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Controlled-NOT logic with nonresonant Josephson phase qubits
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We establish theoretical bounds on qubit detuning for high fidelity controlled-NOT logic gate
implementations with weakly coupled Josephson phase qubits. It is found that the value of qubit
detuning during the entangling pulses must not exceed 2g for two-step, and g for single-step control
sequences, where g is the relevant coupling constant.
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I. INTRODUCTION

In our previous work on steering with Josephson phase
qubits [1] we found two peculiar single-step controlled-
NOT (CNOT) implementations involving off-resonance
qubits detuned by the amount smaller than the char-
acteristic coupling constant. Does the detuning always
have to be so small? What happens if it gets larger?

These questions seem to be important on several
counts.

Firstly, the majority of entangling gate designs pro-
posed in the literature assume resonant qubits [2, 3, 4,
5, 6, 7, 8, 9]. (However, see Refs. [10, 11] for notable
exceptions.) This is hardly surprising since in the rotat-
ing wave approximation (RWA) typically used to analyze
superconducting qubits the resonant condition leads to
relatively simple and easily solvable Hamiltonians con-
taining no local σz

k terms. This works well when the sys-
tem consists of only two qubits. However, it is reason-
able to expect that when thousands of such qubits are
assembled into an integrated circuit, maintaining them
on resonance will become a difficult task. How then can
we be sure that an architecture involving detuned qubits
is able to reliably generate universal gates, such as, for
example, a CNOT gate?

Secondly, some qubits may be fabricated with various
defects preventing them from being tuned to resonance
exactly. Would they still be usable? And what if for some
applications it becomes advantageous (or even necessary)
to use qubits with intrinsically different level splittings?

Thirdly, we should also keep in mind that detuning is
routinely used in actual experiments to “decouple” the
qubits in order to perform local (that is, nonentangling)
operations [2, 12, 13, 14]. It would be useful if, after such
decoupling is performed, we do not have to worry about
bringing the qubits back to exact resonance when doing
subsequent entangling operations.

Additionally, from the purely theoretical viewpoint,
decoupling provides a useful limit against which to check
our calculations. If at larger detuning the interaction is
expected to lose its entangling properties, we must be
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able to predict a crossover into the regime when the gate
fidelity (of the CNOT, in our case) starts to deteriorate.
Thus, the primary goal of this paper will be to establish
the exact conditions under which such crossover occurs
for previously proposed CNOT implementations involv-
ing superconducting qubits.

The paper is organized as follows:

In Section III we introduce the Hamiltonian for capac-
itively and inductively coupled Josephson phase qubits.
Since there is an infinite number of possible local drives
and rotating frames to choose from, it will be necessary
to limit our discussion to situations that are simple and
yet powerful enough to provide some new and interest-
ing physical insights. Our specific choices for Rabi pulses
and rotating frames will be made in Eqs. (3), (4), and
(6) of that Section.

In Section IV we generalize to finite detuning the fa-
miliar two-step CNOT sequence involving a local π-pulse
sandwiched between two entanling operations. The ex-
act bound on detuning that guarantees generation of the
perfect (in the RWA) controlled-NOT logic gate will then
be given in Eq. (21).

In Section V we numerically solve the single-step case.
We will see that in that case the restriction on detuning
for perfect CNOT generation is somewhat stronger than
in the two-step case (Eq. (27)).

In Section VI we present optimal results for approx-
imate CNOT gates at detuning larger than maximally
allowed. We will see how the Makhlin invariants and
fidelity of the optimized gates deviate from their ideal
CNOT values. We will also simulate the Weyl cham-
ber steering trajectories corresponding to such optimized
gates.

We conclude in Section VII with a brief summary of
our results.

http://arXiv.org/abs/0901.0001v1
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II. NOTATION

In what follows, we will use the notation that is con-
venient for Lie algebraic manipulations,

Xk =
i

2
σx

k , Yk =
i

2
σy

k , Zk =
i

2
σz

k, (k = 1, 2),

XX =
i

2
σx

2σx
1 , Y Y =

i

2
σy

2σy
1 , ZZ =

i

2
σz

2σz
1 ,

XY =
i

2
σx

2σy
1 , Y X =

i

2
σy

2σx
1 . (1)

Notice, that [XX, Y Y ] = [XY, Y X ] = 0, and ZZ com-
mutes with each of the XX , Y Y , XY , Y X operators.

Why is this notation convenient?
Consider the following transformation (called “going

to a rotated frame”) on the Lie algebra su(4) of the two-
qubit system:

XX −→ e−θZ1XXeθZ1 = XX cos θ + XY sin θ. (2)

This transformation can be nicely interpreted as a rota-
tion of vector XX by an angle θ in the real vector space
spanned by the generators of the group SU(4). This is
how the continuous group acts on its Lie algebra. Math-
ematicians call it the adjoint representation. The alge-
bra plays the role of the representation space for its own
group.

Since we do work at the level of algebra, and not at
the level of the Hilbert space when discussing equivalence
classes of gates, this is a very convenient notation. It sim-
plifies things. Also notice how naturally the periodicity
of 2π appears at this level of description.

Now, if we were to write the same transformation in
terms of the Pauli matrices, we would have to remember
to put in the imaginary unit i and the factors of 1/2 in
the exponents on the left hand side of Eq. (2),

e−iθσ1
z
/2(σx

2 σx
1 )eiθσ1

z
/2 = (σx

2σx
1 ) cos θ + (σx

2σy
1 ) sin θ,

breaking its beautiful symmetry.

III. THE HAMILTONIAN

When restricted to the computational subspace, the
Hamiltonian for two coupled Josephson phase qubits, one
of which is driven by a resonant rf pulse, is given by

iH(t) = −ωZ1 − (ω + δ)Z2

+2Ω1 cos (ωt)X1 + 2(gY Y + g̃ZZ), (3)

where g, g̃ ≪ ω are the coupling constants, ω is the level
splitting of the first qubit, |δ| ≪ ω is the detuning, and
Ω1 is the corresponding Rabi frequency. Here we assume
that g ≃ Ω1, which differs from the condition g ≪ Ω1 ≪
ω adopted in Ref. [10]. For realistic systems, ω ≈ 10
GHz, g ≈ 10 MHz. For capacitive coupling, g̃ = 0; for
inductive coupling, g̃ . 0.1g.

In the doubly rotating frame defined by
eiH0t(. . . )e−iH0t, with iH0 ≡ −ω(Z1 + Z2), after
averaging over fast oscillations, the system Hamiltonian
is time-independent,

iHRWA = −δZ2 + Ω1X1 + iH + g̃ZZ, (4)

with

iH = g(XX + Y Y ) = ig







0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0






. (5)

Alternatively, to perform a useful consistency
check, we consider another rotating frame defined by

eiĤ0t(. . . )e−iĤ0t, with iĤ0 = −ωZ1 − (ω + δ)Z2. In this
frame, the RWA Hamiltonian is

iĤRWA(t) = Ω1X1 + iĤ(t) + g̃ZZ, (6)

where now we have a slowly varying interaction term
given by

iĤ(t) = g [(XX + Y Y ) cos(δt) + (Y X − XY ) sin(δt)]

= ig









0 0 0 0
0 0 e−iδt 0
0 e+iδt 0 0
0 0 0 0









. (7)

The central block of this matrix has the form of a rotat-
ing drive for a spin-1/2 system for which the analytical
solution is well known [19]. This observation will prove
helpful for calculations in Section IV.

We will now show how these two RWA Hamiltonians
lead to locally equivalent CNOT implementations.

IV. TWO-STEP CNOT

The well-known two-step CNOT implementation for
resonant (δ = 0) qubits has control sequence [15, 16]

CNOT(2) = ei(π/4)Rpost

[

U(t(2))e
−πX1U(t(2))

]

Rpre, (8)

with t(2) = π/4g, where

U(t(2)) = e−t(2)(g(XX+Y Y )+g̃ZZ)

= e−(πg̃/4g)ZZ









1 0 0 0

0 1/
√

2 −i/
√

2 0

0 −i/
√

2 1/
√

2 0
0 0 0 1









, (9)

and Rpost,pre are some local rotations. We will choose

Rpost = e−(π/2)Y2 , Rpre = e−(π/2)Z2e+(π/2)(X2+X1).
(10)

Of particular importance to us is the entangling part
U(t)e−πX1U(t) that determines the local equivalence
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class of the full gate. In our case the local class is
controlled-NOT whose canonical representative in the
computational basis is defined to be

CNOT ≡







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






∈ U(4), det(CNOT) = −1.

(11)
We ask the following question: If |δ| > 0 (detuned

qubits), can we still use the sequence in Eq. (8) to gener-
ate a CNOT gate, possibly with different gate time and
different pre- and post-rotations? The answer to this
question turns out to be “Yes”, provided δ is restricted
in a certain way.

Setting Ω1 = 0 in Eqs. (4) and (6) gives the time
evolution operator

U(t) = e−tg̃ZZ









eiδt/2 0 0 0
0 u −iv 0
0 −iv u∗ 0
0 0 0 e−iδt/2









(12)

in frame 1, and

Û(t) = e−tg̃ZZ









1 0 0 0
0 ue−iδt/2 −ive−iδt/2 0
0 −iveiδt/2 u∗eiδt/2 0
0 0 0 1









(13)

in frame 2, where

u = cos

(

√

δ2 + 4g2

2
t

)

+
iδ

√

δ2 + 4g2
sin

(

√

δ2 + 4g2

2
t

)

,

(14)

v =
2g

√

δ2 + 4g2
sin

(

√

δ2 + 4g2

2
t

)

. (15)

In both frames the Makhlin invariants [17] of
U(t)e−πX1U(t) are

G1 =









δ2 + 8g2 cos2
(√

δ2+4g2

2 t

)

− 4g2

δ2 + 4g2









2

, (16)

and

G2 = (3δ4 + 8δ2g2
[

1 + 2 cos(t
√

δ2 + 4g2)
]

+16g4
[

2 + cos(2t
√

δ2 + 4g2)
]

)/
(

δ2 + 4g2
)2

,

(17)

and are independent of the ZZ coupling. This shows that
for any t the resulting gates are represented by the same
point on the (XX, Y Y )-plane of the Weyl chamber (see
[1, 16] for discussion). Since CNOT class corresponds to
G1 = 0, G2 = 1, we get

t(2) =
π − arccos

(

δ2/4g2
)

√

δ2 + 4g2
, (18)

with the limit t(2) → π/4g trivially recovered for vanish-
ing detuning.

For example, for g̃ = 0, δ = 1.00g, we get t(2) =
1.0383π/4g. The corresponding CNOT gate is given by
Eq. (8), where now

U(t(2)) =







0.9180 + 0.3965i 0 0 0
0 0.6124 + 0.3536i −0.7071i 0
0 −0.7071i 0.6124 − 0.3536i 0
0 0 0 0.9180− 0.3965i






,

Rpost = e−(π/2)Y2e−(π/2)(α2Z2+α1Z1), Rpre = e−(π/2)((1+α2)Z2+α1Z1)e+(π/2)(X2+X1), (19)

with α2 = 0.5929, α1 = 0.2596 in frame 1, and

Û(t(2)) =







1 0 0 0
0 0.7024 + 0.0817i −0.2804− 0.6491i 0
0 0.2804− 0.6491i 0.7024− 0.0817i 0
0 0 0 1






,

Rpost = e−(π/2)Y2e−(π/2)β̃Z2 ,

Rpre = e−(π/2)(1+β)Z2e+(π/2)(X2+X1), (20)

with β̃ = −0.1858, β = 0.3333 in frame 2. Here, the
pre- and post-rotations (cf. Eq. (10)) needed to generate

the perfect in the rotating wave approximation canon-
ical controlled-NOT gate have been found numerically.
Notice that the two-step control sequence works only for

|δ| ≤ 2g ≪ ω. (21)

V. SINGLE-STEP CNOT

Here, for simplicity, we limit our discussion to the RWA
Hamiltonian given in Eq. (4) with g̃ = 0 (capacitive
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coupling). [In this case, a single Rabi term suffices to
implement a CNOT gate. When g̃ 6= 0, an additional
local Rabi drive ∼ Ω2X2 must be applied to the second
qubit.] The CNOT sequence [1, 18] is then

CNOT(1) = ei(5π/4)RpostU(t(1))Rpre, (22)

where t(1) = π/2g, Ω1 = g
√

(4n)2 − 1, n = 1, 2, 3, . . . ,

U(t(1)) = e−t(1)[Ω1X1+g(XX+Y Y )]

=
(−1)n

√
2







1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1






, (23)

and

Rpost = e−(π/2)Y2 , Rpre = e−(π/2)Z2e+(π/2)(X2−X1).
(24)

In order to generalize this single-step implementation to
finite detuning, we optimize the gate parameters t(1) and
Ω1 of

U(t(1)) = e−t(1)[−δZ2+Ω1X1+g(XX+Y Y )] (25)

using Nelder-Mead simplex direct search with bound con-
straints for the minimum of the distance from the CNOT
class defined by

d2(Ω1, t(1)) := |G1(Ω1, t(1)) − G1(CNOT)|2

+|G2(Ω1, t(1)) − G2(CNOT)|2, (26)

with G1,2(Ω1, t(1)) being the Makhlin invariants of
U(t(1)). It is important to keep in mind that the dis-
tance function introduced in Eq. (26) is not a measure
of the gate fidelity. Infinitely many gates — all differing
from each other by arbitrary local rotations — may have
the same value of d2(Ω1, t(1)). Once the entangling part

U(t(1)) is found to have d2(Ω1, t(1)) = 0, it can then be
made into the canonical CNOT gate by additional local
rotations.

Actual experiments motivate this choice of the distance
function. It is generally believed that doing local rota-
tions is easy, but performing entanglement is difficult.
Thus, if by using experimentally available interaction and
the local controls we can somehow steer the system into
the “right” equivalence class, then making the actual tar-
get gate will be relatively straightforward.

Performing the optimization we find that in order to
generate the exact CNOT in the single-step case the de-
tuning must be restricted by

|δ| ≤ g ≪ ω. (27)

For example, for maximally allowed δ = g, we get
t(1) = 1.2753π/2g, Ω1 = 3.7781g. The resulting gate
is given by Eq. (22) with

U(t(1)) =







−0.2553− 0.4300i 0.4821− 0.1324i −0.4821 + 0.1324i 0.5001i
0.4821− 0.1324i −0.0001 + 0.5001i 0.5001i 0.4821 + 0.1324i
−0.4821 + 0.1324i 0.5001i −0.0001− 0.5001i 0.4821 + 0.1324i

0.5001i 0.4821 + 0.1324i 0.4821 + 0.1324i −0.2553 + 0.4300i






,

Rpost = e−(π/2)Y2e−(π/2)(α2Z2+α1Z1), Rpre = e−(π/2)((1+α2)Z2+α1Z1)e+(π/2)(X2−(1+γ1)X1), (28)

where α2 = 0.8294, α1 = −0.1705, γ1 = −0.9998.
To visualize how this gate is reached in the course

of the unitary evolution we simulate the Weyl chamber
steering trajectory ~c(t) = (c1(t), c2(t), c3(t)) for the above
mentioned values of the gate parameters. The goal here
is to establish a correspondence [16],

U(t) ∼ e−c1(t)XX−c2(t)Y Y −c3(t)ZZ , (29)

between the physical gate U(t) and the unphysical ma-
trix exponential that formally resides in the same local
equivalence class as U(t). The time-dependent vector ~c(t)
then represents the dynamically generated class at every
moment of system’s evolution. Figures 1 and 2 show how
the CNOT class that has ~c = (π/2, 0, 0) is generated in
our single-step example with δ = g.

For other values of qubit detuning, the gate parameters
required to implement perfect two-step and single-step
CNOT logic are listed in Table I.

VI. WHAT HAPPENS AT LARGER

DETUNING?

When detuning exceeds the limits set in Eqs. (21) and
(27), our implementations begin to deviate from their
perfect controlled-NOT form. To visualize how that hap-
pens, we again search for the gate parameters that pro-
duce the gates that belong to the local equivalence classes
closest to CNOT in the sense of the distance function de-
fined in Eq. (26). The corresponding results for single-
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FIG. 1: Time dependence of c1 (top curve) and c2 (bot-
tom curve) for single-step CNOT implementation with capac-
itively coupled Josephson phase qubits at maximal detuning,
δ = g. Here, c3 = 0 at all times. Dashed curves represent the
resonant case, δ = 0.
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FIG. 2: Single-step steering trajectory corresponding to Fig.
1 that generates CNOT class at maximal detuning, δ = g.
The steering parameters are given in units of π/2. Dashed
curve is for δ = 0.

step implementation are given in Table II.

Figures 3 and 4 show the simulated single-step steering
trajectory generated by the RWA Hamiltonian given in
Eqs. (4) and (25) at δ = 1.5g. Direct search for local

TABLE I: Generation of ideal controlled-NOT logic (G1 = 0,
G2 = 1) using capacitively coupled Josephson phase qubits at
finite detuning. In the two-step case, |δ| ≤ 2g ≪ ω, Ω1 = 0,
and t(2) = (π/4g)T(2), as given in Eq. (18). In the single-step

case, |δ| ≤ g ≪ ω. The optimal values of Ω1 ≈ g
√

15 and
t(1) = (π/2g)T(1) have been found numerically using Nelder-
Mead simplex direct search with bound constraints.

|δ|/g T(2) T(1) Ω1/g
0.00 1.0000 1.0000 3.8730
0.10 1.0003 1.0009 3.8724
0.20 1.0014 1.0037 3.8707
0.30 1.0031 1.0085 3.8679
0.40 1.0056 1.0155 3.8638
0.50 1.0088 1.0253 3.8583
0.60 1.0128 1.0386 3.8513
0.70 1.0177 1.0568 3.8422
0.80 1.0235 1.0827 3.8303
0.90 1.0303 1.1245 3.8132
1.00 1.0383 1.2753 3.7781
1.10 1.0476
1.20 1.0585
1.30 1.0713
1.40 1.0863
1.50 1.1042
1.60 1.1261
1.70 1.1536
1.80 1.1901
1.90 1.2445
2.00 1.4142

TABLE II: Optimized values of the gate parameters for the
gates closest to the single-step CNOT in the sense of Eq. (26)
at |δ| ≥ g. Here, t(1) = (π/2g)T(1). Notice how the Makhlin
invariants deviate from their ideal CNOT values for larger δ.

|δ|/g T(1) Ω1/g G1 G2

1.00 1.2753 3.7781 0.0000 1.0000
1.10 1.2330 3.7470 0.0030 0.9994
1.20 1.1945 3.7323 0.0106 0.9978
1.30 1.1590 3.7250 0.0214 0.9955
1.40 1.1262 3.7203 0.0340 0.9927
1.50 1.0961 3.7152 0.0476 0.9898
1.60 1.0686 3.7074 0.0614 0.9867
1.70 1.0438 3.6952 0.0749 0.9837
1.80 1.0216 3.6772 0.0879 0.9808
1.90 1.0019 3.6519 0.1003 0.9780
2.00 0.9849 3.6179 0.1118 0.9754

pulses (not shown) results in the optimized gate,

Uopt =







0.9866 −0.1122i 0.0258i 0.1158
−0.1122i 0.9866 −0.1158 −0.0258i
−0.1186 0.0009i 0.1122i 0.9866
−0.0009i 0.1186 0.9866 0.1122i






,

(30)
whose intrinsic fidelity with respect to the canonical
controlled-NOT gate is

F ≡
√

1 − tr [(Uopt − CNOT) † (Uopt − CNOT)]

= 0.9448. (31)

VII. CONCLUSION

In summary, we have demonstrated that the CNOT
pulse sequences previously proposed for resonant Joseph-
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FIG. 3: Time dependence of c1 (top curve) and c2 (bot-
tom curve) for single-step implementation generating the class
closest to CNOT in terms of Eq. (26) at δ = 1.5g. Here,
c3 = 0 at all times. Dashed curves represent the resonant
case. Time is measured in units of π/2g. The closest class is
reached at t(1) = 1.0961.
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FIG. 4: Single-step steering trajectory corresponding to Fig.
3 at detuning δ = 1.5g. The steering parameters are given in
units of π/2. Dashed curve is for δ = 0.

son phase qubits may still be used at finite detuning. To
achieve high fidelity of the resulting gate the value of the
detuning during the entangling operations should not be
greater than 2g in the two-step implementation and g in
the single-step implementation, respectively.
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