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Abstract

We present various results on the properties of the four infinite sets of the excep-
tional Xℓ polynomials discovered recently (Odake and Sasaki, Phys. Lett. B679 (2009)
414-417). These Xℓ polynomials are global solutions of second order Fuchsian differ-
ential equations with ℓ + 3 regular singularities and their confluent limits. We derive
equivalent but much simpler looking forms of the Xℓ polynomials. The other subjects
discussed in detail are: factorisation of the Fuchsian differential operators, shape invari-
ance, the forward and backward shift operations, invariant polynomial subspaces under
the Fuchsian differential operators, the Gram-Schmidt orthonormalisation procedure,
three term recursion relations and the generating functions for the Xℓ polynomials.

1 Introduction

Four sets of infinitely many exceptional (Xℓ) polynomials satisfying second order differen-

tial equations were introduced recently by two of the present authors [1, 2]. They were

obtained as the main part of the eigenfunctions of exactly solvable one-dimensional quan-

tum mechanical systems which were deformations of the well-known solvable systems of the

radial oscillator [3, 4] and the trigonometric Darboux-Pöschl-Teller (DPT) potential [5] by a

degree ℓ eigenpolynomial. Thus the orthogonality and completeness of the Xℓ polynomials

are automatically guaranteed. These polynomials, termed exceptional Laguerre and Jacobi

polynomials, have two types in each family, L1, L2 and J1 and J2. The Laguerre family L1

http://arxiv.org/abs/0912.5447v1


(L2) is obtained from the Jacobi family J1 (J2) by the well-known limit (E.28), which takes

the Jacobi polynomials to the Laguerre polynomials. The J1 and J2 are mirror images of

each other, see (E.14), but their limits L1 and L2 are clearly distinct. These polynomials

are exceptional in the sense that they start at degree ℓ (ℓ = 1, 2, . . .) rather than degree 0

constant term. Thus they are not constrained by Bochner’s theorem [6], which states that

the orthogonal polynomials (starting with degree 0) satisfying a second order differential

equations are very limited. Namely, they are only the classical orthogonal polynomials, the

Hermite, Laguerre, Jacobi and Bessel polynomials.

The concept of exceptional orthogonal polynomials was introduced in 2008 by Gomez-

Ullate et al. [7, 8]. Within the Sturm-Liouville theory they constructed X1 Laguerre and

X1 Jacobi polynomials, which turned out to be the first members of the infinite families.

The results in [7, 8] were reformulated in the framework of quantum mechanics and shape-

invariant potentials [9] by Quesne and collaborators [10, 11]. They found the first member

of the deformed hyperbolic DPT potential family, which was also given in [1]. Quantum

mechanical reformulation offers two merits. Firstly, the orthogonality and completeness of

the obtained eigenfunctions are guaranteed. Secondly, the well established solution mecha-

nism of shape invariance combined with Crum’s method [12], or the so-called factorisation

method [3] or the susy quantum mechanics [4] is available. Shape invariance is a well-known

sufficient condition for exact solvability of one-dimensional Schrödinger equation. The dis-

covery of the four sets of infinitely many exceptional orthogonal polynomials was achieved

by pursuing shape invariant deformation [1, 2]. After the first paper on infinitely many Xℓ

polynomials [1], Quesne reported a type II X2 Laguerre polynomials [13, 14], which led to

the discovery of the L2 family of Xℓ Laguerre polynomials [2]. In a previous paper [15], two

of the present authors unveiled infinitely many polynomial identities of degree 3ℓ involving

cubic products of the Laguerre or the Jacobi polynomials, which encode the information of

exact solvability of the differential equations governing the Xℓ polynomials.

In this paper we explore various properties of the Xℓ polynomials. We emphasise that

the J1 and J2 polynomials are the global solutions of a Fuchsian differential equation having

ℓ + 3 regular singularities. They are located at ±1,∞ and the ℓ zeros of the polynomial

ξℓ(η; λ) (2.2), (2.4) which is used for the deformation. To the best of our knowledge, such

global solutions of a Fuchsian differential equation having as many as ℓ + 3 regular singu-

larities are entirely new. Factorisation and shape invariance are reformulated accordingly,

2



leading to Rodrigues formulas and the forward and backward shift operations. The existence

of the extra regular singularities implies that the ordinary vector space spanned by degree n

polynomials V0,n = Span [1, x, . . . , xn] is not invariant under the Fuchsian differential oper-

ator (6.3). Appropriate invariant polynomial subspaces are introduced and their properties

are used to derive the explicit forms of the exceptional polynomials. Some of the important

subjects in orthogonal polynomial theory, namely, the Gram-Schmidt orthonormalisation,

the generating functions, three term recurrence relations, the zeros of these orthogonal poly-

nomials, etc, are also discussed. New infinitely many polynomial identities underlying the

forward and backward shift operations are also reported.

The plan of this paper is as follows. In Sect. two we present the explicit forms of the four

sets of infinitely many exceptional orthogonal polynomials together with their weight func-

tions and the normalisation constants. They are equal to those reported earlier [1, 2], but look

much simpler than the original ones. The new forms of the polynomials reveal the structure

of the theory. In Sect. three the Fuchsian differential equations governing these polynomials

are discussed. Shape invariance and Rodrigues formulas are presented in Sect. four. The

identities underlying the forward and backward shift relations are presented in Sect. five.

The polynomial subspaces invariant under the Fuchsian differential operator are discussed in

Sect. six. This gives another concise proof of the new forms of the exceptional polynomials.

In Sect. seven we provide the integration formula which is essential for the Gram-Schmidt

construction in Sect. eight. Sect. nine gives the generating functions for the Xℓ polynomials.

The double generating function, that is, the generating function of the generating functions,

is presented for the L1 and L2 exceptional Laguerre polynomials. A substitute of the three

term recurrence relations for the Xℓ polynomials is introduced in Sect. ten. In Sect. eleven

we state the qualitative features of the extra zeros of the Xℓ polynomials without proof. The

final section is for a summary and comments. Some technical details are relegated to Ap-

pendices. The equality of the new and original forms of the Xℓ polynomials is demonstrated

in A. Forward and backward shift relations are proved in B. Derivation of the integration

formula is provided in C. The properties of the Xℓ Jacobi polynomials as the solutions of the

quantum mechanical systems with deformed hyperbolic DPT potentials are summarised in

D. A concise summary of some important properties of the Laguerre and Jacobi polynomials

is given in E for self-containedness.

Throughout this paper we stick to the notation of our previous papers [1, 2, 15]. Reference
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to the quantum mechanical language is made minimal in order to attain wider readership

than before. Most concepts and formulas are common to the four sets of exceptional poly-

nomials. As far as possible we use generic formulas valid for all the four different sets of Xℓ

polynomials, in order to emphasise the underlying structure and at the same time to avoid

redundancy.

2 Exceptional Laguerre and Jacobi polynomials

Here we present four sets of infinitely many exceptional orthogonal polynomials [1, 2], among

them two are deformations of the Laguerre polynomials, and the others are deformations of

the Jacobi polynomials. They are expressed as a bilinear form of the original polynomials,

the Laguerre or Jacobi polynomials and the deforming polynomials, depending on the set

of parameters λ and their shifts δ and a non-negative integer ℓ, which is the degree of the

deforming polynomials. The two sets of exceptional Laguerre polynomials (ℓ = 0, 1, 2, . . .,

n = 0, 1, 2, . . .) are:

Pℓ,n(η; λ)
def
=






ξℓ(η; λ + δ)Pn(η; g + ℓ − 1) − ξℓ(η; λ)∂ηPn(η; g + ℓ − 1) : L1

(n + g + 1
2
)−1

(
(g + 1

2
)ξℓ(η; λ + δ)Pn(η; g + ℓ + 1)

+ ηξℓ(η; λ)∂ηPn(η; g + ℓ + 1)
)

: L2,

(2.1)

in which λ
def
= g > 0 and δ

def
= 1 and

Pn(η; g)
def
= L

(g− 1

2
)

n (η), ξℓ(η; g)
def
=

{
L

(g+ℓ− 3

2
)

ℓ (−η) : L1

L
(−g−ℓ− 1

2
)

ℓ (η) : L2.
(2.2)

The two sets of exceptional Jacobi polynomials (ℓ = 0, 1, 2, . . ., n = 0, 1, 2, . . .) are1:

Pℓ,n(η; λ)
def
=





(n + h + 1
2
)−1

(
(h + 1

2
)ξℓ(η; λ + δ)Pn(η; g + ℓ − 1, h + ℓ + 1)

+ (1 + η)ξℓ(η; λ)∂ηPn(η; g + ℓ − 1, h + ℓ + 1)
)

: J1

(n + g + 1
2
)−1

(
(g + 1

2
)ξℓ(η; λ + δ)Pn(η; g + ℓ + 1, h + ℓ − 1)

− (1 − η)ξℓ(η; λ)∂ηPn(η; g + ℓ + 1, h + ℓ − 1)
)

: J2,

(2.3)

in which λ
def
= (g, h), g > 0, h > 0, δ

def
= (1, 1) and

Pn(η; g, h)
def
= P

(g− 1

2
,h− 1

2
)

n (η), ξℓ(η; g, h)
def
=

{
P

(g+ℓ− 3

2
,−h−ℓ− 1

2
)

ℓ (η), g > h > 0 : J1

P
(−g−ℓ− 1

2
,h+ℓ− 3

2
)

ℓ (η), h > g > 0 : J2.
(2.4)

1 It should be remarked that the naming J1 and J2 are interchanged from the previous ones [2] in order
to respect the logical consistency rather than hysteresis.
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These Xℓ polynomials have the following general structure

d0(n, λ)Pℓ,n(η; λ) = d1(λ)ξℓ(η; λ+δ)Pn(η; λ+ℓδ+δ̃)−d2(η)ξℓ(η; λ)∂ηPn(η; λ+ℓδ+δ̃), (2.5)

where

d0(n, λ)
def
=






1 : L1
n + g + 1

2
: L2,J2

n + h + 1
2

: J1
, δ̃

def
=

{
∓1 : L1/L2
∓(1,−1) : J1/J2,

(2.6)

d1(λ)
def
=





1 : L1
g + 1

2
: L2,J2

h + 1
2

: J1
, d2(η)

def
=





1 : L1
−η : L2
∓(1 ± η) : J1/J2.

(2.7)

We introduce a linear map Ξℓ,λ[ · ] for a differentiable function p(η),

Ξℓ,λ[p(η)]
def
= d1(λ)ξℓ(η; λ + δ)p(η) − d2(η)ξℓ(η; λ)∂ηp(η). (2.8)

Then the Xℓ polynomial (2.5) is expressed succinctly as

d0(n, λ)Pℓ,n(η; λ) = Ξℓ,λ

[
Pn(η; λ + ℓδ + δ̃)

]
. (2.9)

The X0 polynomials P0,n(η; λ) = Pn(η; λ) are the undeformed polynomials, i.e., the

Laguerre or the Jacobi polynomials themselves. Therefore the above formulas (2.1), (2.3)

and (2.5) for ℓ = 0 are non-trivial identities among the Laguerre or the Jacobi polynomials

d0(n, λ)Pn(η; λ) = d1(λ)Pn(η; λ + δ̃) − d2(η)∂ηPn(η; λ + δ̃). (2.10)

This is shown by using (E.2), (E.15) and the following; (E.11) for L1, (E.11) and (E.12)

for L2, (E.22) for J1 and (E.25) for J2. The Xℓ polynomials Pℓ,n(η; λ) are degree ℓ + n

polynomials in η and start at degree ℓ:

Pℓ,0(η; λ) = ξℓ(η; λ + δ). (2.11)

They are orthogonal with respect to the weight function Wℓ(η, λ) which is a deformation of

the weight function W (η; λ) for the Laguerre or Jacobi polynomials:
∫

Pℓ,n(η; λ)Pℓ,m(η; λ)Wℓ(η; λ)dη = hℓ,n(λ)δnm, (2.12)

Wℓ(η; λ)
def
=

W (η; λ + ℓδ)

ξℓ(η; λ)2
, W (η; λ)

def
=

{
1
2
e−ηηg− 1

2 , 0 < η < ∞ : L
1

2g+h+1 (1 − η)g− 1

2 (1 + η)h− 1

2 , −1 < η < 1 : J.

(2.13)
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The normalisation constants are meromorphic functions of the parameters g, h and ℓ:

L : hn(g)
def
=

1

2 n!
Γ(n + g + 1

2
), (2.14)

hℓ,n(g)
def
= hn(g + ℓ) ×





n+g+2ℓ− 1

2

n+g+ℓ− 1

2

: L1

n+g+ℓ+ 1

2

n+g+ 1

2

: L2,
(2.15)

J : hn(g, h)
def
=

Γ(n + g + 1
2
)Γ(n + h + 1

2
)

2 n! (2n + g + h)Γ(n + g + h)
, (2.16)

hℓ,n(g, h)
def
= hn(g + ℓ, h + ℓ) ×





(n+h+ℓ+ 1

2
)(n+g+2ℓ− 1

2
)

(n+h+ 1

2
)(n+g+ℓ− 1

2
)

: J1

(n+g+ℓ+ 1

2
)(n+h+2ℓ− 1

2
)

(n+g+ 1

2
)(n+h+ℓ− 1

2
)

: J2.
(2.17)

As stressed in §3 of [2], the J1 and J2 polynomials are the mirror images of each other, in

the sense η ↔ −η and g ↔ h, as exemplified by the relation ξJ2
ℓ (η; g, h) = (−1)ℓξJ1

ℓ (−η; h, g).

However, they lead to the two different sets of the exceptional Laguerre polynomials, J1→L1,

J2→L2. In terms of the limit formulas

lim
β→∞

P (α,±β)
n

(
1 − 2x

β

)
= L(α)

n (±x), (2.18)

it is easy to see the relations Pℓ,n(η; λ) (2.3)→(2.1) together with the deforming polynomials

ξℓ(η; λ) (2.4)→(2.2), the normalisation constants [(2.12) with (2.17)]→[(2.12) with (2.15)]

and others. The explicit forms of the Xℓ polynomials (2.1) and (2.3) are much simpler than

those given in the previous papers [1, 2]. In Appendix A we will give simple demonstration

that these apparently different forms of Xℓ polynomials are in fact equal.

The basic ingredients of the theory of exceptional orthogonal polynomials are the base

polynomial Pn and the deforming polynomial ξℓ. They satisfy the second order differential

equations (E.4) and (E.17), which can be expressed as

c2(η)∂2
ηPn(η; λ) + c1(η, λ)∂ηPn(η; λ) = −1

4
En(λ)Pn(η; λ), (2.19)

c2(η)∂2
ηξℓ(η; λ) + c̃1(η, λ, ℓ)∂ηξℓ(η; λ) = −1

4
Ẽℓ(λ)ξℓ(η; λ), (2.20)

where

c1(η, λ)
def
=

{
g + 1

2
− η : L

h − g − (g + h + 1)η : J
, c2(η)

def
=

{
η : L
1 − η2 : J,

(2.21)

c̃1(η, λ, ℓ)
def
=

{
±(g + ℓ − 1

2
+ η) : L1/L2

∓
(
g + h + 2ℓ − 1 + (g − h)η

)
: J1/J2,

(2.22)

En(λ)
def
=

{
4n : L
4n(n + g + h) : J

, Ẽℓ(λ)
def
=

{
∓4ℓ : L1/L2
4ℓ(ℓ ± g ∓ h − 1) : J1/J2.

(2.23)
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The deforming polynomial ξℓ(η; λ + δ) is expressed in terms of ξℓ(η; λ),

d1(λ)ξℓ(η; λ + δ) = d1(λ + ℓδ)ξℓ(η; λ) + d2(η)∂ηξℓ(η; λ), (2.24)

with d1 and d2 defined in (2.7). This is shown by (E.2), (E.15) and various identities of

the polynomials; (E.11) for L1, (E.11) and (E.12) for L2, (E.22) for J1 and (E.25) for J2.

Conversely ξℓ(η; λ) is expressed in terms of ξℓ(η; λ + δ),

d3(λ + ℓδ, ℓ)ξℓ(η; λ) = d3(λ, ℓ)ξℓ(η; λ + δ) +
c2(η)

d2(η)
∂ηξℓ(η; λ + δ), (2.25)

where

d3(λ, ℓ)
def
=





g + ℓ − 1
2

: L1,J1
1 : L2
h + ℓ − 1

2
: J2.

(2.26)

This is shown in similar ways as above. The Laguerre and Jacobi differential equations for

Pn (2.19) can be factorised into the forward and backward shift relations for Pn:

cF∂ηPn(η; λ) = fn(λ)Pn−1(η; λ + δ), (2.27)

c1(η, λ)Pn−1(η; λ + δ) + c2(η)∂ηPn−1(η; λ + δ) = −1
4
cFbn−1(λ)Pn(η; λ), (2.28)

where

cF

def
=

{
2 : L
−4 : J

, fn(λ) =

{
−2 : L
−2(n + g + h) : J

, bn−1(λ) = −2n. (2.29)

See (E.2)–(E.3) and (E.15)–(E.16) for the explicit forms of the forward and backward shift

relations. Note that fn(λ) and bn−1(λ) are the factors of the eigenvalue

En(λ) = fn(λ)bn−1(λ), n = 0, 1, . . . , . (2.30)

3 Fuchsian differential equations with extra ℓ regular

singularities

The exceptional Laguerre and Jacobi polynomials satisfy a second order linear differential

equation in the entire complex η plane:

H̃ℓ(λ)Pℓ,n(η; λ) = Eℓ,n(λ)Pℓ,n(η; λ), Eℓ,n(λ) = En(λ + ℓδ), (3.1)

in which the eigenvalue En is defined in (2.23). The Xℓ polynomials are not constrained by

Bochner’s theorem [6] by the very fact that they start at degree ℓ (2.11) instead of degree
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0 constant term. As with the Laguerre and Jacobi differential equations (2.19), the second

order differential operator H̃ℓ(λ) is factorised into the product of the forward shift operator

Fℓ(λ) and the backward shift operator Bℓ(λ):

H̃ℓ(λ)
def
= Bℓ(λ)Fℓ(λ), (3.2)

Fℓ(λ)
def
= cF

ξℓ(η; λ + δ)

ξℓ(η; λ)

( d

dη
− ∂η log ξℓ(η; λ + δ)

)
, (3.3)

Bℓ(λ)
def
= −4c−1

F
c2(η)

ξℓ(η; λ)

ξℓ(η; λ + δ)

( d

dη
+

c1(η, λ + ℓδ)

c2(η)
− ∂η log ξℓ(η; λ)

)
. (3.4)

Note that c1(η,λ+ℓδ)
c2(η)

= ∂η log W (η; λ + (ℓ + 1)δ). It is straightforward to derive the explicit

form of H̃ℓ(λ):

H̃ℓ(λ) = −4
(
c2(η)

d2

dη2
+

(
c1(η, λ + ℓδ) − 2c2(η)∂η log ξℓ(η; λ)

) d

dη

+ 2d1(λ)
c2(η)

d2(η)

∂ηξℓ(η; λ + δ)

ξℓ(η; λ)
+

1

4
Ẽℓ(λ + δ)

)
. (3.5)

Use is made of the second order differential equations for ξℓ(η; λ+ δ) (2.20) and the identity

(2.24) to derive the above simple result.

For ℓ = 0 the above differential equation (3.1) with (3.5) reduces to the second order

differential equation for the Laguerre or Jacobi polynomials:

H̃0(λ) = −4
(
c2(η)

d2

dη2
+ c1(η, λ)

d

dη

)
, (3.6)

L : H̃0(λ) = −4
(
η

d2

dη2
+ (g + 1

2
− η)

d

dη

)
, (3.7)

η∂2
ηPn(η; g) + (g + 1

2
− η)∂ηPn(η; g) + n Pn(η; g) = 0, (3.8)

J : H̃0(λ) = −4
(
(1 − η2)

d2

dη2
+

(
h − g − (g + h + 1)η

) d

dη

)
, (3.9)

(1 − η2)∂2
ηPn(η; g, h) +

(
h − g − (g + h + 1)η

)
∂ηPn(η; g, h) + n(n + g + h)Pn(η; g, h) = 0,

(3.10)

which has, as is well-known, one regular singularity at η = 0 and one irregular singularity

at η = ∞ for the Laguerre case and three regular singularities at η = ±1,∞ for the Jacobi

case. For a non-negative integer ℓ, the singularity structure of the second order differential

equation (3.1) is again quite simple. It has extra regular singularities at the ℓ zeros of the

deforming polynomial ξℓ(η; λ):

η = ηj , ξℓ(ηj; λ) = 0, j = 1, 2, . . . , ℓ, (3.11)
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and the corresponding exponents are the same for all the singular points:

{exponents at ηj} = {0, 3}, j = 1, 2, . . . , ℓ. (3.12)

In other words, the alternative solution of the second order linear differential equation (3.1)

has a cubic zero at η = ηj . It is singular at η = 0,∞ for the L1 and L2 and at η = ±1 for the

J1 and J2 with the exponents replaced by g → g+ℓ, h → h+ℓ. To the best of our knowledge,

the two sets of Xℓ orthogonal polynomials, J1 and J2 are the first examples of global solutions

of Fuchsian differential equations having as many as ℓ + 3 regular singularities. The L1 and

L2 are confluent types obtained from J1 and J2 by certain limits (E.28). By the way, it is

elementary to show that ξℓ(η; λ) has only simple zeros.

Let us write down the explicit form of the above differential equation for the four cases:

L1 : η∂2
ηPℓ,n(η; λ) +

(
g + ℓ + 1

2
− η − 2

η ∂ηξℓ(η; λ)

ξℓ(η; λ)

)
∂ηPℓ,n(η; λ)

+
(
2
η ∂ηξℓ(η; λ + δ)

ξℓ(η; λ)
+ n − ℓ

)
Pℓ,n(η; λ) = 0, (3.13)

L2 : η∂2
ηPℓ,n(η; λ) +

(
g + ℓ + 1

2
− η − 2

η ∂ηξℓ(η; λ)

ξℓ(η; λ)

)
∂ηPℓ,n(η; λ)

+
(
−2

(g + 1
2
)∂ηξℓ(η; λ + δ)

ξℓ(η; λ)
+ n + ℓ

)
Pℓ,n(η; λ) = 0, (3.14)

J1 : (1 − η2)∂2
ηPℓ,n(η; λ) +

(
h − g − (g + h + 2ℓ + 1)η − 2

(1 − η2)∂ηξℓ(η; λ)

ξℓ(η; λ)

)
∂ηPℓ,n(η; λ)

+
(
−2(h + 1

2
)(1 − η)∂ηξℓ(η; λ + δ)

ξℓ(η; λ)
+ ℓ(ℓ + g − h − 1) + n(n + g + h + 2ℓ)

)
Pℓ,n(η; λ) = 0,

(3.15)

J2 : (1 − η2)∂2
ηPℓ,n(η; λ) +

(
h − g − (g + h + 2ℓ + 1)η − 2

(1 − η2)∂ηξℓ(η; λ)

ξℓ(η; λ)

)
∂ηPℓ,n(η; λ)

+
(2(g + 1

2
)(1 + η)∂ηξℓ(η; λ + δ)

ξℓ(η; λ)
+ ℓ(ℓ + h − g − 1) + n(n + g + h + 2ℓ)

)
Pℓ,n(η; λ) = 0.

(3.16)

Let us remark that the zeros of the shifted deforming polynomial ξℓ(η; λ + δ) are regular

points. It is straightforward to verify by direct calculation that the L1, L2, J1 and J2

Xℓ polynomials (2.1)–(2.4) for lower ℓ and n really satisfy the above differential equations

(3.13)–(3.16). For analytical proof see the subsequent sections.
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4 Shape invariance

This section is a reformulation of the shape invariance in the language of ordinary differential

equations. In one-dimensional quantum mechanics, shape invariance is a sufficient condition

[9] for exact solvability and it was the guiding principle for the discovery of these Xℓ or-

thogonal polynomials [1, 16, 15, 2]. Let us introduce another second order linear differential

operator H̃(1)
ℓ (λ) by interchanging the order of the two factors Fℓ(λ) and Bℓ(λ) of H̃ℓ(λ)

(3.2):

H̃(1)
ℓ (λ)

def
= Fℓ(λ)Bℓ(λ). (4.1)

It is obvious that these two operators are intertwined by Fℓ(λ) and Bℓ(λ):

Fℓ(λ)Bℓ(λ)Fℓ(λ) = Fℓ(λ)H̃ℓ(λ) = H̃(1)
ℓ (λ)Fℓ(λ), (4.2)

Bℓ(λ)Fℓ(λ)Bℓ(λ) = H̃ℓ(λ)Bℓ(λ) = Bℓ(λ)H̃(1)
ℓ (λ), (4.3)

which implies that these two associated linear differential operators H̃ℓ(λ) and H̃(1)
ℓ (λ) are

iso-spectral except for the lowest eigenfunction Pℓ,0(η; λ) (2.11) which is annihilated by Fℓ(λ),

see (3.3):

Fℓ(λ)ξℓ(η; λ + δ) = 0
(
⇒ H̃ℓ(λ)Pℓ,0(η; λ) = 0

)
. (4.4)

If we denote the set of eigenfunctions of H̃(1)
ℓ (λ) as {P (1)

ℓ,n (η; λ)} (n = 0, 1, . . .), with arbitrary

normalisation, we obtain one to one correspondence of {Pℓ,n(η; λ)} and {P (1)
ℓ,n (η; λ)} except

for the lowest eigenfunction of H̃ℓ(λ):

H̃ℓ(λ)Pℓ,n(η; λ) = Eℓ,n(λ)Pℓ,n(η; λ), n = 0, 1, . . . , (4.5)

H̃(1)
ℓ (λ)P

(1)
ℓ,n−1(η; λ) = Eℓ,n(λ)P

(1)
ℓ,n−1(η; λ), n = 1, 2 . . . , (4.6)

Fℓ(λ)Pℓ,n(η; λ) ∝ P
(1)
ℓ,n−1(η; λ), Bℓ(λ)P

(1)
ℓ,n−1(η; λ) ∝ Pℓ,n(η; λ). (4.7)

This much is a trivial consequence of the factorisation of H̃ℓ(λ) (3.2). The essential property

of the two associated differential operators H̃ℓ(λ) and H̃(1)
ℓ (λ) is that H̃(1)

ℓ (λ) has the same

shape as H̃ℓ(λ) with shifted parameters, λ → λ+δ, and an additive constant corresponding

to the lowest eigenvalue measured from the bottom:

H̃(1)
ℓ (λ) = H̃ℓ(λ + δ) + E1(λ + ℓδ), (4.8)

or Fℓ(λ)Bℓ(λ) = Bℓ(λ + δ)Fℓ(λ + δ) + E1(λ + ℓδ). (4.9)
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This allows us to choose the normalisation of {P (1)
ℓ,n (η; λ)} to achieve

P
(1)
ℓ,n (η; λ) = Pℓ,n(η; λ + δ), n = 0, 1, . . . , . (4.10)

Then the above two relations (4.7), the forward and backward shift relations, give the con-

straints on the functional forms of {Pℓ,n(η; λ)}:

Fℓ(λ)Pℓ,n(η; λ) = fn(λ + ℓδ)Pℓ,n−1(η; λ + δ), n = 0, 1, . . . (4.11)

Bℓ(λ)Pℓ,n−1(η; λ + δ) = bn−1(λ + ℓδ)Pℓ,n(η; λ), n = 1, 2 . . . , (4.12)

where fn(λ) and bn−1(λ) are given in (2.29). These amount to a version of Rodrigues formula

expressing Pℓ,n(η; λ) in terms of repeated application of the backward shift operators on

the lowest degree eigenpolynomials with the n-th shifted parameters, Pℓ,0(η; λ + nδ) =

ξℓ(η; λ + (n + 1)δ):

Pℓ,n(η; λ) =

n−1∏

k=0

Bℓ(λ + kδ)

bn−k−1(λ + (ℓ + k)δ)
· ξℓ(η; λ + (n + 1)δ), (4.13)

where
∏n−1

k=0 ak = a0a1 · · ·an−1. For the Xℓ Laguerre and Jacobi polynomials, the Rodrigues

formula reads explicitly:

L : Pℓ,n(η; λ) =
1

n!

ξℓ(η; λ)

e−ηηg+ℓ− 1

2

n−1∏

k=0

( d

dη
+ ∂η log

ξℓ(η; λ + (k + 1)δ)

ξℓ(η; λ + kδ)

)

× e−ηηn+g+ℓ− 1

2

ξℓ(η; λ + nδ)
ξℓ

(
η; λ + (n + 1)δ

)
, (4.14)

J : Pℓ,n(η; λ) =
(−1)n

2nn!

ξℓ(η; λ)

(1 − η)g+ℓ− 1

2 (1 + η)h+ℓ− 1

2

n−1∏

k=0

( d

dη
+ ∂η log

ξℓ(η; λ + (k + 1)δ)

ξℓ(η; λ + kδ)

)

× (1 − η)n+g+ℓ− 1

2 (1 + η)n+h+ℓ− 1

2

ξℓ(η; λ + nδ)
ξℓ

(
η; λ + (n + 1)δ

)
. (4.15)

For ℓ = 0, ξ0(η; λ) = 1, the above two formulas reduce to the well-known Rodrigues

formulas for the Laguerre and Jacobi polynomials, (E.6) and (E.19). For ℓ = 1 these two

formulas are equivalent to the Rodrigues-type formulas (77) and (52) in Gomez-Ullate et al’s

work [7]. For lower ℓ, it is straightforward to verify the shape invariance relation (4.9) by

direct calculation. In [15] it was shown that the shape invariance relation is attributed to

a new polynomial identity of degree 3ℓ involving cubic products of the Laguerre or Jacobi

polynomials. These identities are proved elementarily by combining simple identities in [15].
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5 Forward and backward shift relations

Again it is straightforward to verify that the above Rodrigues formulas provide the explicit

forms of the four families of the Xℓ polynomials (2.1)–(2.4) for lower ℓ and n by direct calcu-

lation. For analytic proof, one needs to verify that the above forward (4.11) and backward

(4.12) shift relations are actually satisfied by the four families of the Xℓ polynomials (2.1)–

(2.4). The forward and backward shift relations are attributed to new polynomial identities

of degree 2ℓ+n−1 and 2ℓ+n involving cubic products of the Laguerre or Jacobi polynomials

in a similar way to the shape invariance relations [15]. The forward (F) (4.11) and backward

(B) (4.12) shift relations read explicitly

F : 0 = cF

(
ξℓ(η; λ + δ)

d

dη
− ∂ηξℓ(η; λ + δ)

)
Pℓ,n(η; λ)

− fn(λ + ℓδ)ξℓ(η; λ)Pℓ,n−1(η; λ + δ), (5.1)

B : 0 =
(
ξℓ(η; λ)

(
c2(η)

d

dη
+ c1(η, λ + ℓδ)

)
− c2(η)∂ηξℓ(η; λ)

)
Pℓ,n−1(η; λ + δ)

+ 1
4
cF bn−1(λ + ℓδ)ξℓ(η; λ + δ)Pℓ,n(η; λ), (5.2)

where Pℓ,n is given in (2.5).

The new polynomial identities are as follows:

L1: (α = g + ℓ − 1
2
)

F : 0 =
(
L

(α)
ℓ (−x) d

dx
− ∂xL

(α)
ℓ (−x)

)(
L

(α)
ℓ (−x)L(α−1)

n (x) − L
(α−1)
ℓ (−x)∂xL

(α−1)
n (x)

)

+ L
(α−1)
ℓ (−x)

(
L

(α+1)
ℓ (−x)L

(α)
n−1(x) − L

(α)
ℓ (−x)∂xL

(α)
n−1(x)

)
, (5.3)

B : 0 =
(
L

(α−1)
ℓ (−x)(x d

dx
+ α + 1 − x) − x∂xL

(α−1)
ℓ (−x)

)

×
(
L

(α+1)
ℓ (−x)L

(α)
n−1(x) − L

(α)
ℓ (−x)∂xL

(α)
n−1(x)

)

− nL
(α)
ℓ (−x)

(
L

(α)
ℓ (−x)L(α−1)

n (x) − L
(α−1)
ℓ (−x)∂xL

(α−1)
n (x)

)
, (5.4)

L2: (α = g + ℓ − 1
2
)

F : 0 =
(
L

(−α−2)
ℓ (x) d

dx
− ∂xL

(−α−2)
ℓ (x)

)

×
(
(α − ℓ + 1)L

(−α−2)
ℓ (x)L(α+1)

n (x) + xL
(−α−1)
ℓ (x)∂xL

(α+1)
n (x)

)

+ L
(−α−1)
ℓ (x)

(
(α − ℓ + 2)L

(−α−3)
ℓ (x)L

(α+2)
n−1 (x) + xL

(−α−2)
ℓ (x)∂xL

(α+2)
n−1 (x)

)
, (5.5)

B : 0 =
(
L

(−α−1)
ℓ (x)(x d

dx
+ α + 1 − x) − x∂xL

(−α−1)
ℓ (x)

)

×
(
(α − ℓ + 2)L

(−α−3)
ℓ (x)L

(α+2)
n−1 (x) + xL

(−α−2)
ℓ (x)∂xL

(α+2)
n−1 (x)

)
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− nL
(−α−2)
ℓ (x)

(
(α − ℓ + 1)L

(−α−2)
ℓ (x)L(α+1)

n (x) + xL
(−α−1)
ℓ (x)∂xL

(α+1)
n (x)

)
, (5.6)

J2: (α = g + ℓ − 1
2
, β = h + ℓ − 1

2
)

F : 0 =
(
P

(−α−2,β)
ℓ (x) d

dx
− ∂xP

(−α−2,β)
ℓ (x)

)

×
(
(α − ℓ + 1)P

(−α−2,β)
ℓ (x)P (α+1,β−1)

n (x) − (1 − x)P
(−α−1,β−1)
ℓ (x)∂xP

(α+1,β−1)
n (x)

)

− 1
2
(n + α + β + 1)P

(−α−1,β−1)
ℓ (x) (5.7)

×
(
(α − ℓ + 2)P

(−α−3,β+1)
ℓ (x)P

(α+2,β)
n−1 (x) − (1 − x)P

(−α−2,β)
ℓ (x)∂xP

(α+2,β)
n−1 (x)

)
,

B : 0 =
(
P

(−α−1,β−1)
ℓ (x)

(
(1 − x2) d

dx
+ β − α − (α + β + 2)x

)
− (1 − x2)∂xP

(−α−1,β−1)
ℓ (x)

)

×
(
(α − ℓ + 2)P

(−α−3,β+1)
ℓ (x)P

(α+2,β)
n−1 (x) − (1 − x)P

(−α−2,β)
ℓ (x)∂xP

(α+2,β)
n−1 (x)

)

+ 2nP
(−α−2,β)
ℓ (x) (5.8)

×
(
(α − ℓ + 1)P

(−α−2,β)
ℓ (x)P (α+1,β−1)

n (x) − (1 − x)P
(−α−1,β−1)
ℓ (x)∂xP

(α+1,β−1)
n (x)

)
.

We do not show those for the J1 polynomials, since J1 and J2 are related by the mirror

image, η ↔ −η and renaming of the coupling constants g ↔ h. Thus the corresponding

identities are essentially the same. The derivative terms in the above identities (5.3)–(5.8)

can be eliminated by using the forward shift relations (E.2) and (E.15) for the Laguerre and

Jacobi polynomials.

In Appendix B, the forward and backward shift relations for the four types of Xℓ poly-

nomials are proven elementarily.

6 Invariant polynomial subspace

Another characterisation of polynomials satisfying differential equations is the existence of

invariant polynomial subspaces. For the Laguerre and Jacobi differential equations with

H̃0(λ) (3.7), (3.9), the space V0,n of degree n polynomials in η is invariant

H̃0(λ)V0,n ⊆ V0,n, V0,n
def
= Span[1, η, . . . , ηn], (6.1)

H̃0(λ)ηn = En(λ)ηn + lower orders. (6.2)

However, V0,n is obviously not invariant under H̃ℓ(λ) (3.1), (3.13)–(3.16):

H̃ℓ(λ)V0,n 6⊆ V0,n ℓ = 1, 2, . . . . (6.3)
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Instead we have

H̃ℓ(λ)Vℓ,n ⊆ Vℓ,n ℓ = 1, 2, . . . , (6.4)

Vℓ,n
def
=

{
Span

[
ηkξℓ(η; g + 1) − kηk−1ξℓ(η; g); k = 0, 1, . . . , n

]
: L1

Span
[
ηk

(
(g + 1

2
)ξℓ(η; g + 1) + kξℓ(η; g)

)
; k = 0, 1, . . . , n

]
: L2,

(6.5)

Vℓ,n
def
=

{
Span

[
ηk(h + 1

2
)ξℓ(η; g + 1, h + 1) + k(1 + η)ηk−1ξℓ(η; g, h); k = 0, 1, . . . , n

]
: J1

Span
[
ηk(g + 1

2
)ξℓ(η; g + 1, h + 1) − k(1 − η)ηk−1ξℓ(η; g, h); k = 0, 1, . . . , n

]
: J2.

(6.6)

As the basis vectors of the invariant polynomial subspace Vℓ,n for the Xℓ Jacobi polynomials,

one could have chosen for k = 0, 1, . . . , n,

(1 − η)k−1
(
(h + 1

2
)(1 − η)ξℓ(η; g + 1, h + 1) − k(1 + η)ξℓ(η; g, h)

)
: J1, (6.7)

(1 + η)k
(
(h + 1

2
)ξℓ(η; g + 1, h + 1) + k ξℓ(η; g, h)

)
: J1, (6.8)

(1 − η)k
(
(g + 1

2
)ξℓ(η; g + 1, h + 1) + k ξℓ(η; g, h)

)
: J2. (6.9)

After overall rescaling, (6.7) and (6.9) go to those of the Xℓ Laguerre polynomials (6.5) in

the limit (E.28), as J1→L1 and J2→L2. As will be shown shortly these basis vector (6.8)

and (6.9) have simpler integration formulas than (6.6). It should be stressed that these basis

vectors have the same common structure as the Xℓ polynomials (2.9), (2.8),

Ξℓ,λ[pk(η)] = d1(λ)ξℓ(η; λ + δ)pk(η) − d2(η)ξℓ(η; λ)∂ηpk(η) ∈ Vℓ,n, k = 0, 1, . . . , n, (6.10)

in which pk(η) is an arbitrary degree k polynomial in η. These basis vectors are so chosen

as not to develop any singularities at the zeros of ξℓ(η; λ) when applied by the forward shift

operator Fℓ(λ) (3.3). In fact, for a polynomial p(η), Fℓ(λ) acts on Ξℓ,λ[p(η)] as

c−1
F
Fℓ(λ)Ξℓ,λ[p(η)] =

(
d1(λ + δ)∂ηp(η) − ∂η

(
d2(η)∂ηp(η)

))
ξℓ(η; λ + δ) + d2(η)∂ηp(η)∂ηξℓ(η; λ + δ), (6.11)

where we have used (2.24) to eliminate ∂ηξℓ(η; λ). Since the backward shift operator Bℓ(λ)

(3.4) does not cause any singularity at the zeros of ξℓ(η; λ) and the operator H̃ℓ(λ) =

Bℓ(λ)Fℓ(λ) has the form (3.5), the application of H̃ℓ(λ) on these basis vectors will result in

polynomials in η.

Let us evaluate the action of the second order differential operator H̃ℓ(λ) on Ξℓ,λ[p(η)]

by applying the backward shift operator Bℓ(λ) on (6.11):

H̃ℓ(λ)Ξℓ,λ[p(η)] = ξℓ(η; λ)X(η) + ξℓ(η; λ + δ)Y (η). (6.12)
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The coefficients X(η) and Y (η) can be written as

X(η) = 4d2(η)∂η

(
c2(η)∂2

ηp(η) + c1(η, λ′)∂ηp(η)
)

= −d2(η)∂η

(
H̃0(λ

′)p(η)
)
, (6.13)

Y (η) = −4d1(λ)
(
c2(η)∂2

ηp(η) + c1(η, λ′)∂ηp(η)
)

= d1(λ)H̃0(λ
′)p(η), (6.14)

where λ′ = λ + ℓδ + δ̃ and H̃0(λ) is defined in (3.6). Therefore the results can be expressed

in quite a simple form as

H̃ℓ(λ)Ξℓ,λ[p(η)] = Ξℓ,λ

[
H̃0(λ + ℓδ + δ̃)p(η)

]
. (6.15)

By taking p(η) = pk(η), the above basis vectors satisfy

H̃ℓ(λ)Ξℓ,λ[pk(η)] = Ξℓ,λ

[
H̃0(λ + ℓδ + δ̃)pk(η)

]
∈ Vℓ,n, k ≤ n. (6.16)

In other words, we have shown that Vℓ,n is an invariant polynomial subspace of the differential

operator H̃ℓ(λ) and we obtain, corresponding to (6.2),

H̃ℓ(λ)Ξℓ,λ[pn(η)] = En(λ + ℓδ)Ξℓ,λ[pn(η)] + lower orders. (6.17)

In particular, if we choose pn(η) as the eigenfunction Pn(η; λ + ℓδ + δ̃) of H̃0(λ + ℓδ + δ̃),

H̃0(λ + ℓδ + δ̃)Pn(η; λ + ℓδ + δ̃) = En(λ + ℓδ)Pn(η; λ + ℓδ + δ̃), (6.18)

then we find that Ξℓ,λ[Pn(η; λ + ℓδ + δ̃)] is the eigenfunction of H̃ℓ(λ),

H̃ℓ(λ)Ξℓ,λ

[
Pn(η; λ + ℓδ + δ̃)

]
= En(λ + ℓδ)Ξℓ,λ

[
Pn(η; λ + ℓδ + δ̃)

]
, (6.19)

as given in (2.9). Note that the effect of δ̃ in the eigenvalue cancels out. This is another

analytical proof for the explicit forms of the Xℓ polynomials Pℓ,n(η; λ) as given (2.9).

7 Integration formulas

Another well-known construction method of orthogonal polynomials is the Gram-Schmidt

orthonormalisation of certain basis vectors under a given inner product specified by a weight

function. Let us introduce two types of inner products 〈∗, ∗〉ℓ,λ and (∗, ∗)λ:

〈
p(η), q(η)

〉
ℓ,λ

def
=

∫
p(η)q(η)Wℓ(η; λ)dη,

(
p(η), q(η)

)
λ

def
=

∫
p(η)q(η)W (η; λ)dη, (7.1)
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in which p(η) and q(η) are arbitrary functions and Wℓ(η; λ) is the weight function for the Xℓ

polynomials, whereas W (η; λ) is the weight function for the Laguerre or Jacobi polynomials

(2.13).

Here we present the integration formulas:

〈
Ξℓ,λ[p(η)], Ξℓ,λ[q(η)]

〉
ℓ,λ

= d1(λ)d3(λ + ℓδ, ℓ)
(
p(η), q(η)

)
λ′

+ 1
4
c2
F

(
∂ηp(η), ∂ηq(η)

)
λ′+δ

, (7.2)

or :

∫
Ξℓ,λ[p(η)] Ξℓ,λ[q(η)]Wℓ(η; λ)dη

=

∫ (
d1(λ)d3(λ + ℓδ, ℓ)p(η)q(η)W (η; λ′) + 1

4
c2
F

∂ηp(η)∂ηq(η)W (η; λ′ + δ)
)
dη, (7.3)

where λ′ = λ + ℓδ + δ̃. For a proof, see Appendix C.

With this formula one can easily verify the orthogonality relation and the normalisation

constants of the Xℓ polynomials (2.12), (2.15), (2.17) given in Sect. 2. One simply takes

p(η) = Pn(η; λ′) and q(η) = Pm(η; λ′) for L1–J2. Then the two terms in (7.3) reads

(
Pn(η; λ′), Pm(η; λ′)

)
λ′

=

∫
Pn(η; λ′)Pm(η; λ′)W (η; λ′)dη = hn(λ′)δnm, (7.4)

c2
F

∫
∂ηPn(η; λ′)∂ηPm(η; λ′)W (η; λ′ + δ)dη = fn(λ′)2hn−1(λ

′ + δ)δnm, (7.5)

where we have used (2.27). Therefore, from (2.9), the normalisation constant hℓ,n is expressed

as

d0(n, λ)2hℓ,n(λ) = d1(λ)d3(λ + ℓδ, ℓ)hn(λ
′) + 1

4
fn(λ′)2hn−1(λ

′ + δ), (7.6)

where λ′ = λ + ℓδ + δ̃ and h−1(λ)
def
= 0. This formula with hn (2.14) and (2.16) gives (2.15)

and (2.17).

The integration formula reveals another important property of the invariant subspaces,

the orthogonality, Vℓ,m ⊥ Pℓ,n(η; λ), m < n:

〈
Ξℓ,λ[pm(η)], Pℓ,n(η; λ)

〉
ℓ,λ

= 0, m < n, (7.7)

which is a simple consequence of (2.9) and the well known fact

(
pm(η), Pn(η; λ)

)
λ

= 0, m < n. (7.8)

8 Gram-Schmidt orthonormalisation

As for the direct application of Gram-Schmidt orthonormalisation, one orthonormalises

{Ξℓ,λ[pn(η)]} in (6.10) with respect to the inner product 〈∗, ∗〉ℓ,λ. The following choice
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of the function pn is made:

pn(η) =

{
ηn : L
(1 ± η)n : J1/J2,

(8.1)

with which the inner products (pn(η), pm(η))λ′ are easily expressed in terms of gamma func-

tions. This corresponds to the choice of the basis vectors in (6.8) and (6.9).

The Gram-Schmidt orthonormalisation procedure at the n-th step determines Pℓ,n(η; λ)

by the following formula

Pℓ,n(η; λ) ∝ Ξℓ,λ[pn(η)] −
n−1∑

m=0

Pℓ,m(η; λ)
〈
Pℓ,m(η; λ), Ξℓ,λ[pn(η)]

〉
ℓ,λ

hℓ,m(λ)−1, (8.2)

which is to be compared with the procedure for the undeformed (ℓ = 0) polynomial

Pn(η; λ′) ∝ pn(η) −
n−1∑

m=0

Pm(η; λ′)
(
Pm(η; λ′), pn(η)

)
λ′

hm(λ′)−1, (8.3)

where λ′ = λ + ℓδ + δ̃. These two orthonormalisations are essentially the same. In fact, by

applying Ξℓ,λ[·] to (8.3) and using (2.9), we have

Pℓ,n(η; λ) ∝ Ξℓ,λ[pn(η)] −
n−1∑

m=0

Pℓ,m(η; λ)d0(m, λ)
(
Pm(η; λ′), pn(η)

)
λ′

hm(λ′)−1. (8.4)

Comparing these we obtain

〈
Pℓ,m(η; λ), Ξℓ,λ[pn(η)]

〉
ℓ,λ

hℓ,m(λ)−1 = d0(m, λ)
(
Pm(η; λ′), pn(η)

)
λ′

hm(λ′)−1,

m = 0, . . . , n − 1. (8.5)

In other words, the Gram-Schmidt orthonormalisation for the undeformed (ℓ = 0) polyno-

mials

pn(η) → Pn(η; λ′),

provides that for the Xℓ polynomials, too.

9 Generating functions

Generating functions for orthogonal polynomials have played another important role in clas-

sical analysis. Let us define generating functions for the Xℓ polynomials Pℓ,n and for the

undeformed polynomials Pn,

Gℓ(t, η; λ)
def
=

∞∑

n=0

tnPℓ,n(η; λ), G(t, η; λ)
def
= G0(t, η; λ) =

∞∑

n=0

tnPn(η; λ). (9.1)
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The latter is quite well known

G(t, η; λ) =

{
G(g− 1

2
)(t, η) : L

G(g− 1

2
,h− 1

2
)(t, η) : J,

(9.2)

where G(α)(t, x) and G(α,β)(t, x) are given in (E.8) and (E.21). Since Pℓ,n(η; λ) is expressed

linearly in terms of Pn(η; λ′) (2.5) (λ′ = λ + ℓδ + δ̃), the generating function Gℓ(t, η; λ) is

expressed simply in terms of the known G(t, η; λ′):

d0(t∂t, λ)Gℓ(t, η; λ) =
∞∑

n=0

tnd0(n, λ)Pℓ,n(η; λ)

= d1(λ)ξℓ(η; λ + δ)G(t, η; λ′) − d2(η)ξℓ(η; λ)∂ηG(t, η; λ′). (9.3)

The forward shift relation (2.27) imply

∂ηG(t, η; λ) = c−1
F

t ft ∂t+1(λ)G(t, η; λ + δ). (9.4)

Here we present the concrete forms of the generating functions:

d0(t∂t, λ)Gℓ(t, η; λ) (9.5)

=





(
L

(g+ℓ− 1

2
)

ℓ (−η) + t
1−t

L
(g+ℓ− 3

2
)

ℓ (−η)
)
G(g+ℓ− 3

2
)(t, η) : L1

(
(g + 1

2
)L

(−g−ℓ− 3

2
)

ℓ (η) − tη

1−t
L

(−g−ℓ− 1

2
)

ℓ (η)
)
G(g+ℓ+ 1

2
)(t, η) : L2

(
(h + 1

2
)P

(g+ℓ− 1

2
,−h−ℓ− 3

2
)

ℓ (η) + (1+η)t
R

(
1
R

+
g+ℓ− 3

2

1+R−t
+

h+ℓ+ 1

2

1+R+t

)
P

(g+ℓ− 3

2
,−h−ℓ− 1

2
)

ℓ (η)
)

×G(g+ℓ− 3

2
,h+ℓ+ 1

2
)(t, η) : J1

(
(g + 1

2
)P

(−g−ℓ− 3

2
,h+ℓ− 1

2
)

ℓ (η) − (1−η)t
R

(
1
R

+
g+ℓ+ 1

2

1+R−t
+

h+ℓ− 3

2

1+R+t

)
P

(−g−ℓ− 1

2
,h+ℓ− 3

2
)

ℓ (η)
)

×G(g+ℓ+ 1

2
,h+ℓ− 3

2
)(t, η) : J2,

where R
def
=

√
1 − 2ηt + t2.

Next let us introduce the double generating function, that is the generating function of

the generating functions Gℓ(t, η; λ) :

G(s, t, η; λ)
def
=

∞∑

ℓ=0

sℓGℓ(t, η; λ). (9.6)

For L1 and L2 cases, the explicit forms are:

L1 : G(s, t, η; g) = 2g− 3

2

(
(2 − t)

√
1 − t + t

√
1 − t − 4s

)

× e−
t

1−t
η+ 1

4
s−1(

√
1−t−

√
1−t−4s )2η

√
1 − t − 4s

√
1 − t

g+ 3

2
(√

1 − t +
√

1 − t − 4s
)g− 1

2

, (9.7)
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L2 : d0(t∂t, g)G(s, t, η; g) =
(
g + 1

2
− t(1 − t + s)

(1 − t)2
η
) e−

s+t
1−t

η

(1 − t + s)g+ 3

2

, (9.8)

which are obtained by using the two shifted generating functions (E.9) and (E.10) in Ap-

pendix E.1. It is a good challenge to derive the double generating functions for the Xℓ Jacobi

polynomials.

10 Three term recurrence relations

Three term recurrence relations are one of the most fundamental characteristics of the ordi-

nary orthogonal polynomials of one variable. Obviously the exceptional orthogonal polyno-

mials do not satisfy these relations. Nevertheless, being deformations of ordinary orthogonal

polynomials, the Xℓ polynomials are expected to retain certain reminiscent properties of the

three term recurrence.

Here we present a simple modification of the three term recurrence relations valid for

the Xℓ polynomials. Its relevance is, however, as yet unclear. Let us denote the three term

recurrence relation for the Laguerre or the Jacobi polynomials as

ηPn(η; λ) = An(λ)Pn+1(η; λ) + Bn(λ)Pn(η; λ) + Cn(λ)Pn−1(η; λ), (10.1)

in which the explicit forms of the coefficients An, Bn and Cn can be read from (E.5) and

(E.18) in AppendixE.1 and AppendixE.2. As a substitute of the above three term recurrence

relations, we expect that a certain element in the degree ℓ + n + 1 invariant polynomial

subspace Vℓ,n+1 (6.5)–(6.6), which is related to ηPℓ,n(η; λ′), to be expressed in terms of

Pℓ,n+1(η; λ), Pℓ,n(η; λ) and Pℓ,n−1(η; λ). From (2.9) this can be achieved as

Ξℓ,λ[ηPn(η; λ′)] = An(λ′)d0(n + 1, λ)Pℓ,n+1(η; λ) + Bn(λ′)d0(n, λ)Pℓ,n(η; λ)

+ Cn(λ′)d0(n − 1, λ)Pℓ,n−1(η; λ), (10.2)

where λ′ = λ + ℓδ + δ̃.

11 Zeros of Xℓ polynomials

The zeros of orthogonal polynomials have always attracted the interest of researchers. In the

case of Xℓ polynomials d Pℓ,n(η; λ), it has n zeros in the domain where the weight function

is defined, that is (0,∞) for the L1 and L2 polynomials and (−1, 1) for the J1 and J2
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polynomials. The behaviour of these zeros are the same as those of other ordinary orthogonal

polynomials. This is guaranteed by the oscillation theorem of the one-dimensional quantum

mechanics, since Pℓ,n(η; λ) are obtained as the polynomial part of the eigenfunctions of a

shape invariant quantum mechanical problem [1, 2].

Here we discuss the location of the extra ℓ zeros of the exceptional orthogonal polynomials,

which lie in various different positions for the different types of polynomials. So far we have

verified by direct calculation for lower ℓ and n; The ℓ extra zeros of L1 polynomials are on

the negative real line (−∞, 0). Those of the L2 Xℓ:odd polynomials are 1 real negative zero

which lies to the left of the remaining 1
2
(ℓ − 1) pairs of complex conjugate roots. The L2

Xℓ:even polynomials have 1
2
ℓ pairs of complex conjugate roots. For L2, these ℓ additional

roots lie to the left of the n real zeros.

The situations for the Xℓ Jacobi polynomials are a bit more complicated. The J1 Xℓ:odd

polynomials have 1 real negative root which lies to the left of the remaining 1
2
(ℓ− 1) pairs of

complex conjugate roots with negative real parts. The J1 Xℓ:even polynomials have 1
2
ℓ pairs

of complex conjugate roots with negative real parts. For J1, some of the complex roots have

real parts between −1 and 0. The J2 Xℓ:odd polynomials have 1 real positive root which lies

to the right of the remaining 1
2
(ℓ − 1) pairs of complex conjugate roots with positive real

parts. The J2 Xℓ:even polynomials have 1
2
ℓ pairs of complex conjugate roots with positive

real parts. For J2, some of the complex roots have real parts between 0 and 1.

12 Summary and comments

We have given an in-depth study of the properties of the exceptional (Xℓ) polynomials

discovered recently in [1, 2, 15]. Our main focus is the derivation of certain equivalent but

much simpler looking forms of the Xℓ polynomials. The derivation is based on the analysis

of the second order differential equations for the Xℓ polynomials within the framework of

the Fuchsian differential equations in the entire complex plane. These new forms of the Xℓ

polynomials allow easy verification of the actions of the forward and backward shift operators

on the Xℓ polynomials, and provide direct derivation of the Rodrigues formulas and the

generating functions. The structure of the invariant polynomial subspaces under the Fuchsian

differential operators is elucidated. The bases of the invariant polynomial subspaces provide

a simple substitute of the three term recurrence relations. The Gram-Schmidt construction

of the Xℓ polynomials starting from the above bases is demonstrated with the help of an
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integration formula. The properties of the extra zeros of the Xℓ polynomials are discussed.

Some technical details are relegated to the Appendices. The proof of the equivalence of

the new and original forms of the Xℓ polynomials is given. Simple proofs of the forward

and backward shift operations are shown. The integration formula is elementarily proven.

Various fundamental formulas of the Laguerre and Jacobi polynomials are supplied for easy

reference.

Finally, let us mention that the same method, deformation in terms of a degree ℓ eigen-

polynomial, applied to the discrete quantum mechanical Hamiltonians for the Wilson and

Askey-Wilson polynomials produced two sets of infinitely many shape invariant systems to-

gether with exceptional (Xℓ) Wilson and Askey-Wilson polynomials (ℓ = 1, 2, . . .) [16]. It

will be interesting to carry out the same analysis in these discrete cases.
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A Equivalence of different forms of Xℓ polynomials

The exceptional Jacobi polynomial for the trigonometric DPT presented in [1], namely J2

exceptional polynomial, is

Pℓ,n(η; λ)
def
=

(
ξℓ(η; g + 1, h + 1) +

2n(−g + h + ℓ − 1) ξℓ−1(η; g, h + 2)

(−g + h + 2ℓ − 2)(g + h + 2n + 2ℓ − 1)

− n(2h + 4ℓ − 3) ξℓ−2(η; g + 1, h + 3)

(2g + 2n + 1)(−g + h + 2ℓ − 2)

)
Pn(η; λ + ℓδ)

+
(−g + h + ℓ − 1)(2g + 2n + 2ℓ − 1)

(2g + 2n + 1)(g + h + 2n + 2ℓ − 1)
ξℓ−1(η; g, h + 2)Pn−1(η; λ + ℓδ). (A.1)
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In this paper we have presented it in a much simpler form in (2.3) (J2)

Pℓ,n(η; λ) =
1

n + g + 1
2

(
(g + 1

2
)ξℓ(η; g + 1, h + 1)Pn(η; g + ℓ + 1, h + ℓ − 1)

− (1 − η)ξℓ(η; g, h)∂ηPn(η; g + ℓ + 1, h + ℓ − 1)
)
. (A.2)

In the following we write them as P
org
ℓ,n (η; λ) and P new

ℓ,n (η; λ), respectively and show that they

are in fact equal by using various identities of the Jacobi polynomials. For lower ℓ and n the

equality can be verified by direct calculation.

We fix ℓ and use new parameters α and β instead of g and h,

α
def
= g + ℓ − 1

2
, β

def
= h + ℓ − 1

2
. (A.3)

By using the forward shift relation for the Jacobi polynomial (E.15), the polynomials ξℓ and

Pℓ,n are expressed as

ξℓ(η; λ) = P
(−α−1,β−1)
ℓ (η), ξℓ−1(η; λ) = P

(−α, β−2)
ℓ−1 (η), ξℓ−2(η; λ) = P

(−α+1, β−3)
ℓ−2 (η), (A.4)

P
org
ℓ,n (η; λ) =

(
P

(−α−2,β)
ℓ (η) +

2n(ℓ − α + β − 1)P
(−α,β)
ℓ−1 (η)

(2ℓ − α + β − 2)(2n + α + β)

− n(β + ℓ − 1)P
(−α,β)
ℓ−2 (η)

(α + n − ℓ + 1)(2ℓ − α + β − 2)

)
P (α,β)

n (η)

+
(ℓ − α + β − 1)(α + n)

(α + n − ℓ + 1)(2n + α + β)
P

(−α,β)
ℓ−1 (η)P

(α,β)
n−1 (η), (A.5)

P new
ℓ,n (η; λ) =

1

α + n − ℓ + 1

(
(α − ℓ + 1)P

(−α−2,β)
ℓ (η)P (α+1,β−1)

n (η)

− 1
2
(n + α + β + 1)(1 − η)P

(−α−1,β−1)
ℓ (η)P

(α+2,β)
n−1 (η)

)
. (A.6)

Here we provide the proof for the equivalence of the two expressions (A.5) and (A.6) step

by step:

P
org
ℓ,n (η; λ)

(i)
=

(
(ℓ + β)(1 − η)P

(−α,β)
ℓ−1 (η) + (α + 1)(1 + η)P

(−α−1,β+1)
ℓ−1 (η)

−2ℓ

+
2n(ℓ − α + β − 1)P

(−α,β)
ℓ−1 (η)

(2ℓ − α + β − 2)(2n + α + β)

− n(β + ℓ − 1)

(α + n − ℓ + 1)(2ℓ − α + β − 2)

× 2(ℓ − 1)P
(−α,β)
ℓ−1 (η) − (−α + β + 2ℓ − 2)(1 + η)

(
P

(−α,β)
ℓ−1 (η) − P

(−α−1,β+1)
ℓ−1 (η)

)

−2(β + ℓ − 1)

)
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× P (α,β)
n (η)

+
(ℓ − α + β − 1)(α + n)

(α + n − ℓ + 1)(2n + α + β)
P

(−α,β)
ℓ−1 (η)

× 2nP
(α,β)
n (η) − (α + β + 2n)(1 − η)

(
P

(α,β)
n (η) − P

(α+1,β−1)
n (η)

)

2(α + n)

=
1

α + n − ℓ + 1

(
1
2
(ℓ − α + β − 1)(1 − η)P

(−α,β)
ℓ−1 (η)P (α+1,β−1)

n (η)

+
n + α + 1

2ℓ

(
−(α − ℓ + 1)(1 + η)P

(−α−1,β+1)
ℓ−1 (η) − β(1 − η)P

(−α,β)
ℓ−1 (η)

)
P (α,β)

n (η)
)

=
1

α + n − ℓ + 1

(
(α − ℓ + 1)

(ℓ + β)(1 − η)P
(−α,β)
ℓ−1 (η) + (α + 1)(1 + η)P

(−α−1,β+1)
ℓ−1 (η)

−2ℓ

× P (α+1,β−1)
n (η)

+
(ℓ − α − 1)(1 + η)P

(−α−1,β+1)
ℓ−1 (η) − β(1 − η)P

(−α,β)
ℓ−1 (η)

2ℓ

×
(
(n + α + 1)P (α,β)

n (η) − (α + 1)P (α+1,β−1)
n (η)

))

(ii)
=

1

α + n − ℓ + 1

(
(α − ℓ + 1)P

(−α−2,β)
ℓ (η)P (α+1,β−1)

n (η)

+ P
(−α−1,β−1)
ℓ (η)

(
(n + α + 1)P (α,β)

n (η) − (α + 1)P (α+1,β−1)
n (η)

))

(iii)
=

1

α + n − ℓ + 1

(
(α − ℓ + 1)P

(−α−2,β)
ℓ (η)P (α+1,β−1)

n (η)

+ P
(−α−1,β−1)
ℓ (η)−1

2
(n + α + β + 1)(1 − η)P

(α+2,β)
n−1 (η)

)

= P new
ℓ,n (η; λ), (A.7)

where we have used (E.23), (E.27) and (E.24) in (i), (E.23) and (E.26) in (ii), and (E.25) in

(iii).

The other exceptional polynomials, the J1 case is obtained from the above J2 case by

(E.14). The equality of the exceptional Laguerre polynomials given in [1, 2] and those given

in this paper (2.1) will not be given here, since the L1 and L2 cases are obtained from the

J1 and J2 cases by the limit (E.28).

B Forward and backward shift relations

Here we provide proofs for the forward (4.11) and backward (4.12) shift relations which

applies equally for the four types of Xℓ polynomials. The method is elementary based on

various identities of the Laguerre and Jacobi polynomials.
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The forward shift relation (4.11) is equivalent to a polynomial identity (5.1). By using

d0(n − 1, λ + δ) = d0(n, λ), fn(λ + δ̃) = fn(λ) and (2.27), it is easy to show that r.h.s.

of (5.1) can be factorised ∂ηPn(η; λ + ℓδ + δ̃) × (· · · ). The forward shift relation is thus

equivalent to (· · · ) = 0, namely,

0 = d1(λ)ξℓ(η; λ + δ)2 − d1(λ + δ)ξℓ(η; λ)ξℓ(η; λ + 2δ) − ∂ηd2(η)ξℓ(η; λ)ξℓ(η; λ + δ)

+ d2(η)ξℓ(η; λ)∂ηξℓ(η; λ + δ) − d2(η)∂ηξℓ(η; λ)ξℓ(η; λ + δ). (B.1)

This is a polynomial identity of degree 2ℓ and it is quadratic in the Laguerre/Jacobi poly-

nomials. This identity can be proven elementarily by using d1(λ)− d1(λ+ δ) = ∂ηd2(η) and

(2.24) to eliminate ξℓ(η; λ + 2δ) and ∂ηξℓ(η; λ).

The backward shift relation (4.12) is equivalent to a polynomial identity (5.2). By using

d0(n − 1, λ + δ) = d0(n, λ) and bn−1(λ) = −2n, the r.h.s. of (5.2) becomes

Pn(η; λ′) × (· · · ) + ∂ηPn(η; λ′) × (· · · )
+ Pn−1(η; λ′ + δ) × (· · · ) + ∂ηPn−1(η; λ′ + δ) × (· · · ) + ∂2

ηPn−1(η; λ′ + δ) × (· · · ),

where λ′ = λ + ℓδ + δ̃. The above expression can be reduced to Pn−1(η; λ′ + δ) × X(η) +

∂ηPn−1(η; λ′ + δ) × c2(η)Y (η), by using (2.27), (2.28), (2.19) and the relations (c1(η; λ +

δ + δ̃) − c1(η; λ))d2(η) = 2c2(η)∂ηd2(η) with En(λ) = fn(λ)bn−1(λ). Up to an overall

normalization, this Y (η) is just the r.h.s. of (B.1), so it vanishes. Hence the backward shift

relation is equivalent to X(η) = 0, namely,

0 = c1(η, λ′)d1(λ)ξℓ(η; λ + δ)2 − c1(η, λ + ℓδ)d1(λ + δ)ξℓ(η; λ)ξℓ(η; λ + 2δ)

− c2(η)d1(λ + δ)
(
ξℓ(η; λ)∂ηξℓ(η; λ + 2δ) − ∂ηξℓ(η; λ)ξℓ(η; λ + 2δ)

)

+ 1
4
E1(λ

′)d2(η)ξℓ(η; λ)ξℓ(η; λ + δ). (B.2)

This is a polynomial identity of degree 2ℓ + 1 and it is quadratic in the Laguerre/Jacobi

polynomials. With the help of (2.24) and (2.20), it is elementary to show that the r.h.s. of

(B.2) becomes ξℓ(η; λ+δ)d1(λ)d2(η)× (· · · ). Up to an overall normalization, this (· · · ) part

is just (l.h.s. of (2.25))-(r.h.s. of (2.25)), so it vanishes. This concludes the proof of the

backward shift relation.
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C Proof of the integration formula

Here we present a simple proof for the integration formulas (7.2) or (7.3). We evaluate

〈
Ξℓ,λ[p(η)], Ξℓ,λ[q(η)]

〉
ℓ,λ

=

∫ (
d1(λ)ξℓ(η; λ + δ)p(η) − d2(η)ξℓ(η; λ)∂ηp(η)

)

×
(
d1(λ)ξℓ(η; λ + δ)q(η) − d2(η)ξℓ(η; λ)∂ηq(η)

)W (η; λ + ℓδ)

ξℓ(η; λ)2
dη

=

∫ (
d2(η)2 ∂ηp(η)∂ηq(η) +

(
d1(λ)ξℓ(η;λ+δ)

ξℓ(η;λ)

)2
p(η)q(η)

− d1(λ)ξℓ(η;λ+δ)
ξℓ(η;λ)

d2(η)∂η

(
p(η)q(η)

))
W (η; λ + ℓδ)dη

(i)
=

∫
W (η; λ + ℓδ)

(
d2(η)2 ∂ηp(η)∂ηq(η)

+
((

d1(λ)ξℓ(η;λ+δ)
ξℓ(η;λ)

)2−
∂η

(
W (η; λ + ℓδ)d1(λ)ξℓ(η;λ+δ)

ξℓ(η;λ)
d2(η)

)

W (η; λ + ℓδ)

)
p(η)q(η)

)
dη

(ii)
=

∫ (
d1(λ)d3(λ + ℓδ, ℓ)p(η)q(η)W (η; λ′) + 1

4
c2
F
∂ηp(η)∂ηq(η)W (η; λ′ + δ)

)
dη, (C.1)

where λ′ = λ + ℓδ + δ̃. In (i) we have integrated by part and in (ii) we have used

(d1(λ)ξℓ(η; λ + δ)

ξℓ(η; λ)

)2

−
∂η

(
W (η; λ + ℓδ)d1(λ)ξℓ(η;λ+δ)

ξℓ(η;λ)
d2(η)

)

W (η; λ + ℓδ)
= d1(λ)d3(λ+ℓδ, ℓ)

d2(η)2

c2(η)
, (C.2)

which is shown by using (2.20) and (2.24) to eliminate ξℓ(η; λ + δ).

D Hyperbolic DPT potential

Here we provide a brief summary of the properties of the Xℓ Jacobi polynomials related to the

deformed hyperbolic DPT potential. They are of the J2 type. The ℓ = 1 case was introduced

in [11] and the general ℓ case was studied in [1]. In contrast to the radial oscillator and

the trigonometric DPT potentials, the undeformed hyperbolic DPT potential allows only

a finite number of square integrable polynomials Pn(η, λ), n = 0, 1, . . . , nB
def
= [1

2
(h − g)]′,

where [x]′ denotes the greatest integer not equal or exceeding x. The situation is the same

for the exceptional polynomials, Pℓ,n(η, λ), n = 0, 1, . . . , nB − ℓ. Except for this point, the

arguments for the hyperbolic DPT are the same as the radial oscillator and the trigonometric

DPT potential cases. In particular, the much simpler looking new forms of the polynomials
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are also equivalent to the original forms of the polynomials given in [1]. We present various

data:

λ
def
= (g, h), h > g > 0, δ

def
= (1,−1), (D.1)

Pn(η; g, h)
def
= P

(g− 1

2
,−h− 1

2
)

n (η), ξℓ(η; g, h)
def
= P

(−g−ℓ− 1

2
,−h+ℓ− 3

2
)

ℓ (η), n ≤ nB, ℓ < nB, (D.2)

Pℓ,n(η; λ) : (2.5), n = 0, 1, . . . , nB − ℓ, (D.3)

d0(n, λ)
def
= n + g + 1

2
, δ̃

def
= (1, 1), d1(λ)

def
= g + 1

2
, d2(η)

def
= 1 − η, (D.4)

W (η; λ)
def
= 1

2g−h+1 (η − 1)g− 1

2 (η + 1)−h− 1

2 , 1 < η < ∞, (D.5)

hn(λ)
def
=

Γ(n + g + 1
2
)Γ(h − g − n + 1)

2 n! (h − g − 2n)Γ(h − n + 1
2
)
, (D.6)

hℓ,n(g, h)
def
= hn(g + ℓ, h − ℓ)

(n + g + ℓ + 1
2
)(h − n − 2ℓ + 1

2
)

(n + g + 1
2
)(h − n − ℓ + 1

2
)

, (D.7)

c1(η, λ)
def
= g + h + (g − h + 1)η, c2(η)

def
= η2 − 1, (D.8)

c̃1(η, λ, ℓ)
def
= h − g − 2ℓ + 1 − (g + h)η, (D.9)

En(λ)
def
= 4n(h − g − n), Ẽℓ(λ)

def
= 4ℓ(g + h + 1 − ℓ), (D.10)

d3(λ, ℓ)
def
= h − ℓ + 1

2
, (D.11)

cF

def
= 4, fn(λ)

def
= 2(n + g − h), bn−1(λ)

def
= −2n, (D.12)

Pℓ,n(η; λ) =
1

2nn!

ξℓ(η; λ)

(η − 1)g+ℓ− 1

2 (η + 1)−h+ℓ− 1

2

n−1∏

k=0

( d

dη
+ ∂η log

ξℓ(η; λ + (k + 1)δ)

ξℓ(η; λ + kδ)

)

× (η − 1)n+g+ℓ− 1

2 (η + 1)n−h+ℓ− 1

2

ξℓ(η; λ + nδ)
ξℓ

(
η; λ + (n + 1)δ

)
, (D.13)

d0(t∂t, λ)Gℓ(t, η; λ) =
∑
n

tnd0(n, λ)Pℓ,n(η; λ)

=
(
(g + 1

2
)P

(−g−ℓ− 3

2
,−h+ℓ− 1

2
)

ℓ (η) − (1−η)t
R

(
1
R

+
g+ℓ+ 1

2

1+R−t
+

h−ℓ+ 1

2

1+R+t

)
P

(−g−ℓ− 1

2
,−h+ℓ− 3

2
)

ℓ (η)
)

× G(g+ℓ+ 1

2
,h−ℓ+ 1

2
)(t, η), R

def
=

√
1 − 2ηt + t2, (D.14)

Vℓ,n
def
= Span

[
ηk(g + 1

2
)ξℓ(η; g + 1, h − 1) − k(1 − η)ηk−1ξℓ(η; g, h); k = 0, 1, . . . , n

]
, (D.15)

pn(η) = (η − 1)n for (8.1). (D.16)

In the expression of the generating function, the summation range is extended to infinity,
∑nB−ℓ

n=0 → ∑∞
n=0, formally. The forward and backward shift relations (5.1) and (5.2) in terms

of the Jacobi polynomials are the same as the J2 case.
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E Summary: Properties of the Polynomials

E.1 Laguerre polynomials

• definition (expansion formula)

L(α)
n (x) =

1

n!

n∑

k=0

(−n)k

k!
(α + k + 1)n−kx

k. (E.1)

• forward and backward shift relations

∂xL
(α)
n (x) = −L

(α+1)
n−1 (x), (E.2)

x∂xL
(α+1)
n−1 (x) + (α + 1 − x)L

(α+1)
n−1 (x) = nL(α)

n (x). (E.3)

• differential equation

x∂2
xL

(α)
n (x) + (α + 1 − x)∂xL

(α)
n (x) + nL(α)

n (x) = 0. (E.4)

• three term recurrence relation

xL(α)
n (x) = −(n + 1)L

(α)
n+1(x) + (2n + α + 1)L(α)

n (x) − (n + α)L
(α)
n−1(x). (E.5)

• Rodrigues formula

L(α)
n (x) =

1

n!

1

e−xxα

( d

dx

)n(
e−xxn+α

)
. (E.6)

• orthogonality (α > −1)
∫ ∞

0

dx e−xxαL(α)
n (x)L(α)

m (x) =
1

n!
Γ(n + α + 1)δnm. (E.7)

• generating functions

G(α)(t, x)
def
=

∞∑

n=0

tnL(α)
n (x) =

e−
tx

1−t

(1 − t)α+1
, (E.8)

G
(α)
+ (t, x)

def
=

∞∑

n=0

tnL(α+n)
n (x) =

2αe−
1

4
t−1(1−

√
1−4t )2x

√
1 − 4t

(
1 +

√
1 − 4t

)α , (E.9)

G
(α)
− (t, x)

def
=

∞∑

n=0

tnL(α−n)
n (x) = (1 + t)αe−tx. (E.10)

Formulas (E.9) and (E.10) can be derived by using (E.2) and (E.4).

• identities

L(α)
n (x) − L(α−1)

n (x) = L
(α)
n−1(x), (E.11)

xL
(α+1)
n−1 (x) − αL

(α)
n−1(x) = −nL(α−1)

n (x), (E.12)

which can be verified elementarily based on (E.1).
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E.2 Jacobi polynomials

• definition (expansion formula)

P (α,β)
n (x) =

(α + 1)n

n!

n∑

k=0

1

k!

(−n)k(n + α + β + 1)k

(α + 1)k

(1 − x

2

)k

. (E.13)

• parity

P (α,β)
n (−x) = (−1)nP (β,α)

n (x). (E.14)

• forward and backward shift relations

∂xP
(α,β)
n (x) = 1

2
(n + α + β + 1)P

(α+1,β+1)
n−1 (x), (E.15)

(1 − x2)∂xP
(α+1,β+1)
n−1 (x) +

(
β − α − (α + β + 2)x

)
P

(α+1,β+1)
n−1 (x) = −2nP (α,β)

n (x). (E.16)

• differential equation

(1−x2)∂2
xP

(α,β)
n (x)+

(
β−α−(α+β+2)x

)
∂xP

(α,β)
n (x)+n(n+α+β+1)P (α,β)

n (x) = 0. (E.17)

• three term recurrence relation

xP (α,β)
n (x) =

2(n + 1)(n + α + β + 1)P
(α,β)
n+1 (x)

(2n + α + β + 1)(2n + α + β + 2)
+

(β2 − α2)P
(α,β)
n (x)

(2n + α + β)(2n + α + β + 2)

+
2(n + α)(n + β)P

(α,β)
n−1 (x)

(2n + α + β)(2n + α + β + 1)
. (E.18)

• Rodrigues formula

P (α,β)
n (x) =

(−1)n

2nn!

1

(1 − x)α(1 + x)β

( d

dx

)n(
(1 − x)n+α(1 + x)n+β

)
. (E.19)

• orthogonality (α, β > −1)

∫ 1

−1

dx(1 − x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x) =
2α+β+1

n!

Γ(n + α + 1)Γ(n + β + 1)

(2n + α + β + 1)Γ(n + α + β + 1)
δnm.

(E.20)

• generating function

G(α,β)(t, x)
def
=

∞∑

n=0

tnP (α,β)
n (x) =

2α+β

R(1 + R − t)α(1 + R + t)β
, R

def
=

√
1 − 2xt + t2. (E.21)

• identities

2(n + β)P (α,β−1)
n (x) − 2βP (α−1,β)

n (x) = (n + α + β)(1 + x)P
(α,β+1)
n−1 (x), (E.22)
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(n + β)(1 − x)P
(α+1,β)
n−1 (x) − α(1 + x)P

(α,β+1)
n−1 (x) = −2nP (α−1,β)

n (x), (E.23)

2(α + n)P
(α,β)
n−1 (x) + (α + β + 2n)(1 − x)

(
P (α,β)

n (x) − P (α+1,β−1)
n (x)

)
= 2nP (α,β)

n (x), (E.24)

2(n + α)P (α−1,β)
n (x) − 2αP (α,β−1)

n (x) = −(n + α + β)(1 − x)P
(α+1,β)
n−1 (x), (E.25)

(n + α)(1 + x)P
(α,β+1)
n−1 (x) − β(1 − x)P

(α+1,β)
n−1 (x) = 2nP (α,β−1)

n (x), (E.26)

− 2(β + n)P
(α,β)
n−1 (x) + (α + β + 2n)(1 + x)

(
P (α,β)

n (x)−P (α−1,β+1)
n (x)

)
=2nP (α,β)

n (x). (E.27)

Eqs.(E.22)–(E.24) can be verified elementarily based on (E.13). By using (E.14), eqs.(E.25)–

(E.27) are obtained from eqs.(E.22)–(E.24) respectively.

• limit to the Laguerre polynomial

lim
β→∞

P (α,±β)
n

(
1 − 2x

β

)
= L(α)

n (±x). (E.28)

Various formulas for Jacobi polynomial reduce to that for Laguerre polynomial in this limit.
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