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Chaos in Fermionic Many-Body Systems and the Metal-Insulator Transition
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We show that finite Fermi systems governed by a mean field and a few-body interaction generically
possess spectral fluctuations of the Wigner-Dyson type and are thus chaotic. Our proof is based on
an analogy to the metal-insulator transition. We construct a sparse random-matrix ensemble Hcr

that mimicks that transition. Our claim then follows from the fact that the generic random-matrix
ensemble modeling a fermionic interacting many-body is much less sparse than Hcr.
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Purpose. Finite fermionic many-body systems (atoms,
molecules, nuclei) often display spectral fluctuation prop-
erties that agree with predictions of random-matrix the-
ory (RMT), more precisely, with those of the Gaussian
Orthogonal Ensemble (GOE) [1]. This fact is commonly
taken as evidence for chaotic motion [2]. In RMT, all
pairs of states are coupled by independent matrix ele-
ments. In a many-body system, that situation arises
only in the presence of many-body interactions. But
atoms, molecules, and nuclei are governed by a mean
field with residual interactions that are predominantly
of a two-body nature. Therefore, an important ques-
tion is: Does a two-body interaction (or, more gener-
ally, a k-body interaction with k integer ≥ 2 but smaller
than the number m of fermions) generically give rise to
chaotic motion? The question has received much atten-
tion (see the review [3]), without a definitive answer. In
condensed-matter physics it has recently been addressed
as the problem of many-body localization [4].

We answer the question for a generic random-matrix
model that simulates a fermionic many-body system, the
Embedded Gaussian Unitary Ensemble (EGUE) [5] de-
fined below. (Our arguments apply likewise to the cases
of orthogonal and symplectic symmetry.) For k < m
that ensemble has withstood all attempts at a direct an-
alytical treatment [3]. The difficulty is that the matrix
representation of EGUE in terms of Slater determinants
becomes infinitely sparse in the limit of large matrix di-
mension. Thus, the analytical results of Ref. [6] do not
apply. And numerical simulations for small matrix di-
mensions (see [3]) while showing Wigner-Dyson statis-
tics for the eigenvalues do not reach the sparse limit. In
solving the problem we use an analogy to the Anderson
localization problem. Specifically, we are guided by a
random band matrix model for the metal-insulator tran-
sition (MIT) [7]. We construct two versions of a random-
matrix ensemble, both even more sparse than EGUE.
Numerical simulations show that the sparser version of
the two displays the critical behavior characteristic for
the metal-insulator transition, while analytic work shows

that the less sparse version possesses the same spectral
fluctuation properties as the Gaussian Unitary Ensemble
(GUE). The EGUE being less sparse than both versions,
we can then show that EGUE possesses GUE spectral
fluctuation properties for all k ≥ 2. (The case k = 1 is
special.) These statements imply that the eigenfunctions
of EGUE are delocalized for all k ≥ 2.

Critical Ensemble and Scaffolding Ensemble. We de-
fine both ensembles in terms of a real and symmetric
scaffolding matrix A(n) that has dimension N = 2n with
n positive integer. We recall that for matrices of dimen-
sion N , the auxiliary diagonal has matrix elements with
indices (µ,N+1−µ) and µ = 1, . . . , N . We construct the
matrix A(n) by induction: For n = 1, A(1) has dimension
2, zero diagonal elements, and unit entries in the aux-
iliary diagonal. Given A(n−1), the two diagonal blocks
(dimension 2(n−1)) of the matrix A(n) are each occupied
by A(n−1). The elements in the two off-diagonal blocks
are all zero except for the auxiliary diagonal for which all
elements have the value unity. By construction, the ma-

trices A(n) have the important property
∑N

ν=1A
(n)
µν = n

for all µ = 1, . . . , N . Thus, in every row and column of
A(n), the number of non-zero non-diagonal elements is
n = lnN . Hence, with increasing distance |µ − ν| from
the main diagonal, the average density of non-diagonal
elements of A(n) falls off like 1/|µ− ν|.

With the help of the matrices A(n), we define the criti-
cal ensembleHcr;n and the scaffolding ensembleHsc;n. In
both, the matrix elements are complex random variables
with bivariate Gaussian distributions and zero mean val-
ues but possess different variances. With x = cr or x = sc
and with angular brackets denoting the ensemble aver-
age, we define

〈Hx;n
µν H

x;n
ρσ 〉 = δµσδνρ

(

α
√
nδµν +

1

|µ− ν|i(x)
A(n)

µν

)

. (1)

Here i(cr) = 1 and i(sc) = 0. Eq. (1) shows that the
non-zero non-diagonal matrix elements of both ensem-
bles reside on the unit entries of A(n); hence the name
“scaffolding matrix”. To explain the first term in round

http://arxiv.org/abs/0911.0316v1


2

brackets on the right-hand side (where α is a real pos-
itive numerical coefficient of order unity), we observe
that Trace A(n) = 0 and (1/N)Trace [A(n)]2 = n. This
suggests that the spectrum of A(n) is symmetric about
zero and has width ≈ √

n. It is possible that an eigen-
value of A(n) vanishes. The term α

√
nδµν shifts the

spectrum and, with a suitable choice of α, guarantees
for i = 0 that none of the eigenvalues of the matrix

B
(n)
µν = α

√
nδµν + An

µν vanishes. For reasons of sym-
metry we use the diagonal term α

√
nδµν also for i = 1.

To motivate Eq. (1) we note that with increasing distance
|µ− ν| from the main diagonal, the variance of Hcr;n

µν (of
Hsc;n

µν ) falls off on average like 1/|µ− ν|2 (like 1/|µ− ν|,
respectively). Thus, Hcr;n is the sparse-matrix analogue
of a power-law random band matrix with exponent unity
which models [7] the Anderson transition. We expect
that for n → ∞ the eigenfunctions and eigenvalues of
Hcr;n display critical behavior while those of Hsc;n are
GUE-like.

Spectral fluctuation properties of the two ensembles.

We first study the spectral properties ofHsc;n for n→ ∞.
The average level density is ρ(E) = −(1/π)ℑ〈G(E)〉.
Here E is the energy and G(E) = 1/(E+−Hsc;n) the re-
tarded Green’s function. To calculate 〈G(E)〉 we expand
G(E) in powers ofHsc;n and use Wick contraction in each
term of the sum [5]. We denote Wick-contracted pairs of
matrix elements by the same letter and distinguish nested
and cross-linked contributions. Among the sixth-order
contributions, for instance, ABCCBA and ABBACC
are nested while ABCABC and ABABCC are cross-
linked. For n ≫ 1, only nested contributions contribute
to 〈G(E)〉. Resummation gives the Pastur equation
〈G(E)〉 = (1/E)+ (1/E)〈Hsc;n〈G(E)〉Hsc;n〉〈G(E)〉. We
use Eq. (1) for i = 0, use the definition of B, and find

[E −
∑

ρ

B(n)
µρ 〈G(E)〉ρρ]〈G(E)〉µν = δµν . (2)

To solve Eq. (2) we observe that 〈G(E)〉 is expected to
be an analytic function in E with a finite number of
branch points but without singularity at E = ∞. There-
fore, we expand 〈G(E)〉 for |E| ≫ 1 in a Laurent series,

〈G(E)〉µν =
∑∞

p=0E
j−pg

(p)
µν . Inserting that into Eq. (2)

and comparing powers of E, we find that non-vanishing
solutions exist only for j = ±1. For both solutions we

find that the coefficients g
(p)
µν are proportional to the unit

matrix for all p. That conclusion hinges in an essential
way on the fact that

∑

ρ

B(n)
µρ = n+ α

√
n for all , µ (3)

which follows from
∑

ν A
(n)
µν = n for all µ. We conclude

that 〈G(E)〉µν = δµνg(E). To determine g(E) we use
Eq. (2) and find with λsc = (n+α

√
n)1/2 that λscg(E) =

(E/(2λsc))± i
√

1 − (E/(2λsc))2. The two solutions with

j = ±1 correspond to the two sign choices in front of
the square root. We conclude that the average spectrum
has the shape of Wigner’s semicircle, the GUE radius
λGUE ∝

√
N being replaced by λsc ∝ √

n.

To determine the spectral fluctuation properties of
the scaffolding ensemble, we use the supersymmetry ap-
proach [8, 9]. Averaging the generating functional and
using Eq. (1), we find that removal of the quartic term in
the original integration variables by means of a Hubbard-
Stratonovich transformation is possible only if a separate
dimensionless supermatrix σµ, µ = 1, 2, . . . , N is intro-
duced for every pair Ψµ, Ψ†

µ of the original integration
variables.The dimension of σµ depends on the particu-
lar observable under consideration. We use the saddle-
point approximation for n ≫ 1 and find for the super-
matrices σµ a set of equations that has the same form
as Eqs. (2), with the replacement λsc〈Gµν(E)〉 → δµνσµ.
The saddle-point equations admit only a single diago-
nal solution σd with σµ = σd for all µ. The arguments
are the same as in the last paragraph. Thus σd obeys the
same equation as for the GUE, except for the replacement
λGUE → λsc. The general solution σ of the saddle-point
equation then has the form σ = T−1σdT with T in the
proper coset space. Inserting that solution into the effec-
tive Lagrangean and expanding the logarithmic term to
first order in the advanced-retarded-symmetry breaking
term, we obtain a term proportional to trg [T−1σdTL].
Here trg denotes the supertrace and the diagonal ma-
trix L breaks the retarded-advanced symmetry [9]. That
term guarantees that the spectral fluctuation properties
of Hsc coincide with those of the GUE, except for the
replacement λGUE → λsc. Expanding the effective La-
grangean around the saddle-point solution, we find that
the masses of the massive modes are proportional to n.
That justifies the use of the saddle-point approximation.
Thus, we have proved that in the limit n→ ∞ and with
λGUE → λsc, all spectral properties of the scaffolding
ensemble coincide with those of the GUE. By implica-
tion we conclude that the eigenfunctions are completely
mixed and have Gaussian statistics. Our proof applies if
α in Eq. (1) is chosen sufficiently large. However, it is
physically obvious that by reducing the strength of the
diagonal elements of a random-matrix ensemble, level re-
pulsion cannot be diminished. We therefore expect that
our results apply likewise for α = 0 (barring effects due
to a special symmetry of A(n)).

We have not been able to establish the spectral prop-
erties of the critical ensemble analytically and therefore
resort to numerical studies. At the MIT, the distribution
of the inverse participation ratio IPR =

∑

j |ψj |4 of an
eigenstate ψ with components ψj has a scale-invariant
form [10]. Fig. 1 (top panel) shows the distribution of
IPR for the critical ensembles with n = 10, 11, 12, 13.
For this analysis, we employed the central 20% of the
eigenstates, and the ensemble size is as indicated. The
distribution function is scale invariant as its form is in-
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dependent of the dimension N = 2n of the ensemble.
Following Ref. [10], we determine the fractal dimension
D2 from the shift of the IPR distribution function with
doubling of the dimension as D2 ≈ 0.6. The IPR distri-
butions exhibit a power-law tail with exponent x2 ≈ 1.
We turn to the spectral statistics displayed in the bottom
panels of Fig. 1. We find that the nearest-neighbor spac-
ing distribution P (s) increases linearly for small spacings
s and falls off exponentially for large spacings. The long-
ranged Σ2(L) statistics exhibit a logarithmic increase for
small L and a linear increase for large L. Thus, the spec-
tra of the critical ensemble exhibit short-range level re-
pulsion while distant levels are only weakly correlated.
This is in agreement with expectations for the MIT.

FIG. 1: (Color online) Top: distribution of ln IPR for crit-
ical ensembles with dimensions 2n, n = 10, 11, 12, 13. Bot-
tom: Nearest-neighbor spacing distribution P (s) (left) and
Σ2 statistics (right) of the critical ensemble compared to the
GOE and Poisson.

Embedded Ensembles. To define EGUE(k) we use pos-
itive integers k,m, l with k ≤ m < l and consider m
spinless Fermions in l degenerate single-particle states
labelled j = 1, . . . , l with associated creation and annihi-
lation operators a†j and aj, respecively. The states carry
no further quantum numbers. The k-body Hamiltonian
is

H(k) =
1

(k!)2

∑

j1...jk;j′
1
...j′

k

vj1...jk

j′
1
...j′

k

a†j1 . . . a
†
jk
aj′

k

. . . aj′
1

. (4)

The matrix v is Hermitian; the matrix elements are an-
tisymmetric under the exchange of any pair of primed or
unprimed indices and are uncorrelated random variables
with a bivariate Gaussian probability distribution with
zero mean value and a common second moment, which,
without loss of generality, is taken to be unity. The ma-
trix representation of H(k) in the space of m-body Slater
determinants labeled µ or ν with m-body matrix ele-

ments 〈ν|H(k)|µ〉 defines an ensemble of random matri-
ces of dimension N =

(

l
m

)

referred to as EGUE(k). We
study the spectral fluctuation properties of EGUE(k) in
the limit N ≫ 1. For fixed k, that limit is reached by
letting l,m → ∞. Without distinction we consider both
the dilute limit (m/l → 0) and the dense limit (m/l →
constant 6= 0).

EGUE(k) differs from the scaffolding ensemble in three
important ways. (i) For all k = 1, . . . ,m, the number of
non-vanishing non-diagonal elements, although equal in
every row and every column, is given by

∑k
p=1

(

m
p

)(

l−m
p

)

and, thus, for l,m ≫ 1 much larger than lnN ≈ m ln l.
Hence, for all k EGUE(k) is less sparse than the scaffold-
ing ensemble. (ii) The number of k-body matrix elements
contributing to a fixed m-body matrix element may be
bigger than one. For k = 2, for instance, the m-body ma-
trix element of two Slater determinants differing in the
occupation numbers of orbitals 1 and 2 but both with
occupied orbitals 3, 4, . . . , (m− 1) equals

∑m−1
j=3 v1j

2j . (iii)
m-body matrix elements occuring in different rows and
columns may be correlated. For k = 2, for instance, the
matrix element v12

34 contributes to all m-body matrix ele-
ments of pairs of Slater determinants for which the occu-
pation numbers of orbitals (1 and 2) and (3 and 4) differ
while all other occupation numbers agree. Correlations
occur only among m-body matrix elements in different
rows and columns because the same k-body matrix el-
ement cannot connect a given Slater determinant with
two different ones.

Without property (iii), i.e., under neglect of all cor-
relations, we could conclude immediately that for all k
and for N → ∞, the spectral properties of EGUE(k)
are the same as for GUE. The proof proceeds as for
Hsc. It uses properties (i) and (ii) and the fact that
EGUE(k) shares with the scaffolding ensemble the im-
portant property Eq. (3) (except for a suitable replace-
ment of n and α). Under the assumption that k-body
matrix elements appearing in different m-body matrix
elements are uncorrelated, we conclude that the spectral
fluctuation properties of EGUE(k) are the same as for
GUE, except for the replacement λGUE → λEGUE(k) =
(

m
k

)

+
∑k

p=1

(

m
k−p

)(

m
p

)(

l−m
p

)

. The first term comes from
the diagonal elements and the sum differs from the num-
ber of non-vanishing, non-diagonal elements by the factor
(

m
k−p

)

which accounts for property (ii). Expanding the ef-
fective Lagrangean around the saddle-point solution, we
confirm the stability of that solution.

For a complete understanding of the spectral proper-
ties of EGUE(k), it is thus vital to understand the in-
fluence of correlations among m-body matrix elements.
We discuss these separately for ρ(E) and for the spec-
tral correlations. For ρ(E), correlations cause deviations
from the semicircular shape and drive ρ(E) towards a
Gaussian. To see this we recall the distinction introduced
above Eq. (2) between nested and cross-linked contribu-
tions. Without correlations, cross-linked contributions
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are negligible for N ≫ 1, the Pastur equation holds,
and ρ(E) has the shape of a semicircle. Conversely, non-
vanishing correlations cause cross-linked contributions to
be as important as nested ones. Mon and French [5],
calculating even moments of the EGUE(k) in a basis of
Slater determinants, have shown that such contributions
drive ρ(E) towards a Gaussian shape. The contributions,
negligible for k = m, become increasingly important as
k decreases.

Intuitively, one would expect that the spectral fluc-
tuations are not affected by correlations among matrix
elements in different rows and columns. That expecta-
tion is borne out by our analytical calculations. For lack
of space, we can only sketch these here. While we have
not been able to resum the series expansion of 〈G(E)〉 af-
ter Wick contraction, the supersymmetry approach still
works. Because of the correlations, the quartic term is
now much more involved than before. Removal of that
term by a Hubbard-Stratonovich transformation is still
possible, however. In addition to the supermatrices σµ

introduced above, we must now define supermatrices σβ
µν .

The lower indices µ and ν stand for a pair of correlated
matrix elements. The upper index β distinguishes fami-
lies of such pairs. If the resulting saddle-point equations
possess a unique solution (or, at least, only a single solu-
tion with a non-vanishing imaginary part), then we can
conclude as before that for all k ≥ 2 the spectral fluc-
tuations of EGUE(k) are of GUE type. Because of the
complexity of the saddle-point equations, we are not able
to construct that solution, however. Therefore, we also
cannot estimate the stability of the saddle-point approx-
imation.

EGUE(1) as a special case. The uniqueness of the so-
lution of the saddle-point equations, essential for our ar-
gument, does not hold for k = 1. The Hermitian matrix
vj

j′ can be diagonalized; the eigenvalues follow Wigner-
Dyson statistics. The m-body matrix is then diagonal,
too, each diagonal element being given by a sum of m
such eigenvalues. For m ≫ 1 such sums are uncorre-
lated, and the spectrum is Poissonian. That symmetry
of EGUE(1), not obvious in the m-body matrix repre-
sentation, must cause the saddle-point equations to have
more than one solution. In excluding such a hidden sym-
metry for k ≥ 2, we appeal to the results of numerical
diagonalizations. Although done for matrices of small
dimensions, such calculations should have revealed the
existence of a symmetry.

EGUE(1) illustrates some of our arguments and con-
clusions very nicely. We compare three ensembles. (i)
For EGUE(1) the average spectrum is (nearly) Gaussian
and the eigenvalues have Poisson statistics. (ii) For an
ensemble with the same scaffolding matrix as EGUE(1),
but with uncorrelated Gaussian-distributed random vari-
ables, we have shown above that ρ(E) is semicircular and
that the eigenvalues obey Wigner-Dyson statistics. (iii)
By randomly redistributing the single-particle matrix el-

ements vj
j′ over the scaffolding matrix of EGUE(1), we

destroy the symmetry but keep the correlations. For that
ensemble we expect a (nearly) Gaussian form for ρ(E)
but Wigner-Dyson statistics for the eigenvalues. That is
confirmed by numerical calculations.

Conclusions. We have constructed two random-
matrix ensembles, Hcr and Hsc, both more sparse than
EGUE(k) for all k. We have shown that Hcr mimicks
the metal-insulator transition and that Hsc possesses the
same spectral properties as the GUE. Generalizing our
proof, we have shown that the spectral fluctuations of
the embedded k-body random matrix ensemble EGUE(k)
(which for k ≪ m is endowed with a Gaussian spec-
tral shape) also coincide with those of the GUE, pro-
vided there are no hidden symmetries. We conclude that
spectra in finite many-body systems governed by few-
body interactions generically display Wigner-Dyson level
statistics. Chaos may be reduced if the degeneracy of the
single-particle states assumed in EGUE is lifted. These
conclusions hold for all three symmetry classes (orthogo-
nal, unitary, symplectic). The analytical results were ob-
tained by an extension of the supersymmetry approach
that might be useful also in other applications.
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