
QMUL-PH-09-30
VPI-IPNAS-09-14

String Theory and Turbulence

Vishnu Jejjala1∗, Djordje Minic2†, Y. Jack Ng3‡, and Chia-Hsiung Tze2§

1Centre for Research in String Theory

Department of Physics, Queen Mary, University of London

Mile End Road, London E1 4NS, U.K.

2Institute for Particle, Nuclear and Astronomical Sciences

Department of Physics, Virginia Tech

Blacksburg, VA 24061, U.S.A.

3Institute of Field Physics

Department of Physics and Astronomy, University of North Carolina

Chapel Hill, NC 27599, U.S.A.

Abstract

We propose a string theory of turbulence that explains the Kolmogorov scaling in
3+1 dimensions and the Kraichnan and Kolmogorov scalings in 2+1 dimensions. This
string theory of turbulence should be understood in light of the AdS/CFT dictionary.
Our argument is crucially based on the use of Migdal’s loop variables and the self-
consistent solutions of Migdal’s loop equations for turbulence. In particular, there is
an area law for turbulence in 2 + 1 dimensions related to the Kraichnan scaling.
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Turbulence is one of the great unsolved problems of physics [1]. It is as well an exceptional

proving ground for ideas about strong coupling, strong correlations, non-linearity, complexity,

and far from equilibrium physics. The remarkable fact about fully developed turbulence in

three spatial dimensions is that it obeys the well-known Kolmogorov scaling law [2]. By

contrast, in addition to the Kolmogorov scaling, in two spatial dimensions fully developed

turbulence exhibits other scaling behavior, in particular Kraichnan scaling [3].

We have recently argued that there are deep similarities between quantum gravity and

turbulence [4]. The connection between these seemingly disparate fields is provided by

the rôle of the diffeomorphism symmetry in classical gravity and the volume preserving

diffeomorphisms of classical fluid dynamics. In computing correlators of the velocity field,

one is led to examine the statistical and Euclidean quantum field theoretic descriptions

of turbulence. By utilizing the metrical properties of sound propagation in fluids, we have

argued that the Kolmogorov scaling in 3+1 dimensions can be derived from quantum gravity,

in particular, the features of a holographic spacetime foam. In these investigations, we have

uncovered a friction between holography and Kraichnan scaling in 2 + 1 dimensions and

suggested that this may relate to strong coupling dynamics in the ultraviolet.

In this paper, we sharpen the intuition about the relation between turbulence and quan-

tum gravity and propose a very specific dictionary between string theory and turbulence.

We argue that the relation between the Kolmogorov and Kraichnan scalings is precisely

the same as the one between the string and membrane theories. We also argue that the

AdS/CFT correspondence finds its natural “turbulent” realization in this context. This

opens up the possibility, analogous to the proposal of the QCD string, for mapping the

solutions of sigma models in particular backgrounds to the various statistical distributions

associated with turbulent flows.

In what follows, we retrace very closely the seminal discussion of turbulence in terms of

loop equations proposed by Migdal [5]. The basic equation of turbulent fluid dynamics is

the Navier–Stokes equation

ρ(∂tvi + vj ∂jvi) = −∂ip+ ν ∂2
j vi , (1)

with ∂ivi = 0, in the limit of infinite Reynolds number, which formally amounts to setting

the viscosity ν to zero. (The velocity field of the flow is vi, p is pressure, and ρ is the fluid

density.) The object is to compute the generating functional of the velocity correlators:

Z(j) =

〈
exp

(
−
∫
d3x ji(x)vi(x)

)〉
. (2)

Our proposal will be that this generating functional can be determined through the AdS/CFT

correspondence in the Kraichnan regime. Furthermore, the Kolmogorov and Kraichnan

regimes will be related in a way suggested by the AdS/CFT correspondence in the context

of the gauge theory/membrane theory transition in 2 + 1 dimensions.
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To motivate this proposal, we shall follow Migdal [5] and rewrite the Navier–Stokes

equation in terms of Wilson loops. Consider the turbulent Wilson loop

W (C) ∼ exp

(
−1

ν

∫
C

dxi vi

)
. (3)

The viscosity has the dimensions of length squared over the unit of time. The Wilson loop

can be rewritten using the vorticity field

ωij ≡ ∂ivj − ∂jvi (4)

using Stokes’ theorem

W (C) ∼ exp

(
−1

ν

∫
S

dσij ωij

)
, (5)

where ∂S ≡ C. The velocity acts as an effective vector potential, and the vorticity is its

curl, and thus an effective magnetic field.

As Migdal explains [5], the Navier–Stokes equations can be formulated as an effective

Schrödinger equation involving the loop functional W (C)

i ν ∂tW (C) = HCW (C) , (6)

where the loop equation Hamiltonian HC is

HC ≡ ν2

∫
C

dxj

(
i ∂k

δ

δσkj(x)
+

∫
d3y

yl − xl
4π |y − x|3

δ2

δσkj(x)δσkl(y)

)
. (7)

Note that the viscosity plays the role of ~ in these turbulent loop equations. In discussing

fully developed turbulence, one always takes the ~→ 0 or zero viscosity limit. As viscosity

is a dimensionful quantity, this means simply that the dissipative term is much smaller than

the non-linear convective derivative. The perturbation expansion is organized in powers of ν.

As pointed out in [5], the loop Hamiltonian is not Hermitian due to dissipation. Moreover, it

is non-local. In our discussion of the turbulent Kolmogorov and Kraichnan distributions, we

will be interested in the ν → 0 limit, i.e., a semiclassical asymptotics. The theory is unitary

in this limit.

The Kolmogorov scaling [2] follows from the assumption of constant energy flux. We

have
v2

t
∼ ε , (8)

where the single length scale ` is given as ` ∼ v · t. This implies that

v ∼ (ε `)1/3 . (9)

Following Migdal, we insert this as a self-consistent ansatz for the turbulent Wilson loop

(the area being naturally A ∼ `2):

WKol ∼ exp
(
−α
ν
ε1/3A2/3

)
, (10)
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which constitutes Migdal’s central observation [5]. (The α in the exponential is an undeter-

mined real constant.)

This behavior should be contrasted with the area law associated with the confining phase

of the pure Yang–Mills theory. From the area law of the turbulent Wilson loop, one deduces

that the energy spectrum follows the k−5/3 law, or in real space, to the experimentally

observed two-point function

〈vi(`)vj(0)〉 ∼ (ε `)2/3δij . (11)

(The energy scaling E(k) ∼ k−n is determined as the one-dimensional Fourier transform of

the scaling of the two-point function for the velocity field 〈v(`)2〉 ∼ `n−1 [1].)

That we have a self-consistent ansatz for the solution of the loop equation (6) in the

Kolmogorov regime is seen as follows. Migdal takes a WKB ansatz for the loop functional [5]:

W (C) = exp

(
−1

ν
S(C)

)
. (12)

The effective equation for S(C), derived from the loop equation for W (C), is a non-linear

Hamilton–Jacobi equation for which Migdal finds self-consistent solutions. The loop equation

for W (C) provides a rewriting of the Navier–Stokes equations in terms of the appropriate

collective variables. By looking at the original Navier–Stokes equations, one immediately

notices that for the case of zero viscosity ν → 0 there exists a self-consistent scaling law

v ∼ `γ (13)

because the time derivative of velocity and the convective derivative have the same scaling

dimension. This scaling law is naturally violated for finite viscosity, because the dissipative

term ∇2~v has a different scaling dimension.

In general, the scaling coefficient γ is not determined, but it immediately leads to the

scaling law for S(C):

S(C) ∼ `γ+1 ∼ t
γ+1
1−γ ≡ t2κ−1 . (14)

For the case of Kolmogorov scaling γ = 1/3, or, following Migdal’s notation, κ ≡ 1
1−γ = 3/2,

and yields S(C) ∼ t2. The requirement that the three-point function

〈vavb∂avb〉 ∼ constant , (15)

given the above scaling for the velocity, is equivalent to the Kolmogorov’s γ = 1/3. One can

easily see, by applying chain rule, that the constancy of the three-point function amounts to

v2/t ∼ constant, which is the original requirement imposed by Kolmogorov.

We can now extrapolate the observation of Migdal to Kraichnan scaling in 2 + 1 dimen-

sions. In the two-dimensional case there is a second conserved quantity, the enstrophy

Ω =

∫
d2x ω2 , (16)
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where ω is the vorticity vector ~ω ≡ ∇ × ~v introduced above. According to Kraichnan, the

constant flux of enstrophy gives
ω2

t
∼ constant (17)

and implies that the statistical velocity field scales as

v ∼ `

t0
(18)

where t0 is the characteristic constant. This leads to the k−3 scaling of the energy in momen-

tum space. Thus in 2 + 1 dimensions we have both the energy (Kolmogorov) and enstrophy

(Kraichnan) cascades. Given the Kraichnan scaling, the turbulent Wilson loop goes as

WKr ∼ exp

(
− α

ν t0
A

)
. (19)

This behavior can be understood in the following sense. For Kraichnan scaling, the

exponent γ is fixed by demanding the constancy of the three-point function

〈vaωb∂aωb〉 ∼ constant , (20)

which is equivalent, again by using the chain rule, to saying that ω2/t ∼ constant, or

v ∼ ` (γ = 1). Note that rephrasing the Kolmogorov and the Kraichnan behaviors in

this way allows for the interpretation of both scalings in terms of a quantum field theoretic

anomaly [6, 7].

Even within this quantum field theoretic setting a question remains: why are the Kraich-

nan and Kolmogorov scalings true? Our main point is that by looking at Migdal’s Wilson

loop the natural geometric area law leads to the Kraichnan scaling, and furthermore to the

Kolmogorov scaling by invoking the relation between strings and membranes. The area law

can be naturally interpreted from the point of view of the AdS/CFT correspondence [8] thus

opening a connection between string theory and turbulence.

The scaling of the Wilson loop in (19) gives the same area law as in the case of the

confining Yang–Mills theory. We claim that this is indicative of some effective Nambu–

Goto area action of string theory. We first notice that the area law is natural for the large

Wilson loops in two spatial dimensions, in the case of planar geometry. Noting that volume

V ∼ `3, the area law for the Kraichnan scaling can be rewritten in terms of the volume of

the spacetime filling membrane in 2 + 1 dimensions. This leads to a 2/3 power:

exp(−f A) = exp(−f V 2/3) . (21)

Crucially, the 2/3 exponent is common to both the Kolmogorov and Kraichnan scalings.

(The prefactor f absorbs the dimensionful constants.) If one allows for a membrane/string

transition, one might expect the Kolmogorov cascade to emerge in the case when the mem-

brane volume is replaced by the area of the string worldsheet:

V → A =⇒ exp(−f V 2/3)→ exp(−f A2/3) . (22)
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This would indicate that both the Kraichnan and the Kolmogorov scalings should be under-

stood from a unified point of view in 2 + 1 dimensions.

Let us recapitulate. The first result for WKol in (10) should be compared to the usual area

law of the Yang–Mills theory. We might call the Kolmogorov result in this case a turbulent

deformation of the area law, so that

exp(−f A) =⇒ exp(−f A2/3) . (23)

For the three-dimensional Yang–Mills theory, which is not conformal as the coupling is

dimensionful, we would have the same deformation. But the AdS/CFT correspondence

instructs us that in three dimensions we can have another theory — the theory of interacting

membranes. For the membrane theory, dual to M-theory on AdS4, we should have a volume

law associated with Wilson surface operators. This point of view has been advanced in the

classic papers on the evaluation of Wilson loops in AdS/CFT [9]. Thus we can view the

Kraichnan scaling as a turbulent deformation of the volume law

exp(−f V ) =⇒ exp(−f V 2/3) . (24)

In both cases we have the universal 2/3 power, which points us to a synoptic view on the

Kraichnan and Kolmogorov scalings.

This explanation of the Kraichnan and Kolmogorov scalings in 2 + 1 dimensions has a

natural 3 + 1 dimensional counterpart. When we consider the 3 + 1 dimensional case, we

only have the Yang–Mills CFT, the usual four-dimensional dual to string theory on AdS5.

In this case we only have the deformation of the area law and thus the Kolmogorov scaling.

This exp(−A2/3) law would be just the dimensional lift of the same law in 2 + 1 dimensions.

As we do not have a membrane theory in 3 + 1 dimensions, there would be no counterpart

to Kraichnan scaling.

Conversely, the three-dimensional case can be viewed as an ε reduction of the four-

dimensional case. In four dimensions we have quartic potential (which is marginal) and in

three dimensions the sixth power, as in the classic result of Wilson and Fisher [10]. When

we reduce a turbulently deformed area law from four dimensions to three dimensions, we

get either the same result or its volume analogue, where the strings from three-dimensional

Yang–Mills thicken into membranes [11]. The relation between physics in 3 + 1 dimensions

and 2 + 1 dimensions is illustrated in Figure 1.

Given the physical picture proposed, the AdS/CFT correspondence elucidates the Kraich-

nan scaling from a bulk perspective. By following the membrane to string transition, we see

the relation between Kraichnan and Kolmogorov scaling. Let us explore this point in greater

depth.

The expectation value of the turbulent Wilson loop in the Kraichnan scaling regime in

2 + 1 dimensions is a standard calculation in AdS/CFT [9]. Consider AdSd+1 × Sp. In
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Figure 1: Wilson loops in the N = 4 super-Yang–Mills theory in 3+1 dimensions exhibit an

area law. In 2 + 1 dimensions, the theory reduces to N = 8 super-Yang–Mills. The area law

for Wilson loops (strings) in the ultraviolet flows in the infrared to a volume law for Wilson

surfaces (membranes). Similarly, in 3 + 1 dimensions, we have a fluid with Kolmogorov

scaling (i.e., there is an exp(−A2/3) law for turbulent Wilson loops). In 2 + 1 dimensions,

the fluid exhibits the same Kolmogorov scaling in the ultraviolet; it flows in the infrared

to the Kraichnan scaling (i.e., there is an exp(−A) ∼ exp(−V 2/3) law for turbulent Wilson

surfaces).

Poincaré coordinates, the metric is

ds2 = gµν dx
µ dxν = L2

AdSd+1

[
1

u2

(
−dt2 + dr2 + r2 dΩ2

d−2

L2
AdSd+1

+ du2

)
+ k dΩ2

p

]
, (25)

where dΩ2
p is the line element on a unit p-sphere. In these coordinates, the boundary is at

u = 0. In the case of AdS4 × S7, we have LAdS4 = `P (1
2
π2N)1/6, k = 2, where N is the

flux on S7. Although AdS4 × S7 is properly an M-theory background, let us examine the

stringy Wilson loop. We restrict to the AdS4 factor, which is parametrized by the coordinates

{t, r, θ, u}, put `P =
√
α′, and Euclideanize the metric by sending t 7→ i t.

We consider the embedding t = constant, r = r(σ), θ = τ ∈ [0, 2π), u = σ ∈ [0,∞]. The

Nambu–Goto action of the string is

SNG = − 1

2πα′

∫
d2σ

√
det(gµν∂aXµ∂bXν) = −LAdS4

α′

∫ ∞
0

dσ
r(σ)

σ2

√
1 +

(
r′(σ)

LAdS4

)2

. (26)
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From the Euler–Lagrange equation, we derive as a solution the spacelike Wilson loop with

a circular profile of radius r0 = LAdS4σ0 on the boundary:

r(σ)

LAdS4

=
√
σ2

0 − σ2 , σ ∈ [0, σ0] . (27)

The on-shell worldsheet action of the string becomes

SNG =
L2

AdS4
σ0

α′

(
1

σ0

− 1

ε

)
, (28)

where we have employed an ε-prescription to regulate the integral. Dropping the divergent

piece, we find that the Wilson loop satisfies an area law:

〈W (A)〉 = exp(−SNG) = exp

(
−
L2

AdS4

α′

)
= exp(−f A) . (29)

The claim then is that the boundary turbulence in the Kraichnan regime is given by

string theory by the Nambu–Goto action in the bulk of AdS4. The same computation of the

expectation value of the turbulent Wilson loop in the Kraichnan regime in 2 + 1 dimensions

should be possible in terms of membrane variables. We should compute exp(−f V 2/3) on

the boundary via the AdS4 bulk evaluation

exp(−f V 2/3) = exp

[
−
(∫

d3σ

√
det(gAdS4

ab )

)2/3
]
, (30)

where once again gab is the induced metric of the membrane in the AdS4 background. This

appears dangerously non-analytic, and it does not have the same asymptotics as the canonical

quantum effective actions (the implicit power of ~ in the denominator is 2/3), but the scaling

law is the same as the area law discussed above, just expressed in terms of unusual variables.

In other words, the bulk on-shell action is the same in both cases.

The physical picture is that the Kraichnan regime of the boundary turbulence is given by

the membrane theory in the AdS bulk with an effective non-analytic “turbulent” Nambu–

Goto worldvolume action V 2/3. The two regimes interpolate in three dimensions. Looking at

the behavior of the three-dimensional Yang–Mills theory, in the deep infrared, the turbulent

string action may be expressed as a turbulent membrane action.

The inverse renormalization group (RG) is really the holographic RG flow [12], and the

Kraichnan scaling in 2 + 1 dimensional turbulence is the boundary dual of the string theory

in AdS4. The Kolmogorov scaling is related to the Kraichnan scaling in 2 + 1 dimensions as

the 2+1 Yang–Mills theory is related to the membrane theory in the deep infrared. The two

Kolmogorov scalings in 2 + 1 and 3 + 1 dimensions are related by dimensional reductions as

the 2 + 1 and 3 + 1 Yang–Mills theories.

Thus the complete dynamical picture is as follows. We start with the fluid vortex dy-

namics. For a single big vortex we have an effective action given by the Nambu–Goto action.
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Now, if this vortex is turned into two, and then four, etc., at the end of the cascade we

will have a large number of small vortices. This is essentially the picture of Kolmogorov.

This means that the area spanned by the vortex — not the area of the worldsheet, but

the transverse area whose boundary is given by the vortex — is now made of many little

vortex areas. The worldsheet has, from a coarse grained point of view, become effectively a

worldvolume! This is illustrated in Figure 2. In terms of the original Nambu–Goto action

for one big vortex we have exp(−f A) ∼ exp(−f V 2/3).

How is this possible? The idea here is that if turbulence can be formulated as an effective

string theory, then we should consider what happens at weak and at strong string coupling.

At strong coupling the turbulent string would turn into a membrane in the same way the

usual fundamental string turns into a membrane in M-theory [13]. If we view the same

exp(−f V 2/3) result from the membrane point of view, then we get our result for the Kraich-

nan scaling, that is exp(−f V 2/3) ∼ exp(−f A), i.e., the area law. The only fact we need to

use in this dynamical picture is volume preserving diffeomorphisms as the big vortex decays

into many many small vortices. By lowering the string coupling we get our turbulent string,

that is we go from exp(−f V 2/3) to exp(−f A2/3) and this gives the Kolmogorov scaling.

Now conformal symmetry (and AdS/CFT applied to the turbulent string) would tell

us that in four dimensions we only have Kolmogorov scaling while in three dimensions we

have both Kolmogorov and Kraichnan scaling, in the sense of the flow from ultraviolet to

infrared (the inverse cascade). On top of this we have a natural inverse RG provided by the

holographic RG relation between the boundary (where the turbulent string is) and the bulk

(where the fundamental string is).

Finally, this picture implies the boundary turbulence/bulk string theory dictionary for

the generating functional of velocity correlators as in the AdS/CFT correspondence. The

generating functional of all turbulent correlators of a fluid in the Kraichnan regime in 2 + 1

dimensions is given as a bulk string partition function in the semiclassical regime〈
exp

(
−
∫
JO(v)

)〉
= exp(−Sstr(Φ)) , (31)

where O(v) are operators constructed out of any power of velocity and its derivatives, J are

the sources, and Sstr is the fundamental string action in the appropriate AdS space, which

is a functional of the string field in this background (or alternatively the string excitations

in this background) which have their boundary values determined by the sources J . The

perturbation theory for the Kraichnan scaling is thus organized in terms of natural string

variables, as in the usual AdS/CFT dictionary.

The crucial point is that this 2 + 1 dictionary has as its ultraviolet completion the Kol-

mogorov scaling, and this has as its dimensional uplift, the Kolmogorov scaling in 3+1. The

relationship between the Kolmogorov and Kraichnan scaling is that of gauge theories and

membranes in 2+1 dimensions, or Wilson loops and Wilson surfaces in the two corresponding

theories.
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Figure 2: On the left, we have the boundary loop extended into the bulk of AdS as in the

computation of the Yang–Mills Wilson loop [9]. By comparison, on the right, the boundary

loop has broken up in the turbulent regime into many small loops (as in the classic picture of

the Kolmogorov cascade). This boundary picture should be extended, for every little loop,

into the bulk of the AdS. Thus one gets an effective membrane extended into the bulk space.

In understanding this, it is useful to remember that the interpretation of the Kolmogorov

and Kraichnan scalings via the quantum field theory anomaly rests upon the behavior of

the three-point functions (15) and (20). This three-point function in both cases is a pure

three-point velocity correlator. The three-point correlator is divergent, as usual, and has to

be regulated in the ultraviolet. But it is constant if we insert the Kolmogorov and Kraichnan

scaling in the infrared. This agrees very nicely with the picture we have presented. In the

infrared, we have the area law, which is natural for large Wilson loops. In the ultravolet, the

big loop breaks up, as illustrated in Figure 2. The expectation value of the Wilson loop is of

course the same. Thus we can think of this as an anomaly, which has both an ultraviolet and

an infrared interpretation. Rewriting the same area law in terms of volumes and invoking

the membrane/string transition, we get the other anomalous behavior, i.e., the Kolmogorov

law. The two regimes, Kraichnan and Kolmogorov, are related in our picture, as they should

be from the point of view of the underlying three-point velocity correlator.

Note that the boundary turbulent theory is a CFT (and thus similar to [6]), but its

correlator is given in terms of a bulk string theory. A natural question is to consider the

relation (if any) with the conformal fluid explored in [14]. Also notice that the fundamental

vertex is cubic both from the bulk string field theory and the membrane theory points of

view, which is something that has been long expected from the non-linear structure of the

Naiver–Stokes equation or its loop counterpart.
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A more general lesson of our work may apply to the AdS/CMP correspondence. One of

the major puzzles in the application of AdS/CFT to condensed matter physics [15] is why this

should even work. In the case of the gauge/gravity duality we have in mind very well defined

physical considerations: planar diagrams, the large-N expansion, the ’t Hooft limit, and the

QCD string. But why should numerous many-body condensed matter systems, which might

be governed by various CFTs (classical or quantum), know about string theory and thus

gravity? Our approach to turbulence may provide a clue. Most of the relevant condensed

matter systems currently discussed are quantum fluids (superconductors, superfluids). For

these examples one can write a set of hydrodynamic equations. These have in fact been

written for superfluidity by Landau [16]. Then one can, following Migdal, introduce Wilson

loops for these quantum fluids and reformulate the basic equations in terms of new collective

variables. The solution of these equations, i.e., the form of the generating functional, is then

sought self-consistently, as in our approach. Viewed from this vantage point the AdS/CFT

technology in the context of many-body physics is really an example of a conformal bootstrap

in a higher number of dimensions, apart from the usual philosophy that RG is GR, the

renormalization group being rewritten in terms of the equations of general relativity.

In sending ν → 0, we effectively take a zero temperature limit. At finite viscosity, a

new scale enters, and the fluid mechanics becomes dissipative. A candidate string dual must

exhibit the same property. To model this explicitly, it may be useful to recall the Caldeira–

Leggett setup from condensed matter, in which a system is coupled to a heat bath, which is

then integrated out, leading to a dissipative and non-local effective action [17].

In conclusion, we have described a new proposal for a string theory of turbulence. This

proposal explains the Kolmogorov scaling in 3 + 1 dimensions and the relationship between

the Kraichnan and Kolmogorov scalings in 2 + 1 dimensions. It is natural to speculate that

the universal 2/3 exponent is an indication that one is working in the spacetime foam regime

(from a boundary point of view) as suggested in our previous paper [4]. Perhaps this is

indicative of the fact that not only can string theory be of use in formulating a theory of

turbulence but that the physics of turbulence could provide some guidance to understanding

the spacetime foam phase of strong quantum gravity.
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