for any nonzero set of numbers As1...sr
n1...nr

, r = 1, . . . , n,
n1, . . . , nr > 0, n1 + · · ·+ nr = n, we have

∑

r

∑

s1,...,sr
n1,...,nr

As1...sr
n1...nrκ

(s1)
n1

· · ·κ(sr)
nr

6= 0

for some values of the variables κ
(s)
n′ . Therefore, the vector generated by the numbers As1...sr

n1...nr
is not

orthogonal to at least one vector generated by the numbers κ
(s1)
n1 · · ·κ(sr)

nr . It means that there is no

vector in DR
n orthogonal to all of the vectors generated by the products of κ

(sj)
nj . It proves that there

exists a basis (−)〈l; Ξ(I)| in the space DR
l . Now the deformation argument proves the same statement for

generic values of a.

Now we begin the second step of the proof. Let a〈l; I| = a〈l; Ξ(I)
l | be a basis in the space DR

l related

to any particular set of values of the parameters {Ξ(I)
l |I = 1, . . . , dimDR

l }. From the reflection property
for the exponential operators (5.26) we immediately conclude that for any nonnegative integers l, l̄ we
have

a〈l; I|tk1(x1) . . . tkN
(xN )|l̄; J〉a = wa〈l; I|tk1(x1) . . . tkN

(xN )|l̄; J〉wa ∀w ∈ W .

This identity provides a map ra(w) : DR
l → DR

l such that ra(w)(a〈l; I|) = wa〈l; I|. Note that the left

subscript a at the vectors is essential, since the element of DR
l generated by Ξ

(I)
l depends on its value.

Now our aim is to prove that this map is consistent with the restriction (4.24), which selects ‘physical’
states generated by (4.12).

Let the vectors a〈1|πR(ha,l,µ) = a〈l̃;µ| =
∑

I v
µ
I (a) a〈l; I| form a basis in the subspace DR,phys

a,l .

Similarly, let πL(h
′
a,l̄,ν

)|1〉a = | ˜̄l, ν〉a =
∑

J v̄νJ |l̄, J〉a. Due to (4.23) we have

a〈1|tk1(x1) . . . tkM
(xM )DntkM+1(xM+1) . . . tkN

(xN )|1〉a
= wa〈1|tk1(x1) . . . tkM

(xM )DntkM+1(xM+1) . . . tkN
(xN )|1〉wa.

We have

0 = a〈l̃;µ|D−n|l − n; J〉a =
∑

I

vµI (a) a〈l; I|D−n|l− n; J〉a =
∑

I

vµI (a) wa〈l; I|D−n|l − n; J〉wa.

Therefore, ∑

I

vµI (a) wa〈l; I|D−n = 0

and there exists an element hw
wa,l,µ such that

wa〈1|πR(h
w
wa,l,µ) =

∑

I

vµI (a) wa〈l; I|.

Similarly, there exists an element h′w
wa,l̄,ν

such that

πL(h
′w
wa,l̄,ν)|1〉wa =

∑

J

v̄νJ (a)|l̄; J〉wa.

Finally, we find
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〈πR(ha,l,µ)t(x1) . . . t(xN )πL(h
′
a,l̄,ν)〉a = a〈l̃;µ|tk1(x1) . . . tkN

(xN )| ˜̄l, ν〉a
=
∑

I,J

vµI (a)v̄
ν
J (a) a〈l; I|tk1(x1) . . . tkN

(xN )|l̄, J〉a =
∑

I,J

vµI (a)v̄
ν
J (a) wa〈l; I|tk1(x1) . . . tkN

(xN )|l̄, J〉wa

= 〈πR(h
w
wa,l,µ)tk1(x1) . . . tkN

(xN )πL(h
′w
wa,l̄,ν)〉wa.

Thus, we obtained the map ra(w) on the subspaces DR,phys
a , DL,phys:

ra(w)(a〈1|πR(ha,l,µ)) = wa〈1|πR(h
w
wa,l,µ), ra(w)(πL(h

′
a,l̄,ν)|1〉a) = πL(h

′w
wa,l̄,ν)|1〉wa.

Comparing with the property (3.11), which holds for J̃ functions as well as for J ones, we can define

ra(w)ha,l,µ = hw
wa,l,µ, rw∗a(w̃)h

′
a,l̄,ν = h′w

wa,l̄,ν .

Again this proves the factorized form (2.17) of the reflection map.
An alternative construction. It is easy to derive the commutation relation

[Dn, tk(z)] = An
[kn]

[n]
zntk(z), (6.8)

where the coefficients

An = −A+
n

L∑

s=2

ω−L+1−2s
2 n =

{
(−)nωn/2A+

n , n 6∈ LZ,

(1− L)A+
n , n ∈ LZ.

are all nonzero for irrational values of p. Besides, the ratio

[kn]

[n]
=

k∑

s=1

ω
k+1−2s

2 n

is well defined (and equal to k) for n ∈ LZ.
The commutation relation (6.8) means that the product (6.2) satisfy the relations

a〈1|tk1(ξ
−1
1 z) . . . tkK

(ξ−1
K z)D−n = 0, 1 ≤ n ≤ l, (6.9)

subject to the equations
K∑

m=1

[kmn]

[n]
ξnm = 0, 1 ≤ n ≤ l, (6.10)

are satisfied. Hence,

a〈n; k1ξ1, . . . , kKξK |D−n′ = 0, 1 ≤ n ≤ l, n′ ≥ 1. (6.11)

If we also define

tk̄1
(η1z) . . . tk̄K̄

(ηKz)|1〉a =

∞∑

n=1

zn|n; k̄1η1, . . . , k̄K̄ηK̄〉a, (6.12)

we have
Dn′ |n; k̄1η1, . . . , k̄K̄ηK̄〉a = 0, 1 ≤ n ≤ l̄, n′ ≥ 1, (6.13)

subject to the equations
K̄∑

m=1

[k̄mn]

[n]
ηnm = 0, 1 ≤ n ≤ l̄, (6.14)

are satisfied. We conclude that these vectors produce the Weyl invariant matrix elements,

a〈n; k1ξ1, . . . , kKξK |tκ1(x1) . . . tκM
(xM )|n′; k̄1η1, . . . , k̄K̄ηK̄〉a

= wa〈n; k1ξ1, . . . , kKξK |tκ1(x1) . . . tκM
(xM )|n′; k̄1η1, . . . , k̄K̄ηK̄〉wa, w ∈ W , (6.15)

which are form factors of some descendant operators for 1 ≤ n ≤ l, 1 ≤ n′ ≤ n̄.
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Theorem 5 For generic values of the parameter a the vectors a〈n; k1ξ1, . . . , kKξK | with the condi-
tion (6.10) span the whole space DR,phys

n for 0 ≤ n ≤ l, while the vectors |n; k̄1η1, . . . , k̄K̄ηK̄〉a with (6.14)
span the space DL,phys

n for 0 ≤ n ≤ l̄.

Indeed, consider the bra-vectors. Subject to the condition (6.10), the coefficients κ
(s)
n satisfy the

equation
L∑

s=1

κ(s)
n = 0.

It means that the r. h. s. of Eq. (6.7) only contains differences of d
(i+1)
n − d

(i)
n as it must by. Besides,

this r. h. s. only depends on L − 1 parameters for a given n, e. g. k
(i)
n , i = 1, . . . , L − 1. Now the same

argumentation persuades us that these remaining κs may be considered as independent variables, and
the same argumentation proves that there is no vector orthogonal to the set of monomials. Then the
same deformation argument should be applied. We arrive to the

Theorem 6 For any l and there exists an analytic in a family of sets {hinv
a,l,µ ∈ Al}dimAl

µ=1 , which are

bases in Al for generic values of a, such that ra(w)h
inv
a,l,µ = hinv

wa,l,µ.

This alternative derivation has two advantages. First, it proves the existence of an analytic in a
Weyl invariant basis in the space of the operators V g

a . Second, it provides a prescription to get form
factors of these basic elements independently of the representation for form factors in use. Moreover, it
is easy to see, that it is not necessary to solve the equations (6.10) and (6.14) explicitly. It is shown
in Appendix C the form factors are rationally expressed in terms of an appropriately chosen set of
independent variables. The Appendix provides a constructive way to obtain the form factors in terms of
the independent variables.

7. The simplest example: level (1, 0) descendants

Here we study the form factors of the level (1, 0) operators. First, we find the recursion relations for
these form factors and, second, we find the Weyl invariant combinations by means of the first approach
from the previous section. Note that finding recursion relations is not necessary for obtaining the form
factors explicitly, but recursion relations often turn out to be a useful tool to prove theorems.

As we have already mentioned, the whole reasoning (5.8)–(5.16) is valid for the J functions related
to arbitrary operators. Consider the function

J
αic−1

k,N+1,a(z;X) =

N∏

n=1

k−1∏

m=1

f−1

(
z

xn
ω

k+1−2m
2

)
a〈1|πR(αic−1)tk(z)t1(x1) . . . t1(xN )|1〉a. (7.1)

It admits the expansions (5.11) and (5.13) with appropriate functions J (0) and J (∞). Therefore, to
obtain the recurrent relations for this function it is sufficient to find the asymptotics as z → 0 or z → ∞.

Rewrite the expression (7.1) in the form

J
αic−1

k,N+1,a(z,X)

N∏

n=1

k−1∏

m=1

f

(
z

xn
ω

k+1−2m
2

)
= a〈1|[πR(αic−1), tk(z)]t1(x1) . . . t1(xN )|1〉a

+ a〈1|tk(z)πR(αic−1)t1(x1) . . . t1(xN )|1〉a. (7.2)

From (4.13a) we have

[πR(αic−1), tk(z)] = z
∑

1≤s1<...<sk≤L

ω〈a,Hs1,...,sk
〉

k∑

n=1

〈αi, Hsn〉ω−
L−k−2(sn−n)

2

k∏

m=1

λsm(zω
k+1−2m

2 ).

Since f(z) = 1 + O(z−1) as z → ∞, the linear terms in the z expansion of the function J
αjc−1

k,N+1,a(z,X)
only come from the first term in the r. h. s. of Eq. (7.2):

J
αic−1

k,N+1,a(z,X) = zKi
k,aJ1,N,a(X) +O(z0)
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with

Ki
k,a =

∑

1≤s1<...<sk≤L

ω〈a,Hs1,...,sk
〉

k∑

n=1

〈αi, Hsn〉ω−L−k−2(sn−n)
2 . (7.3)

It is not easy to find the term of the order z0 as z → ∞, but it is not necessary, since it is the leading
term in the limit z → 0. From the cluster property we readily get

J
αic−1

k,N+1,a(0, X) = Kk,aJ
αic−1

1,N,a (X).

Finally, we obtain the recurrent relation

J
αic−1

k,N+1,a(z;X) = Kk,aJ
αic−1

1,N,a (X) + zKi
k,aJ1,N,a(X)

−
N∑

n=1

x−1
n ω−k+1

2

z−1 − x−1
n ω− k+1

2

R+
N,n(X)J

αic−1

k+1,N,a(xnω
k
2 ; X̂n)

+

N∑

n=1

x−1
n ω

k+1
2

z−1 − x−1
n ω

k+1
2

R−
N,n(X)J

αic−1

k+1,N,a(xnω
− k

2 ; X̂n).

(7.4)

Together with the initial and cyclic conditions

J
αic−1

k,0,a = 0, J
αic−1

L,N+1,a(z;X) = J
αic−1

1,N,a (X) (7.5)

and with the known recursion relation for Jk,N,a(z;X) it uniquely defines the form factors of the
level (1, 0) descendant operators.

The next step is to find the combinations invariant with respect to the Weyl algebra. Evidently, it
is sufficient to find the Weyl invariant k-independent combinations of the functions Ki

k,a. But it is very
difficult to find these combinations by trial and error. We shall better find them using the technique
described in the first part of Sec. 6. Namely, consider the expansion of the product a〈1|tk(z) up to the
power z−1 as z → ∞. We have

a〈1|tk(z) = a〈1|Kk,a + z−1
a〈1; k|+O(z−2)

with

a〈1; k| =
∑

1≤s1<···<sk≤L

ω〈a,Hs1...sk
〉

k∑

m=1

ωm−k+1
2 a〈1|d(sm)

1 . (7.6)

It is straightforward to check that

a〈1; k|D−1 = a〈1|ω1/2A+
1 [k]Kk,a.

Introduce the state

a〈C| = 1

ω
L+1
2 A+

1

(
L−1∑

k=1

ck
[k]Kk,a

a〈1; k|+ cL a〈1;L|
)
, C = (c1, . . . , cL). (7.7)

This state is ‘physical’ if a〈A|D−1 = 0, which takes place if

L−1∑

k=1

ck = 0. (7.8)

This equation admits L − 1 independent solution A(σ), σ = 1, . . . , L − 1. To identify these solutions to

some elements of A we have to write down the elements d
(s)
1 , s > 1 in the form

d
(s)
1 = d

(1)
1 −

s−1∑

i=1

(d
(i)
1 − d

(i+1)
1 ) = d

(1)
1 −A+

1

s−1∑

i=1

ω
L+1−2i

2 R
(i)
1 .

After substituting it into (7.6), (7.7) the coefficient at the element d
(1)
1 cancels out due to (7.8).
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Let us single out one solution:

c
(L−1)
1 = · · · = c

(L−1)
L−1 = 0, c

(L−1)
L = 1. (7.9)

This solution corresponds to the integral of motion

a〈C(L−1)| = a〈ι1|. (7.10)

Now, let A(σ), σ = 1, . . . , L− 2 be any basis in the subspace of the solutions to the equation (7.8) with

cL = 0. Then a〈C(σ)| = a〈h(σ)
1,a |, where

h
(σ)
1,a = −

L−1∑

i=1

αic−1

L−1∑

k=1

c
(σ)
k

[k]Kk,a

k∑

m=1

ωm−i− k+1
2

∑

1≤s1<···<sk≤L

sm>i

ω〈a,Hs1...sk
〉, σ = 1, . . . , L− 2. (7.11)

In particular, h
(L−1)
1,a = ι1 assuming (7.9).

If we only allow a-independent solutions C(σ), the coefficients in the linear combination (7.7) are
Weyl invariant. Hence, by the construction

a〈h(σ)
1,a |tk1(x1) . . . tkN

(xN )|1〉a = wa〈h(σ)
1,wa|tk1(x1) . . . tkN

(xN )|1〉wa ∀w ∈ W

for σ = 1, . . . , L− 1.

8. Discussion

In this paper we extended the main results of [9] to the case of the A
(1)
L−1 affine Toda models. We construct

spaces of solutions to the form factor bootstrap equations, which, as we argue, can be bijectively mapped
onto the Fock spaces of descendant operators over the exponential operators Va(x) for generic values of a.
We propose a construction to find Weyl invariant families of bases in these spaces based on high rapidity
asymptotic expansions of the form factors of exponential operators. In principle, it is possible, at least
for the lowest levels, to obtain Weyl invariant families of bases in the Fock spaces of descendant operators
in the Lagrangian formalism [23]. However, the identification of both types of bases cannot be unique
without some additional information. Probably, we could fix identification at some special resonant
points, but it has not been done up to now. Thus, the field identification problem of the bootstrap form
factor program remains unsolved.

Recently, in the remarkable papers [24,25] it was shown using the scaling limit from a lattice model,
that the spaces of descendant operators, at least in the case of the sine-Gordon model, can be created
by use of some fermionic operators acting in the space of local operators of the theory. In particular, it
turned out to be possible to calculate exactly all the expectation values of descendant operators in the
theory [25]. It would be utterly unnatural, if such fermionic operators would not induce an action on
the algebra A⊗A in our construction. Hence, revealing such fermions in a construction for form factors
would be an important step toward the field identification, if not its complete solution.
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the framework of the LIA “Physique Théorique et Matière Condensée” (ENS–Landau program).

Appendix A. Simple poles of tk(z)t1(x)

Here we prove that the poles (5.2) are simple. The product tk(z)t1(x) could possess double poles at the
points z = xω±(k−1)/2 due to two poles of the function f(z). For example, for the pole z = xω−(k−1)/2
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the double poles appear in the two types of terms. Let us obtain the terms of the first type. Let σ1,
σ2 be two integers such that 2 ≤ σ1 < σ2 ≤ L. Then the expression (4.10) for n = k contains terms
with sk−1 = σ1 − 1 and sk = σ1, while that for n = 1 contains a term with s = σ2. Hence, the product
tk(z)t1(x) contains terms of the form

:λ∗λσ1−1

(
zω

3−k
2

)
λσ1

(
zω

1−k
2

)
λσ2 (x): f

( z
x
ω

3−k
2

)
f
( z
x
ω

1−k
2

)
,

where λ∗ means the product of all other λs and fs. The product of the two f functions produces a

double pole at the point z = xω− k+1−2i
2 . In the vicinity of this point it behaves as

:λ∗λσ1−1(ωx)λσ1 (x)λσ2 (x):
−(1− ω1−p)2(1 − ωp)2

(1 − ω)2
(

z
xω

1−k
2 − 1

)2 +O

(( z
x
ω

1−k
2 − 1

)−1
)
. (A.1)

The second type of terms consists of those with si−1 = σ1 − 1, si = σ2, s = σ1:

:λ∗λσ1−1

(
zω

3−k
2

)
λσ2

(
zω

1−k
2

)
λσ1 (x): f

( z
x
ω

3−k
2

)
f
(x
z
ω− 1−k

2

)
.

It possesses a double pole at the same point, where it behaves just as minus the expression (A.1). It is
easy to see that the factors denoted by λ∗ are the same for both expressions in this limit if all other sj
coincide. Hence, both double pole contributions cancel each other. The same reasoning is valid for the
pole at z = xω(k−1)/2.

Appendix B. Equation of motion

In this appendix we prove that form factors are consistent with the equation of motion

αi∂∂̄ϕ =
πµb

2
(2ebαiϕ − ebαi−1ϕ − ebαi+1ϕ).

The derivatives of a field produce multiplication of its form factors by the components of the momentum
according to the usual rule Pµ ↔ i∂µ. Introduce the notation

Sk
n(z;X) =

sin πkn
L

sin πn
L

zn + Sn(X).

Let z = eθ, xn = eθn . Then the components of the momentum are given by

Pz(θ, θ1, . . . , θN )k,1,...,1 =
m

2
Sk
1 (z;X)

Pz̄(θ, θ1, . . . , θN )k,1,...,1 = −m

2
Sk
−1(z;X).

Let

a =

L−1∑

i=1

aiαi, νi = pαi − ρ.

Then we have

〈vac|αi∂∂̄ϕ|θ, θ1, . . . , θN〉k,1,...,1 =
m2

4Q
Sk
1 (z;X)Sk

−1(z;X)
d

dai
fa(θ, θ1, . . . , θN )k1...1

∣∣∣∣
a=−ρ

and

〈vac|ebαiϕ|θ, θ1, . . . , θN 〉k1...1 = ω∓(k+N)〈vac|ebαi±1ϕ|θ, θ1, . . . , θN 〉k1...1 = Gνifνi(θ, θ1, . . . , θN)k1...1.

All values Gνi are evidently equal. Let

J ′
k,N+1,i(z;X) =

d

dai
Jk,N+1,a(z;X)

∣∣∣∣
a=−ρ

.
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The equation of motion can be rewritten as

Sk
1 (z;X)Sk

−1(z;X)J ′
k,N+1,i(z;X) = A sin2

π(k +N)

L
Jk,N+1,νi(z;X), (B.1)

where

A =
8πµGνi

(1− p)m2
.

According to [22] it reads

A =
π

L sin π
L sin πp

L sin π(1−p)
L

. (B.2)

It is easy to check Eq. (B.1) with (B.2) for N = 0 by using (5.21), (5.24). Now we prove it for N > 0 by
induction.

It is more convenient to use induction in the variable k + N rather than just N . Suppose that the
equation (B.1) is valid for some value M = k +N for arbitrary k = 1, . . . , L − 1. Taking derivatives of
both sides of the recurrent relation (5.20) we get

J ′
k,N+1,i(z;X) =

N∑

n=1

xnω
k+1
2

z − xnω
k+1
2

R+
N,n(X)J ′

k+1,N,i(xnω
k
2 ; X̂n)

−
N∑

j=1

xnω
− k+1

2

z − xnω− k+1
2

R−
N,n(X)J ′

k+1,N,i(xnω
− k

2 ; X̂n).

Multiplying it by Sk
1 (z,X)Sk

−1(z,X) and using the identity (5.19) we get

Sk
1 (z,X)Sk

−1(z,X)J ′
k,N+1(z;X) =

N∑

n=1

[k]xnω
k+1
2 R+

N,n(X)Sk+1
−1 (xnω

k
2 ; X̂n)J

′
k+1,N (xnω

k
2 ; X̂n)

+

N∑

n=1

xnω
k+1
2

z − xnω
k+1
2

R+
N,n(X)Sk+1

1 (xnω
k
2 ; X̂n)S

k+1
−1 (xnω

k
2 ; X̂n)J

′
k+1,N (xnω

k
2 ; X̂n)

−
N∑

n=1

[k]xnω
− k+1

2 R−
N,n(X)Sk+1

−1 (xnω
− k

2 ; X̂n)J
′
k+1,N (xnω

− k
2 ; X̂n)

−
N∑

n=1

xnω
− k+1

2

z − xnω− k+1
2

R−
N,n(X)Sk+1

1 (xnω
−k

2 ; X̂n)S
k+1
−1 (xnω

− k
2 ; X̂n)J

′
k+1,N (xnω

− k
2 ; X̂n). (B.3)

Due to the induction hypothesis we have

Sk+1
1 (xnω

− k
2 ; X̂n)S

k+1
−1 (xnω

− k
2 ; X̂n)J

′
k+1,N,i(xnω

− k
2 ; X̂n) = A sin2

π(k +N)

L
Jk+1,N,νi(xnω

− k
2 ; X̂n).

Hence, the sum of the first and the third terms in the right hand side of Eq. (B.3) are equal to

A sin2
π(k +N)

L

(
N∑

n=1

[k]xnω
k+1
2

Sk+1
1 (xnω

k
2 ; X̂n)

R+
N,n(X)Jk+1,N,νi(xnω

k
2 ; X̂n)

−
N∑

n=1

[k]xnω
− k+1

2

Sk+1
1 (xnω−k

2 ; X̂n)
R−

N,n(X)Jk+1,N,νi(xnω
− k

2 ; X̂n)

)

= −A sin2
π(k +N)

L
(Jk,N+1,νi (−[k]−1S1(X);X)−Kk,νiJ1,N,νi(X)),

while the two remaining terms reads

A sin2
π(k +N)

L

(
N∑

n=1

xnω
k+1
2

z − xnω
k+1
2

R+
N,n(X)Jk+1,N,νi(xnω

k
2 ; X̂n)
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−
N∑

n=1

xnω
− k+1

2

z − xnω− k+1
2

R−
N,n(X)Jk+1,N,νi(xnω

−k
2 ; X̂n)

)

= A sin2
π(k +N)

L
(Jk,N+1,νi(z;X)−Kk,νiJ1,N,νi(X)).

Gathering these terms we get

Sk
1 (z;X)Sk

−1(z;X)J ′
k,N+1,i(z;X) = A sin2

π(k +N)

L
(Jk,N+1,νi (z;X)− Jk,N+1,νi(−[k]−1S1(X);X)).

It is nearly what we need. To prove the equation of motion for k +N = M + 1 it remains to prove that

Jk,N+1,νi(−[k]−1S1(X);X) = 0. (B.4)

Consider first the case k = 1. Then the function J1,N+1,νi(xN+1;x1, . . . , xN ) is symmetric with respect
to all of the variables x1, . . . , xN+1. Hence, any of these variables can be chosen for z. It means that

J1,N+1,νi(−S1(X);X) = J1,N+1,νi(−S1(xN+1, X̂j);xN+1, X̂j).

The left hand side is xN -independent, while the right hand side is xj -independent. It means that the
function J1,N+1,νi(−S1(X);X) is constant in its all N variables. Therefore, it is sufficient to prove that
it is zero for e. g. xN → ∞. Let us use the recurrent relation

J1,N+1,νi(−S1(X);X) = K1,νiJ1,N,νi(X)

+

N∑

n=1

xnω

S2
1(xnω

1
2 ; X̂n)

R+
N,n(X)J2,N,νi(xnω

1
2 ; X̂n)

−
N∑

n=1

xnω
−1

S2
1(xnω− 1

2 ; X̂n)
R−

N,j(X)J2,N,νi(xnω
− 1

2 ; X̂n).

Since the left side is a constant, we may calculate it in the limit xN → ∞. In this limit the only
nonvanishing terms in the sums in the right hand side are those with n = N . Taking into account that

R+
N,n(X) = R−

N,n(X) = −2i sin πp
L sin π(1−p)

L

sin π
L

+O(x−1
N ) as xN → ∞,

we obtain

J1,N+1,νi(−S1(X);X) →
(
(K1,νi)

2 + 4
sin π

L sin πp
L sin π(p−1)

L

sin 2π
L

K2,νi

)
J1,N−1,νi(X̂N ) = 0.

Hence, J1,M,νi(−S1(X);X) = 0. Now, it is straightforward to check (B.4) by fusing t1’s into tk. That is
why we used induction in the variable k +N rather than N .

Appendix C. Solutions to Eqs. (6.10), (6.14) and form factors

As the equations (6.10) and (6.14) have the same form, we restrict the consideration to the bra-vectors.
Since tk(z) for k = 2, . . . , L−1 can be obtained by the fusion of t1(z) according to (5.5), it is sufficient

to consider t1(z) and tL(z) without loss of generality. Besides, since the differences tL(zω)− tL(z) also
appear in such fusion according to (5.7), it is convenient to consider the ‘symmetrized’ version of tL(z):

tsymL (z) =

L−1∑

m=0

tL(zω
m), (C.1)

which is an operator valued function of zL. Similarly to (6.2) consider the expansion

a〈1|t1(ξ−1
1 z) . . . t1(ξ

−1
r z)tsymL (ζ

−1/L
1 z) . . . tsymL (ζ−1/L

s z) =

∞∑

n=0

z−n
a〈n; ξ1, . . . , ξr; ζ1, . . . , ζs|. (C.2)
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The equations (6.10) reduce in this case to

r∑

m=1

ξnm = 0, n 6∈ LZ,

r∑

m=1

ξnm = −L

s∑

m=1

ζnm = Σn/L, n ∈ LZ,

(C.3)

for 1 ≤ n ≤ l. Here we introduced the variables Σν , ν = 1, . . . , λ = ⌊l/L⌋, which will be useful
below. Due to the Newton–Girard identities, for 1 ≤ n ≤ l the quantities σ1

n vanish, if n 6∈ LZ, while
σ1
L, σ

1
2L, . . . , σ

1
λL are in one-to-one correspondence with Σ1, . . . ,Σλ. The quantities σL

n for n = 1, . . . , λ
are also in one-to-one correspondence with Σ1, . . . ,Σλ and, hence, with σ1

L, σ
1
2L, . . . , σ

1
λL.

The form factors

a〈n; ξ1, . . . , ξr; ζ1, . . . , ζs|tk1(x1) . . . tkN
(xN )|h′〉

are rational symmetric functions of the variables ξ1, . . . , ξr and the variables ζ1, . . . , ζs, that is they
are ratios of symmetric polynomials. Therefore, if we learn how to calculate elementary symmetric
polynomials σ1

n = σn(ξ1, . . . , ξr), n = 1, . . . , r, and σL
n = σn(ζ1, . . . , ζs), n = 1, . . . , λ on solution of the

equations (C.3), we will be able to calculate the form factors.
We have r + s variables and l equations, that is r + s− l independent variables. Let r0 = r − l + λ

and s0 = s − λ so that r0 + s0 = r + s − l. Take ξ1, . . . , ξr0 and ζ1, . . . , ζs0 for independent variables.
Then the variables ξ1, . . . , ξr and ζ1, . . . , ζs are solutions to the equations

ξrm +

λ∑

n=1

(−)Lnσ1
Lnξ

r−Ln
m +

r∑

n=l+1

(−)nσ1
nξ

r−n
m = 0, (C.4)

ζsm +

s∑

n=1

(−)nσL
n ζ

r−n
m = 0. (C.5)

Consider the equations (C.4) for m = 1, . . . , r0 as a system of r0 linear inhomogeneous equations for
r0 variables σ1

L, σ
1
2L, . . . , σ

1
λL, σ

1
l+1, σ

1
l+1, . . . , σ

1
r . For generic values of ξ1, . . . , ξr0 these equations are

nondegenerate and are solved in terms of the Schur polynomials. Now, using the Newton–Girard identities
we can express σL

1 , . . . , σ
L
λ as polynomials of σ1

L, . . . , σ
1
λL. Thus, the equations (C.5) for m = 1, . . . , s0

become s0 linear inhomogeneous equations for s0 variables σL
λ+1, . . . , σ

L
s , which can be solved in terms

of the Schur polynomials as well.
Finally, we expressed all the symmetric polynomials σ1

n, σ
L
n and, hence, the form factors as rational

functions of the independent variables ξ1, . . . , ξr0 , ζ1, . . . , ζs0 , q. e. d. Note that though for simplicity we
omitted some explicit formulas, the procedure described here is thoroughly constructive.
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