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Abstract

We analyze a generalization of the sine-Gordon equation in laboratory coordinates
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boundary value problems for integrable PDEs, we show that the solution u(x, t) can
be constructed from the initial and boundary values via the solution of a 2×2-matrix
Riemann-Hilbert problem.
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1 Introduction

We consider the following integrable generalization of the sine-Gordon equation:

uxx − utt = (1 + ν(∂x + ∂t)2) sinu(x, t), x, t ∈ R, (1.1)

where u(x, t) is a real-valued function and ν ∈ R is a parameter—note that (1.1) reduces
to the sine-Gordon equation in laboratory coordinates when ν = 0. In terms of the
‘light-cone’ coordinates (ξ, η) defined by

x = ξ + η, t = ξ − η, (1.2)

equation (1.1) takes the form

uξη = (1 + ν∂2
ξ ) sin(u), ξ, η ∈ R. (1.3)

Equation (1.3) was derived using bi-Hamiltonian methods in Fokas (1995). It is related
to the sine-Gordon equation in the same way that the Camassa-Holm equation is related
to the KdV equation.

We will in this paper assume that ν < 0 and for simplicity set ν = −1. For this
value of ν, equation (1.3) appeared in Sakovich and Sakovich (2007), where it was shown
to be related, via certain transformations, to an integrable equation which describes
pseudospherical surfaces introduced in Rabelo (1989). The inverse scattering transform
(IST) formalism on the line for equation (1.3) with ν = −1 was implemented in Lenells
and Fokas (2009).

A method for the analysis of initial-boundary value (IBV) problems for nonlinear
integrable PDEs was announced in Fokas (1997) and subsequently developed further by
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Figure 1 The half-line domain Ω with respect to the laboratory and light-cone coordi-
nates.

several authors, see Fokas (2008). Here, we use this method to study equation (1.1) in
the half-line domain

Ω = {(x, t) | 0 ≤ x <∞, 0 ≤ t ≤ T},

where T ≤ ∞ is a given final time, see Figure 1. Given initial values at x = 0 and
boundary values at t = 0 such that the corresponding IBV problem for (1.1) in the domain
Ω has a solution u(x, t), we show that u(x, t) can be constructed via the solution of a
2×2-matrix Riemann-Hilbert (RH) problem. The main notable features as compared with
other similar applications of the methodology of Fokas (1997) are: (1) The formulation
of the RH problem suggested by Fokas (1997) depends, in addition to the variables (x, t),
on a function p(x, t) which is unknown from the point of view of the inverse problem. In
order to formulate a RH problem whose jump matrix involves only known quantities, we
have to reparametrize the x and t variables. A similar situation occurs in the analysis of
the half-line problem for the Camassa-Holm equation, where however only the x-variable
has to be reparametrized, see Boutet de Monvel and Shepelsky (2008). (2) Only certain
combinations of u and its derivatives can be recovered from the RH problem. Therefore,
in addition to solving the RH problem, the reconstruction of u(x, t) involves finding the
solution of a nonlinear ODE. Following the ideas of Lenells and Fokas (2009) we show that
this ODE can be reduced to a Ricatti equation. (3) The adopted Lax pair for equation
(1.1) has singularities at λ =∞ and λ = 0, where λ ∈ Ĉ = C∪{∞} denotes the spectral
parameter. In order to define eigenfunctions which are bounded on the whole Riemann
λ-sphere, we will use two different representations of the Lax pair. These representations
are suitable for the definition of eigenfunctions which are bounded near λ =∞ and λ = 0,
respectively.

The analogous problem for the sine-Gordon equation on the half-line (i.e. for the
equation obtained from (1.1) by letting ν = 0) was investigated in Fokas (2004, 2008);
Fokas and Its (1992). We emphasize that although there exists (when ν < 0) a Liouville
type transformation relating equation (1.1) to the sine-Gordon equation (see Sakovich
and Sakovich (2007); Lenells and Fokas (2009)), the half-line problems for these two
equations are not equivalent, since the Liouville transformation transformation distorts
the shape of the domain Ω.

In section 2 we introduce a Lax pair for equation (1.1) and define bounded and analytic
eigenfunctions which are suitable for the formulation of a RH problem. The jump matrix
of this RH problem can be expressed in terms of certain spectral functions, which are
introduced in section 3. Finally, the main result is stated in section 4.
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2 Bounded and analytic eigenfunctions

The Riemann-Hilbert formalism for integrating a nonlinear evolution equation is based
on the construction of eigenfunctions of the associated Lax pair. These eigenfunctions
are joined together to a bounded and sectionally analytic function on the Riemann sphere
of the spectral parameter λ ∈ Ĉ = C ∪ {∞}. A Lax pair suitable for the construction
of eigenfunctions which are bounded near λ = ∞ was derived in Lenells and Fokas
(2009). For the problem on the line, this Lax pair representation alone was sufficient
for the formulation of a RH problem, since the eigenfunctions can be constructed using
only the x-part of the Lax pair. For the problem on the half-line, the construction
of eigenfunctions involves also the t-part of the Lax pair, which has a singularity at
λ = 0. We will therefore introduce another representation of the Lax pair suitable for the
construction of eigenfunctions which are bounded near λ = 0. Then, according to the
methodology of Fokas (1997), we will define solutions of these Lax pair representations by
integration from three different corners of the spatial domain Ω. The eigenfunctions which
are bounded near λ = 0 and λ = ∞ will be denoted by {µj}31 and {Φj}31, respectively.
Together the µj ’s and the Φj ’s can be used to formulate a 2× 2-matrix Riemann-Hilbert
problem.

2.1 Lax pair representations

Let

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and define m(x, t) by
m(x, t) = 1 + (ux(x, t) + ut(x, t))2. (2.1)

Applying the change of variables (1.2) to the Lax pair of equation (1.3) derived in Lenells
and Fokas (2009), we find the following Lax pair for equation (1.1):{

φx + i
(
λpx − 1

8λ

)
σ3φ = W+φ,

φt + i
(
λpt + 1

8λ

)
σ3φ = W−φ,

(2.2)

where φ(x, t, λ) is a 2 × 2-matrix valued eigenfunction, λ ∈ Ĉ = C ∪ {∞} is a spectral
parameter, the functions W±(x, t, λ) are defined by

W± =∓ i

8λ
σ3 ± i

cos(u)− (ut + ux) sin(u)
8
√
mλ

σ3 ± i
(ut + ux) cos(u) + sin(u)

8
√
mλ

σ2 (2.3)

+
i(1 + cosu)(m(ut + ux)(1− cosu)−m sin(u) + 2uxx + 2uxt)

4(1± cosu)m
σ1.

and p(x, t) is a real-valued function such that

px =
1
2

(1− cosu)
√
m, pt =

1
2

(1 + cosu)
√
m. (2.4)

The equations in (2.4) are compatible since equation (1.1) admits the conservation law(
(1− cosu)

√
m
)
t

=
(
(1 + cosu)

√
m
)
x
. (2.5)

We choose p(x, t) so that p(0, 0) = 0, i.e.

p(x, t) =
1
2

∫ (x,t)

(0,0)

[
(1− cosu)

√
mdx′ + (1 + cosu)

√
mdt′

]
. (2.6)
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Note that the function W− does not have singularities at points where cosu = 1 vanishes
despite the form of the denominator of (2.3). Indeed, using equation (1.1), the last term
on the right-hand of (2.3) can be rewritten as

i(1∓ cosu)
m(ut + ux) + utt + 2utx + uxx

4m
σ1,

and this expression is manifestly nonsingular.
The functions W± have the following properties:

• W±(x, t, λ)→ 0, x→∞,

• W±(x, t, λ) =
(
O(1/λ) O(1)
O(1) O(1/λ)

)
, λ→∞,

• tr(W±(x, t, λ)) = 0,

• W †±(x, t, λ̄) = −W±(x, t, λ),

where A† denotes the complex-conjugate transpose of a matrix A. The last two of these
properties ensure that the eigenfunction φ(x, t, λ) can be normalized so that

det(φ(x, t, λ)) = 1, φ†(x, t, λ̄) = φ−1(x, t, λ). (2.7)

The Lax pair (2.2) is convenient for the definition of eigenfunctions which are bounded
near λ = ∞. In order to define eigenfunctions which are bounded near λ = 0, we
transform the Lax pair as follows. The gauge transformation

φ(x, t, λ) = g(x, t)ψ(x, t, λ), (2.8)

where

g(x, t) =
1√

2(ux + ut)

√
1 +

1√
m

[(
(
√
m− 1) cos(u/2) + (ux + ut) sin(u/2)

)
I (2.9)

+ i
(
−(ux + ut) cos(u/2) + (

√
m− 1) sin(u/2)

)
σ1

]
,

transforms (2.2) into {
ψx + i

8λσ3ψ = V1ψ,

ψt − i
(
λ+ 1

8λ

)
σ3ψ = V2ψ,

(2.10)

where Vj = Vj(x, t, λ), j = 1, 2, are defined by

V1 =i sin2(u/2)(cos(u)− (ut + ux) sinu)λσ3

− i sin2(u/2)((ut + ux) cos(u) + sinu)λσ2

− i

4
(sin(u)− ut(1− cosu) + ux(1 + cosu))σ1, (2.11)

V2 =
i

4
(−3 + 2 cos(u) + cos(2u)− (ut + ux)(2 sin(u) + sin(2u)))λσ3

− i cos2(u/2)((ut + ux) cos(u) + sinu)λσ2

+
i

4
(sin(u)− ut(1− cosu) + ux(1 + cosu))σ1.
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Figure 2 The contours of integration for the solutions µ1, µ2, and µ3 of (2.15).

The form (2.9) of g is motivated by the fact that it diagonalizes the terms of highest
order as λ→ 0 of the Lax pair (2.2) and that it satisfies

det(g(x, t)) = 1, g†(x, t) = g−1(x, t). (2.12)

The relations (2.12) ensure that the gauge transformation (2.8) preserves the properties
in (2.7), i.e.

det(ψ(x, t, λ)) = 1, ψ†(x, t, λ̄) = ψ−1(x, t, λ). (2.13)

The function g(x, t) is nonsingular as ux+ut → 0 despite the form of the right-hand side
of (2.9). In fact,

g(x, t)→
(

sinu/2 −i cosu/2
−i cosu/2 sinu/2

)
as ux + ut → 0.

The functions V1 and V2 have the following properties:

• Vj(x, t, λ)→ 0, x→∞, j = 1, 2,

• Vj(x, t, λ) =
(
O(λ) O(1)
O(1) O(λ)

)
, λ→ 0, j = 1, 2,

• tr(Vj(x, t, λ)) = 0, j = 1, 2,

• V †j (x, t, λ̄) = −Vj(x, t, λ), j = 1, 2.

2.2 Eigenfunctions bounded near λ = 0

In this subsection we define solutions of (2.10) which are well-behaved near λ = 0.
Introducing an eigenfunction µ by

ψ = µe−i(
x
8λ−(λ+ 1

8λ )t)σ3 , (2.14)

we find that the Lax pair (2.10) becomes{
µx + i

8λ [σ3, µ] = V1µ,

µt − i
(
λ+ 1

8λ

)
[σ3, µ] = V2µ.

(2.15)

This can be written in differential form as

d
(
ei(

x
8λ−(λ+ 1

8λ )t)σ̂3µ
)

= W, (2.16)

where σ̂3 acts on a 2× 2 matrix A by σ̂3A = [σ3, A], and the closed one-form W (x, t, λ)
is defined by

W = ei(
x
8λ−(λ+ 1

8λ )t)σ̂3(V1dx+ V2dt)µ. (2.17)
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Figure 3 The sets {Dj}41 in the complex λ-plane.

We define three eigenfunctions {µj}31 of (2.16) by

µj(x, t, λ) = I +
∫ (x,t)

(xj ,tj)

e−i(
x
8λ−(λ+ 1

8λ )t)σ̂3W (x′, t′, λ), (2.18)

where (x1, t1) = (0, T ), (x2, t2) = (0, 0), and (x3, t3) = (∞, t). Since the one-form
W is exact, the integral on the right-hand side of (2.18) is independent of the path of
integration. We choose the particular contours shown in Figure 2. This choice implies
the following relations on the contours:

(x1, t1)→ (x, t) : x′ − x ≤ 0, t′ − t ≥ 0,
(x2, t2)→ (x, t) : x′ − x ≤ 0, t′ − t ≤ 0, (2.19)
(x3, t3)→ (x, t) : x′ − x ≥ 0, t′ − t = 0.

Letting

D1 =
{
λ ∈ Ĉ

∣∣∣∣Im 1
8λ

> 0 and Im
(
λ+

1
8λ

)
< 0
}
,

D2 =
{
λ ∈ Ĉ

∣∣∣∣Im 1
8λ

> 0 and Im
(
λ+

1
8λ

)
> 0
}
, (2.20)

D3 =
{
λ ∈ Ĉ

∣∣∣∣Im 1
8λ

< 0 and Im
(
λ+

1
8λ

)
< 0
}
,

D4 =
{
λ ∈ Ĉ

∣∣∣∣Im 1
8λ

< 0 and Im
(
λ+

1
8λ

)
> 0
}
,

the second column vectors of µ1, µ2, µ3 are analytic for λ ∈ Ĉ such that λ belongs to D3,
D4, and D1 ∪D2, respectively, see Figure 3. Moreover, away from λ =∞ where the Lax
pair is singular, they have continuous and bounded extensions to the closures of these
sets. We will denote these vectors with the superscripts (3), (4), and (12) to indicate
these boundedness properties. Similar conditions are valid for the first column vectors.
We obtain

µ1 =
(
µ

(2)
1 , µ

(3)
1

)
, µ2 =

(
µ

(1)
2 , µ

(4)
2

)
, µ3 =

(
µ

(34)
3 , µ

(12)
3

)
.

The µj ’s satisfy

det(µj(x, t, λ)) = 1, µj(x, t, λ̄)† = µj(x, t, λ)−1, j = 1, 2, 3. (2.21)
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Moreover, as λ→ 0,(
µ

(2)
1 (x, t, λ), µ(12)

3 (x, t, λ)
)

= I +O(λ), λ→ 0, λ ∈ D2, (2.22)(
µ

(34)
3 (x, t, λ), µ(3)

1 (x, t, λ)
)

= I +O(λ), λ→ 0, λ ∈ D3.

The µj ’s are suitable for the formulation of a RH problem except that they have singu-
larities at λ =∞. Our strategy is therefore to cut out a neighborhood of λ =∞ and use
the Lax pair (2.2) to define eigenfunctions which are bounded in this neighborhood.

2.3 Eigenfunctions bounded near λ =∞
The form of the Lax pair (2.2) is convenient for the definition of eigenfunctions which
are well-behaved near λ =∞. Introducing an eigenfunction Φ by

φ = Φe−i(λp+
t−x
8λ )σ3 , (2.23)

we find that the Lax pair (2.2) becomes{
Φx + i

(
λpx − 1

8λ

)
[σ3,Φ] = W+Φ,

Φt + i
(
λpt + 1

8λ

)
[σ3,Φ] = W−Φ.

(2.24)

This can be written in differential form as

d
(
ei(λp+

t−x
8λ )σ̂3Φ

)
= W∞, (2.25)

where the closed one-form W∞(x, t, λ) is defined by

W∞ = ei(λp+
t−x
8λ )σ̂3(W+dx+W−dt)Φ. (2.26)

We define two eigenfunctions Φ2 and Φ3 of (2.25) by

Φj(x, t, λ) = I +
∫ (x,t)

(xj ,tj)

e−i(λp(x,t)+
t−x
8λ )σ̂3W∞(x′, t′, λ), (2.27)

where (x2, t2) = (0, 0) and (x3, t3) = (∞, t). The functions Φ2 and Φ3 are the analogs
of µ2 and µ3 defined in (2.18); the analog of µ1 is not needed since we only consider
a neighborhood of λ = ∞. Choosing the integration contours in Figure 2, the integral
equations (2.27) defining Φ2 and Φ3 become

Φ2(x, t, λ) =I +
∫ t

0

e
i
“
λ(p(0,t′)−p(0,t))+ t′−t

8λ

”
σ̂3(V2Φ2)(0, t′, λ)dt′

+
∫ x

0

e
i
“
λ(p(x′,t)−p(x,t))− x

′−x
8λ

”
σ̂3(V1Φ2)(x′, t, λ)dx′,

Φ3(x, t, λ) =I −
∫ ∞
x

e
i
“
λ(p(x′,t)−p(x,t))− x

′−x
8λ

”
σ̂3(V1Φ3)(x′, t, λ)dx′.

The second column of the integral equation for Φ2 involves the exponentials

e
2i

“
λ(p(0,t′)−p(0,t))+ t′−t

8λ

”
and e

2i
“
λ(p(x′,t)−p(x,t))− x

′−x
8λ

”
, (2.28)

where the functions p(·, t) and p(x, ·) are nondecreasing. Define R > 0 by

R2 = sup
0≤t,t′≤T

t′ − t
4
∫ t′
t

(1 + cos(u(0, τ))
√
m(0, τ)dτ

, (2.29)
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and the sets D5 and D6 by

D5 =
{
λ ∈ Ĉ

∣∣Imλ > 0 and |λ| > R
}
, (2.30)

D6 =
{
λ ∈ Ĉ

∣∣Imλ < 0 and |λ| > R
}
.

We will henceforth assume that

cos(u(0, t)) 6= −1, 0 ≤ t ≤ T, (2.31)

so that R is finite. The relations (2.19) together with the definition of R implies the
following inequalities on the contour (x2, t2)→ (x, t):

Im
(
λ(p(0, t′)− p(0, t)) +

t′ − t
8λ

)
≥ 0 if |λ| > R, Imλ ≤ 0,

Im
(
λ(p(x′, t)− p(x, t))− x′ − x

8λ

)
≥ 0 if Imλ ≤ 0.

This implies that [Φ2]2 is bounded and analytic for λ ∈ D6. Similar considerations apply
to the other column vector and show that Φ2 and Φ3 have the boundedness properties

Φ2 =
(

Φ(5)
2 ,Φ(6)

2

)
, Φ3 =

(
Φ(6)

3 ,Φ(5)
3

)
.

The functions Φ2 and Φ3 satisfy

det(Φj(x, t, λ)) = 1, Φj(x, t, λ̄)† = Φj(x, t, λ)−1, j = 2, 3. (2.32)

Moreover, as λ→∞,(
Φ(5)

2 (x, t, λ),Φ(5)
3 (x, t, λ)

)
= I +O(1/λ), λ→∞, λ ∈ D5, (2.33)(

Φ(6)
3 (x, t, λ),Φ(6)

2 (x, t, λ)
)

= I +O(1/λ), λ→∞, λ ∈ D6.

3 Spectral functions

We define two 2× 2-matrix valued spectral functions s(λ) and S(λ) by

µ3(x, t, λ) = µ2(x, t, λ)e−i(
x
8λ−(λ+ 1

8λ )t)σ̂3s(λ), (3.1a)

µ1(x, t, λ) = µ2(x, t, λ)e−i(
x
8λ−(λ+ 1

8λ )t)σ̂3S(λ). (3.1b)

Evaluation of (3.1) at (x, t) = (0, 0) and (x, t) = (0, T ) gives the following expressions for
s(λ) and S(λ):

s(λ) = µ3(0, 0, λ), S(λ) = µ1(0, 0, λ) =
(
e−i(λ+ 1

8λ )T σ̂3µ2(0, T, λ)
)−1

. (3.2)

The function µ3(x, 0, λ) is defined by the integral equation obtained by setting t = 0 in
(2.18). This integral equation involves the function V1(x, 0, λ) defined in (2.11). Thus
s(λ) is defined in terms of the initial data u(x, 0) and ut(x, 0) alone. Similarly, µ1(0, t, λ)
is defined by the integral equation obtained by setting x = 0 in (2.18) which involves
V2(0, t, λ). Thus S(λ) is defined in terms of the boundary data u(0, t) and ux(0, t) alone.
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We infer from (2.21) that

det s(λ) = 1, detS(λ) = 1, (3.3)

and that there exist functions a(λ), b(λ), A(λ), and B(λ) such that

s(λ) =

(
a(λ̄) b(λ)
−b(λ̄) a(λ)

)
, S(λ) =

(
A(λ̄) B(λ)
−B(λ̄) A(λ)

)
.

Defining the sets D′1 and D′4 by (see Figure 5)

D′1 = D1 \ D̄6, D′4 = D4 \ D̄5, (3.4)

i.e. D′1 and D′4 denote the sets D1 and D4 with a neighborhood of λ = ∞ removed, we
can state the following result.

Proposition 3.1 The spectral functions a(λ) and b(λ) have the following properties:

(i) a(λ) and b(λ) are analytic in D1 ∪D2 with continuous and bounded extensions to
λ ∈ D̄′1 ∪ D̄′2 .

(ii) a(λ) = 1 +O(λ), b(λ) = O(λ), λ→ 0, λ ∈ D1 ∪D2.

(iii) |a(λ)|2 + |b(λ)|2 = 1, λ ∈ R.

The spectral functions A(λ) and B(λ) have the following properties:

(i) A(λ) and B(λ) are analytic in D1 ∪D3 with continuous and bounded extensions to
λ ∈ D̄′1 ∪ D̄3. If T <∞, then A(λ) and B(λ) are defined and analytic in C\{∞}.

(ii) A(λ) = 1 +O(λ), B(λ) = O(λ), λ→ 0, λ ∈ D1 ∪D3.

(iii) A(λ)A(λ̄) +B(λ)B(λ̄) = 1 for λ ∈ R ∪ {|λ|2 = 1/8} (for λ ∈ C \ {∞} if T <∞).

Proof. The properties denoted by (i) and (ii) follow from the discussion in subsection 2.2
and the observation that the definition of µ1(0, t, λ) implies that this function has the
following enlarged domain of boundedness:

µ1(0, t, λ) =
(
µ

(24)
1 (0, t, λ), µ(13)

1 (0, t, λ)
)
. (3.5)

The properties denoted by (iii) follow from (3.3). 2

We will also need the spectral function s∞(λ) defined by

Φ3(x, t, λ) = Φ2(x, t, λ)e−i(λp+
t−x
8λ )σ̂3s∞(λ). (3.6)

Evaluation of (3.6) at (x, t) = (0, 0) yields

s∞(λ) = Φ3(0, 0, λ). (3.7)

Just like s(λ), the function s∞(λ) is defined in terms of the initial data u(x, 0) and
ut(x, 0). Moreover, s∞ satisfies

det s∞(λ) = 1, (3.8)

and can be written as

s∞(λ) =

(
a∞(λ̄) b∞(λ)
−b∞(λ̄) a∞(λ)

)
.

where a∞(λ) and b∞(λ) are scalar-valued functions.

9



Proposition 3.2 The spectral functions a∞(λ) and b∞(λ) have the following properties:

(i) a∞(λ) and b∞(λ) are analytic in D5 with continuous and bounded extensions to
λ ∈ D̄5 .

(ii) a∞(λ) = 1 +O(1/λ), b∞(λ) = O(1/λ), λ→∞, λ ∈ D5.

(iii) |a∞(λ)|2 + |b∞(λ)|2 = 1, Imλ = 0, λ ∈ D̄5.

Proof. Properties (i) and (ii) follow from the discussion in subsection 2.3. Property (iii)
follows from (3.8). 2

4 The Riemann-Hilbert problem

In this section we use the eigenfunctions {µj}31 and {Φj}32 to formulate a RH problem
for a 2 × 2-matrix valued function with jump contour shown in Figure 5. We will first
formulate a RH problem for a 2 × 2-matrix valued function M̃(x, t, λ), whose form is
suggested by the methodology of Fokas (1997). However, it turns out that the jump
matrix for this RH problem depends on the function p(x, t) which occurs in the Lax pair
(2.24). The function p(x, t) is unknown from the point of view of the inverse problem,
and thus the solution is not yet effective. We will overcome this problem by introducing
new variables (y, η) and formulating a modified RH problem for a 2 × 2-matrix valued
function M(y, η, λ), whose jump condition is given explicitly in terms of y, η, and λ. The
solution u(x, t) of (1.1) can be recovered in parametric form as a function of (y, η) from
the asymptotics of M(y, η, λ). A similar reparametrization of the RH problem occurs
also in the analysis of other equations such as the Camassa-Holm equation and equation
(1.3), although in those cases only one of the variables (x, t) has to be reparametrized,
cf. Boutet de Monvel and Shepelsky (2008); Lenells and Fokas (2009).

4.1 RH problem for M̃(x, t, λ)

We seek a bounded and sectionally analytic 2×2-matrix valued function M̃(x, t, λ), which
satisfies a jump condition of the form

M̃−(x, t, λ) = M̃+(x, t, λ)J̃(x, t, λ), λ ∈ D̄+ ∩ D̄−, (4.1)

M̃ =

{
M̃+, λ ∈ D̄+,

M̃−, λ ∈ D̄−,
(4.2)

where J̃(x, t, λ) is a 2× 2-matrix valued ‘jump matrix’ and

D+ = D′1 ∪D3 ∪D5, D− = D2 ∪D′4 ∪D6.

Since the µj ’s and the Φj ’s are well-behaved near λ = 0 and λ = ∞, respectively, we
define M̃ in terms of the µj ’s in the regions D′1, D2, D3, and D′4, and in terms of Φ2

and Φ3 in the regions D5 and D6. The methodology of Fokas (1997) suggests making the
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following ansatz for M̃ :

M̃(x, t, λ) =



g

(
µ

(1)
2

a(λ) , µ
(12)
3

)
, λ ∈ D̄′1,

g

(
µ

(2)
1

d(λ) , µ
(12)
3

)
, λ ∈ D̄2,

g

(
µ

(34)
3 ,

µ
(3)
1

d(λ̄)

)
, λ ∈ D̄3,

g

(
µ

(34)
3 ,

µ
(4)
2

a(λ̄)

)
, λ ∈ D̄′4,(

Φ
(5)
2

a∞(λ) ,Φ
(5)
3

)
, λ ∈ D̄5(

Φ(6)
3 ,

Φ
(6)
2

a∞(λ̄)

)
, λ ∈ D̄6,

(4.3)

where

d(λ) = a(λ)A(λ̄) + b(λ)B(λ̄), Γ(λ) = − B(λ̄)
a(λ)d(λ)

, λ ∈ D̄2. (4.4)

The definition of M̃ in D′1∪D2∪D3∪D′4, which involves the µj ’s, includes the prefactor
g(x, t). This prefactor is suggested by the relationship (2.8) between eigenfunctions of
the Lax pairs (2.15) and (2.24), and its inclusion implies that there exists a jump matrix
J̃ such that M̃+ and M̃− are related as in (4.1). We introduce the following notation:

J̃(x, t, λ) =



J̃1 λ ∈ D̄′1 ∩ D̄2,

J̃2 = J̃3J̃
−1
4 J̃1 λ ∈ D̄2 ∩ D̄3,

J̃3 λ ∈ D̄3 ∩ D̄′4,
J̃4 λ ∈ D̄′4 ∩ D̄′1,
J̃5 λ ∈ D̄′4 ∩ D̄5,

J̃6 λ ∈ D̄5 ∩ D̄6,

J̃7 = J̃4J̃
−1
5 J̃6 λ ∈ D̄′1 ∩ D̄6.

(4.5)

The jump matrices {J̃n}71 can be determined from the various relations between the
eigenfunctions. Indeed, algebraic manipulation of the equations (3.1) leads to expressions
for the jump matrices {J̃n}41 in terms of the spectral functions s(λ) and S(λ). Similarly,
algebraic manipulation of equation (3.6) leads to an expression for the jump matrix J̃6

in terms of the spectral function s∞(λ). To find an expression for the jump matrix J̃5,
we note that the relations (2.8), (2.14), and (2.23) imply that two solutions µ and Φ of
(2.15) and (2.24), respectively, satisfy a relation of the form

g(x, t)µ(x, t, λ) = Φ(x, t, λ)e−iθ∞(x,t,λ)σ3C(λ)eiθ(x,t,λ)σ3 , (4.6)

where C(λ) is a 2×2-matrix independent of x, t and the functions θ(x, t, λ) and θ∞(x, t, λ)
are defined by

θ(x, t, λ) =
x

8λ
− (λ+

1
8λ

)t; θ∞(x, t, λ) = λp(x, t) +
t− x
8λ

. (4.7)

In the particular case of µ = µ3 and Φ = Φ2, equation (4.6) holds with C(λ) = g(0, 0)s(λ),
i.e.

g(x, t)µ3(x, t, λ) = Φ2(x, t, λ)e−iθ∞(x,t,λ)σ3g(0, 0)s(λ)eiθ(x,t,λ)σ3 . (4.8)

Equation (4.8) together with (3.1a) and (3.6) provide the required relations between the
µj ’s and the Φj ’s needed for determining J̃5. In summary, we arrive at the following

11



Figure 4 The image in the (y, η)-plane of the half-line domain Ω = {0 ≤ x < ∞, 0 ≤
t ≤ T} under the map (4.12).

expressions for the J̃n’s:

J̃1 = e−iθσ̂3J0
1 , J̃3 = e−iθσ̂3J0

3 , J̃4 = e−iθσ̂3J0
4 , (4.9)

J̃5 = e−iθ∞σ3J0
5 e
iθσ3 , J̃6 = e−iθ∞σ̂3J0

6 , (4.10)

where

J0
1 =

(
1 0

Γ(λ) 1

)
, J0

4 =

 1 − b(λ)

a(λ̄)

− b(λ̄)
a(λ)

1

a(λ)a(λ̄)

 , J0
3 =

(
1 Γ(λ̄)
0 1

)
, (4.11)

J0
5 =

(s−1
∞ (λ)g(0, 0)s(λ))11

(s−1
∞ (λ)g(0,0))12

a(λ̄)
(g(0,0)s(λ))21

a∞(λ)
g(0,0)22

a∞(λ)a(λ̄)

 , J0
6 =

 1 − b∞(λ)

a∞(λ̄)

− b∞(λ̄)
a∞(λ)

1

a∞(λ)a∞(λ̄)

 .

4.2 RH problem for M(y, η, λ)

In the previous subsection we formulated a RH problem for M̃(x, t, λ) in the Riemann
sphere of the spectral parameter λ. However, as noted above this RH problem does not
provide the solution of our initial-boundary value problem. Indeed, the jump matrices
{J̃n}75 involve θ∞. The occurence of the function p(x, t) in θ∞ implies that the RH
problem cannot be formulated in terms of the initial and boundary data alone. To
overcome this problem we make two important changes in the formulation of the RH
problem: (1) We modify the jump matrix by adding appropriate exponential factors to
the definition (4.3). (2) We introduce new variables (y, η) by

(x, t) 7→ (y, η), y = p(x, t), η =
1
2

(x− t), (4.12)

where p(x, t) was defined in (2.6). The jump matrix of the modified RH problem is
explicitly given in terms of (y, η, λ) and can thus be formulated in terms of the initial
and boundary data alone.
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Define the 2× 2-matrix valued function M(y, η, λ) by

M(y, η, λ) =



g

(
µ

(1)
2

a(λ) , µ
(12)
3

)
eiλ(y+t)σ3 , λ ∈ D̄′1,

g

(
µ

(2)
1

d(λ) , µ
(12)
3

)
eiλ(y+t)σ3 , λ ∈ D̄2,

g

(
µ

(34)
3 ,

µ
(3)
1

d(λ̄)

)
eiλ(y+t)σ3 , λ ∈ D̄3,

g

(
µ

(34)
3 ,

µ
(4)
2

a(λ̄)

)
eiλ(y+t)σ3 , λ ∈ D̄′4,(

Φ
(5)
2

a∞(λ) ,Φ
(5)
3

)
ei

η
2λσ3 , λ ∈ D̄5,(

Φ(6)
3 ,

Φ
(6)
2

a∞(λ̄)

)
ei

η
2λσ3 , λ ∈ D̄6,

(4.13)

The map (4.12) is a bijection from Ω = {0 ≤ x < ∞, 0 ≤ t ≤ T} to a subset of the
(y, η)-plane delimited by the image of ∂Ω under (4.12), see Figure 4. The image of ∂Ω
consists of three pieces given by{

(y, η) =
1
2

(∫ x

0

(1− cos(u(x′, 0)))
√
m(x′, 0)dx′, x

) ∣∣∣∣x ≥ 0
}
, (4.14){

(y, η) =
1
2

(∫ t

0

(1 + cos(u(0, t′)))
√
m(0, t′)dt′,−t

) ∣∣∣∣0 ≤ t ≤ T} , (4.15){
(y, η) =

1
2

(
p(0, T ) +

∫ x

0

(1− cos(u(x′, T )))
√
m(x′, T )dx′, x

) ∣∣∣∣x ≥ 0
}
. (4.16)

In particular, the map (4.12) is everywhere nonsingular:∣∣∣∣ ∂y∂x ∂y
∂t

∂η
∂x

∂η
∂t

∣∣∣∣ =
∣∣∣∣ 12 (1− cosu)

√
m 1

2 (1 + cosu)
√
m

1
2 − 1

2

∣∣∣∣ = −1
2
√
m < 0.

The expressions on the right-hand side of (4.13) should be understood as being evaluated
at the point (x, t) corresponding to (y, η) under (4.12).

The form of the exponential factors eiλ(y+t)σ3 and ei
η
2λσ3 on the right-hand side of

(4.13) is motivated by the fact that these exponential factors are analytic near λ = 0 and
λ =∞, respectively, and by the relations

eiλ(y+t)σ3eiθσ3 = ei(λy+ η
4λ )σ3 , ei

η
2λσ3eiθ∞σ3 = ei(λy+ η

4λ )σ3 . (4.17)

The relations (4.17) imply that M satisfies the jump conditon

M−(y, η, λ) = M+(x, t, λ)J(y, η, λ), λ ∈ D̄+ ∩ D̄−; (4.18)

M =

{
M+, λ ∈ D̄+,

M−, λ ∈ D̄−,
(4.19)

where the jump matrix J(y, η, λ) is given by

Jn(y, η, λ) = e−i(λy+ η
4λ )σ̂3J0

n(λ), n = 1, . . . , 7; (4.20)

J =



J1 λ ∈ D̄′1 ∩ D̄2,
J2 = J3J

−1
4 J1 λ ∈ D̄2 ∩ D̄3,

J3 λ ∈ D̄3 ∩ D̄′4,
J4 λ ∈ D̄′4 ∩ D̄′1,
J5 λ ∈ D̄′4 ∩ D̄5,
J6 λ ∈ D̄5 ∩ D̄6,
J7 = J4J

−1
5 J6 λ ∈ D̄′1 ∩ D̄6.
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Figure 5 The contour for the Riemann-Hilbert problem in the complex λ-plane.

We can now prove the following theorem.

Theorem 4.1 Let T ≤ ∞ and let u0(x), u1(x), 0 ≤ x ≤ ∞, and g0(t), g1(t), 0 ≤ t ≤ T ,
be given functions. Suppose that there exists a solution u(x, t) of equation (1.1) in the
domain {0 ≤ x <∞, 0 ≤ t ≤ T}, which satisfies the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 ≤ x <∞,

and the boundary conditions

u(0, t) = g0(t), ux(0, t) = g1(t), 0 ≤ t ≤ T.

Moreover, suppose that cos(u(x, t)) − 1 has sufficient smoothness and decay as x → ∞
and that cos(g0(t)) 6= −1 for 0 ≤ t ≤ T .1 Then u(x, t) can be reconstructed from the
initial and boundary values {u0(x), u1(x), g0(t), g1(t)} as follows.

Define the functions m(x, 0) and m(0, t) by

m(x, 0) = 1 + (u0x(x) + u1(x))2, m(0, t) = 1 + (g1(t) + g0t(t))2.

Define the functions p(x, 0) and p(0, t) by

p(x, 0) =
1
2

∫ x

0

(1− cos(u0(x′)))
√
m(x′, 0)dx′, 0 ≤ x <∞,

p(0, t) =
1
2

∫ t

0

(1 + cos(g0(t′)))
√
m(0, t′)dt′, 0 ≤ t ≤ T.

Define µ3(x, 0, λ) and Φ3(x, 0, λ) in terms of u0(x), u1(x), and p(x, 0) via the Volterra
linear integral equations (2.18) and (2.27) evaluated at t = 0. Define the spectral functions
a(λ), b(λ), a∞(λ), b∞(λ) by equations (3.2) and (3.7). Similarly, define µ1(x, 0, λ) in
terms of g0(t) and g1(t) via the Volterra linear integral equation (2.18) evaluated at x = 0.
Define the spectral functions A(λ), B(λ) by equation (3.2).

Let R > 0 be such that

R > sup
0≤t,t′≤T

∣∣∣∣∣ t′ − t
4
∫ t′
t

(1 + cos(g0(τ))
√
m(0, τ)dτ

∣∣∣∣∣
1/2

,

1If T =∞, we also assume that cos(u(0, t))− 1 has decay as t→∞.
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and define the sets {Dn}61 by (2.20) and (2.30). Define D′1 and D′4 by (3.4). Let

D+ = D′1 ∪D3 ∪D5, D− = D2 ∪D′4 ∪D6.

Define d(λ) and Γ(λ) by (4.4). Assume that the possible zeros {kj}N1 of a(λ) and {λj}Λ1
of d(λ) satisfy

• a(k) has N simple zeros {kj}Nj=1 such that kj ∈ D′1, j = 1, . . . , n1, and kj ∈ D2,
j = n1 + 1, . . . , N .

• d(k) has Λ simple zeros {λj}Λ1 , such that λj ∈ D2, j = 1, . . . ,Λ.

• None of the zeros of a(k) coincides with a zero of d(k).

Then the solution u(x, t) of equation (1.1) is given in parametric form in terms of
two real parameters y, η such that

η ≥ −T
2

; y ≥ p(2η, 0) for η ≥ 0; y ≥ p(0, 2|η|) for − T

2
≤ η ≤ 0, (4.21)

by

u (ξ(y, η) + η, ξ(y, η)− η) =

2Im
(∫ y

p(2η,0)
α(y′, η)dy′

)
+ u0(2η), η ≥ 0,

2Im
(∫ y

p(0,2|η|) α(y′, η)dy′
)

+ g0(2|η|), −T2 ≤ η ≤ 0,

(4.22a)

where ξ(y, η) is defined by

ξ(y, η) =

{∫ y
p(2η,0)

√
1− 4Im(α(y′, η))2dy′ + η, η ≥ 0,∫ y

p(0,2|η|)

√
1− 4Im(α(y′, η))2dy′ + |η|, −T2 ≤ η ≤ 0,

(4.22b)

the function α(y, η) is the unique solution of the Ricatti equation

αy = α2 − 4i

(
lim
λ→∞

Imλ>0

λM12(y, η, λ)

)
α− 1

4
, (4.22c)

together with the initial conditions

α (p(2η, 0), η) = −1
2
e
−i arcsin

„
u0x(2η)+u1(2η)√

1+(u0x(2η)+u1(2η))2

«
, η ≥ 0, (4.22d)

α (p(0, 2|η|), η) = −1
2
e
−i arcsin

„
g1(2|η|)+g0t(2|η|)√

1+(g1(2|η|)+g0t(2|η|))2

«
, −T

2
≤ η ≤ 0,

and M(y, η, λ) is the unique solution of the following 2× 2-matrix RH problem:

• M is meromorphic away from the contour D̄+ ∩ D̄−.

• The possible poles of the first column of M occur at λ = kj, j = 1, . . . , n1, and
λ = λj, j = 1, . . . ,Λ. The possible poles of the second column of M occur at
λ = k̄j, j = 1, . . . , n1, and λ = λ̄j, j = 1, . . . ,Λ. The associated residues satisfy the
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following relations:

Res
kj

[M(y, η, λ)]1 =
1

ȧ(kj)b(kj)
e

2i(kjy+ η
4kj

)σ3 [M(y, η, kj)]2, j = 1, . . . , n1,

(4.23a)

Res
k̄j

[M(y, η, λ)]2 =
−1

ȧ(kj)b(kj)
e
−2i(k̄jy+ η

4k̄j
)σ3 [M(y, η, k̄j)]1, j = 1, . . . , n1,

(4.23b)

Res
λj

[M(y, η, λ)]1 =Res
λj

Γ(k) e2i(λjy+ η
4λj

)σ3 [M(y, η, λj)]2, j = 1, . . . ,Λ, (4.23c)

Res
λ̄j

[M(y, η, λ)]2 =− Res
λ̄j

Γ(k̄) e
−2i(λ̄jy+ η

4λ̄j
)σ3 [M(y, η, λ̄j)]1, j = 1, . . . ,Λ.

(4.23d)

• M satisfies the jump condition

M−(y, η, λ) = M+(y, η, λ)J(y, η, λ), λ ∈ D̄+ ∩ D̄−,

where M is M− for λ ∈ D−, M is M+ for λ ∈ D+, and J is defined by equations
(4.11) and (4.20).

• M(y, η, λ) = I +O(λ), λ→ 0.

• M(y, η, λ) = I +O
(

1
λ

)
, λ→∞.

Proof. In the case when a(λ) and d(λ) have no zeros, the unique solvability is a conse-
quence of the existence of a vanishing lemma. If a(λ) and d(λ) have zeros, the singular
RH problem can be mapped to a regular one coupled with a system of algebraic equations,
see Fokas and Its (1996).

The residue conditions (4.23) can be proved as follows. The general approach of Fokas
(2008) implies that M̃ as defined in (4.3) satisfies the residue condition

Res
kj

[M̃(x, t, λ)]1 =
1

ȧ(kj)b(kj)
e2iθ(x,t,kj)[M̃(x, t, kj)]2, j = 1, . . . , n1,

where θ(x, t, λ) is given by (4.7). The definition (4.13) of M and the relations (4.17)
imply that M satisfies (4.23a). The other residue conditions follow similarly from the
corresponding residue conditions for M̃ .

In order to prove (4.22) we note that the change of variables (4.12) implies that

∂x =
1
2

(1− cosu)
√
m∂y +

1
2
∂η, ∂t =

1
2

(1 + cosu)
√
m∂y −

1
2
∂η.

In particular,
∂x + ∂t =

√
m∂y. (4.24)

Moreover, because
m = 1 + (ux + ut)2 = 1 +mu2

y,

we find that
m =

1
1− u2

y

.
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Thus, addition of the two equations in (2.24) together with (4.12) yields

Φy + iλ[σ3,Φ] =
i

2

uy +
uyy√
1− u2

y

σ1Φ. (4.25)

Consider the particular solution of this equation given by

Φ =

(
Φ(5)

2

a∞(λ)
,Φ(5)

3

)
.

This Φ admits an expansion of the form

Φ(x, t, λ) = I +
Φ(1)(x, t)

λ
+

Φ(2)(x, t)
λ2

+O

(
1
λ3

)
, λ→∞, λ ∈ D5,

where Φ(1)(x, t) and Φ(2)(x, t) are independent of λ. Substituting this expansion into
(4.25) we find by considering the terms of O(1) that

4Φ(1)
12 (x, t) = uy +

uyy√
1− u2

y

.

Thus, by construction of the RH problem,

4 lim
λ→∞

Imλ>0

λM12(y, η, λ) = uy +
uyy√
1− u2

y

. (4.26)

In view of the inquality

−1 ≤ uy =
ux + ut√

1 + (ux + ut)2
≤ 1,

we may define two functions Q(y, η) and α(y, η) by

Q = −u− arcsin(uy), α = −1
2
e−i arcsin(uy). (4.27)

These definitions imply that

uy = 2Im(α), Qy = −

uy +
uyy√
1− u2

y

 , (4.28)

and that α satisfies the Ricatti equation

αy = α2 + iQyα−
1
4
. (4.29)

Equation (4.22c) follows from (4.26), (4.28) and (4.29).
In order to prove that α satisfies the initial conditions (4.22d) we note that the initial

half-line {(x, t) = (2s, 0)|s > 0} is mapped by (4.12) to the set {(y, η) = (p(2s, 0), s)|s >
0}. Together with the definition (4.27) of α this leads to

α(p(2η, 0), η) = −1
2
e−i arcsin(uy)

∣∣
x=2η
t=0

, η ≥ 0,

17



which yields (4.22d) for η ≥ 0. The proof when −T/2 ≤ η ≤ 0 is similar.
Finally, equations (4.22a) and (4.22b) can be derived by considering the map (4.12)

as the composition of the change of variables (1.2) with the map

(ξ, η) 7→ (y, η) =

(∫ ξ

|η|

√
mdξ′ + p(|η|+ η, |η| − η), η

)
. (4.30)

Thus, the variables (y, η) ∈ Im(Ω) satisfy (4.21). Using that the map (4.30) admits the
inverse

(y, η) 7→ (ξ, η) =

(∫ y

p(|η|+η,|η|−η)

m−1/2dy′ + |η|, η

)
,

together with the expression (4.28) for uy in terms of Imα, we find (4.22a) and (4.22b).
2
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