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Abstract
The purpose of this contribution is to provide an introduction for a general physics audience to the recent results of Emile

Grgin that unifies quantum mechanics and relativity into the same mathematical structure. This structure is the algebra of
quantions, a non-division algebra that is the natural framework for electroweak theory on curved space-time. Similar with
quaternions, quantions preserve the core features of associativity and complex conjugation while giving up the unnecessarily
historically biased property of division. Lack of division makes possible structural unification with relativity (one cannot
upgrade the linear Minkowski space to a division algebra due to null light-cone vectors) and demands an adjustment from
Born’s standard interpretation of the wave function in terms of probability currents. This paper is an overview to the theory
of quantions, followed by discussions and conjectures.

I. INTRODUCTION

Unification of quantum mechanics and general rela-
tivity is the main challenge of today’s physics. Several
approaches have been proposed so far with various de-
grees of success: string theory [1], loop quantum gravity
[2], twistor theory [3], and non-commuting geometry [4].
The root cause of the tension between quantum mechan-
ics and relativity stems from the difference in the un-
derlying Lie groups and Lie algebras: unitary groups for
quantum mechanics, and orthogonal groups for relativ-
ity. This paper will present some of the core results of a
relatively new approach towards unification pioneered by
Emile Grgin: structural unification of quantum mechan-
ics and relativity based on the algebra of quantions [5].
This is an overview of those results aimed at presenting
the material for a general physics audience.

There are several points of view that can illustrate
quantions. We will start with the historical account
and original justification for quantions. Basic algebraic
properties will be presented. Then quantions can be de-
scribed mathematically as the algebra that removes a
degeneracy of the complex numbers. Next, Born’s in-
terpretation of the wave function admits an interesting
geometric interpretation, and deformations of the geom-
etry were considered in the past as a way to search for
relativity and quantum mechanics unification. In quan-
tionic physics, Born’s interpretation is naturally general-
ized and replaced by Zovko’s interpretation which leads
directly to Dirac’s equation and the semi-classical aspect
of the electroweak theory1. Because electroweak physics
follows as a theorem from quantionic properties, quan-
tions are a major step towards the axiomatization of
physics. Last, the open problems are considered in an
extended discussion section. The author’s conjectures
about quantions and a possible new physics paradigm

† On leave.
∗Electronic address: fmoldove@gmail.com

[1] Second quantization is not yet researched in this approach.

are presented as well.

II. QUANTIONS, THE HISTORICAL PERSPEC-

TIVE

Structural unification of quantum mechanics and rel-
ativity started with a collaboration between Emile Gr-
gin and Aage Petersen and was rooted into Bohr’s be-
lief that the correspondence principle has more secrets
to reveal. Acting on this belief, Bohr’s assistant Aage
Petersen in collaboration with Emile Grgin started look-
ing at the common elements of classical and quantum
mechanics. The idea was that classical and quantum me-
chanics shared characteristics reveal core physics features
that are otherwise obscured by the (non-essential) details
related to the realization of those theories in phase and
Hilbert space respectively. The resulting mathematical
structure called a “quantal algebra” is a unification of a
Poisson algebra with a Lie-Jordan algebra, a result also
obtained by other authors [6].

Quantal algebra is rooted into two postulates, or ob-
servations which can be made about classical and quan-
tum mechanics. The first observation is that classical
and quantum mechanics use two products: one symmet-
ric and one anti-symmetric. For example, in the classical
case one has the regular multiplication and the Poisson
bracket. In the usual formulation of quantum mechan-
ics, one has the anti-commutator (the Jordan product)
and the commutator. In phase space, quantum mechan-
ics is described by the cosine and sine Moyal brackets
[5]. The second observation was that classical and quan-
tum mechanics obey the so-called composability princi-
ple: any two physical systems can interact with each
other. When two physical systems interact we need to
preserve the original structure, meaning the symmetric
and anti-symmetric products. Let us call S1 and A1 the
symmetric and anti-symmetric products of system 1, S2

and A2 the corresponding products of system 2, and ST

and AT the products of the total system. Then compos-
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ability implies:

ST = S1S2 − aA1A2 (1)

AT = A1S2 + S1A2 (2)

where a could be 1, 0, or −1 [7].
Comparing Eqs. 1 and 2 with complex number multi-

plication, it is easy see that when a = 1 one can identify
S with the real part, and A with the imaginary part of
a complex number. Detail analysis reveals that a = ~2

for quantum mechanics and a = 0 for classical mechan-
ics. The a = −1 case would correspond to a quantum
mechanics based on split-complex numbers. This case
might be considered unphysical because split complex
numbers (which use j2 = 1) do not satisfy the spectral
theorem which gives uniqueness to quantum mechanics
[8]. In general, in quantum mechanics S is a product in
the space of observables O and A is a product in the space
of abstract generators L. Hermitian matrices represent
observables, while anti-hermitian matrices represent gen-
erators. Since Hermitian and anti-hermitian matrices are
in one-to-one correspondence, it is tempting to postulate
the equivalence of O and L, but in fact this is just a
natural consequence of the composability principle. In
terms of interpretation of quantum mechanics, the ori-
gin of complex numbers is a very unintuitive feature of
quantum mechanics. From Eqs. 1 and 2 it is easy to un-
derstand it as a structure preserving requirement under
composability. Also, the naive limit ~ → 0 that is typi-
cally assumed to describing the transition from quantum
to classical mechanics is replaced with the correct exact
structural transition ~

2 = 0 to a nilpotent algebra.
Combining classical and quantum mechanics into a

unified structure called a quantal algebra (a term coined
by Peterson and Grgin), and renaming the symmetric
and the anti-symmetric product as σ and α respectively,
one has the following requirements:

(fαg)αh+ (gαh)αf + (hαf)αg = 0 (3)

gα(fσh) = (gαf)σh+ fσ(gαh) (4)

(fσg)σh− fσ(gσh) = agα(hαf) (5)

The difference between a quantal algebra and a Lie-
Jordan algebra is that a Lie-Jordan algebra has addi-
tional properties relating to its spectral properties[6].
Those properties eliminate the need for the split-complex
numbers and they are not derived from the composability
principle. In the following, unless we explicitly specify it,
we will restrict the discussion to only the quantum me-
chanics case of a = 1.

Eq. 3 represents the usual Jacobi identity and captures
the Lie part of the quantal algebra. Eq. 4 is the distri-
bution law of the Lie over the Jordan product and can
be understood in terms of infinitesimal automorphisms.
Suppose that T = I + ǫFα is an infinitesimal automor-
phism. Then infinitesimal motions in the quantal algebra
must be compatible with the algebraic product sigma:
T (fσg) = (Tf)σ(Tg). This simplifies to the Leibniz
identity: Fα(fσg) = (Fαf)σg + fσ(Fαg)

In general, a Jordan algebra is non-associative. Intro-
ducing the associator as a measure of non-associativity:

[f, g, h] = (fσg)σh− fσ(gσh) (6)

then Eq. 5, (proposed to be called “the Petersen’s iden-
tity” by Emile Grgin), can be written as [5]:

[f, g, h]σ = agα(hαf) (7)

In general, one can construct a mapping J between O
(less the unit element) and L:

J : O → L (8)

such that:

F = Jf (9)

where f ∈ O and F ∈ L, and:

f = −aJF (10)

which for quantum mechanics implies:

JJ = −I (11)

If one introduces a new product beta defined as:

fβg = fσg + ifαg (12)

then β is an associative product. There are two ways
to introduce the associative product. The typical way,
(called external complexification by Grgin), follows the
prescription of Eq 12. However, there is another way,
(called internal complexification2 by Grgin [5]). In this
case one element of the algebra will play the role of

√
−1.

Let us assume that J =
√
−e in O exists. If OJ is the

centralizer of J , i.e. the set of all observables f in O such
that Jαf = 0, then {OJ , σ, α, e} is a quantal algebra. J
may, or may not exist, but if it does, J plays a unique role
in the algebra, and will later introduce relativity into the
quantal framework. From Eq. 1 it is easy to see that the
spectral characteristics are defined only by the symmetric
product (due to the choice of complex, or split complex
numbers based on a). Quantum mechanics and relativity
share Jordan algebra characteristics [9].

At this point, it is useful to review Lie algebras [10]and
Lie groups. Lie groups are manifolds endowed with group
properties. Lie algebras are associated with the tangent
space of the Lie group at the identity element. Different
Lie groups can share the same Lie algebra, and there are
Lie algebras which do not correspond to any Lie group.
There are four infinite families of “classical” simple Lie

[2] Because internal complexification is the critical idea of quantionic
research, I propose to call it the Grgin complexification.
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algebras: unitary algebras su(n + 1) (A series), odd or-
thogonal algebras so(2n + 1) (B series), symplectic al-
gebras sp(2n) (C series), and even orthogonal algebras
so(2n) (D series). In addition to those, there are five
“exceptional” simple Lie algebras: g2, f4, e6, e7, and
e8. In terms of normed division number systems over
the real numbers, the orthogonal algebras correspond to
real numbers R, the unitary algebras correspond to com-
plex numbers C, the symplectic algebras correspond to
quaternions H, and the exceptional algebras correspond
to the non-associative octonions O, terminating the se-
ries.

One way to analyze Lie algebras is by the Cartan clas-
sification based on the Jacoby identity (Eq. 3). When
one imposes the additional constraints of Eqs. 4 and
5, then one expects a restriction in terms of possible
Lie algebras. Grgin identified four cases: the infinite
family of unitary algebras su(n + 1) and three “spo-
radic” orthogonal algebras: so(3), so(6), and so(2, 4)
[11, 12, 13, 14]. Since the Lie group SO(3) is isomor-
phic with the SU(2) group and SO(6) is isomorphic with
SU(4), the only case that does not reduce itself to stan-
dard non-relativistic quantum mechanics is so(2, 4). The
Lie group SO(2, 4) corresponds to the conformal com-
pactification of the Minkowski space, is isomorphic with
SU(2, 2), and leads to Penrose’s twistor theory [3]. The
Lie algebra so(2, 4) leads to the algebra of quantions and
is the unique mathematical structure that contains both
quantum mechanics (a quantal algebra) and relativity
in exactly four dimensions. Since the translation group
does not appear in quantionic algebra, the space is intrin-
sic Riemannian, and quantionic physics structurally uni-
fies quantum mechanics with general relativity. Wolfgang
Bertram identified another family of quantal algebra re-
alization, the pseudo-unitary u(p, q) algebras of indefinite
signature [15]. He also pointed out that quantal algebras
are basically C∗ algebras with no positivity condition.

But what is the heuristic reason for using internal com-
plexification in the first place, and why does it lead to
relativity? As seen from Cartan’s classification, we have
only symplectic, unitary, and orthogonal algebras. A
quantal algebra contains the symplectic and unitary in-
gredients by default because it unifies classical and quan-
tum mechanics. Relativity requires orthogonal algebras
and non divisibility. If we can obtain a generalization
of complex numbers that is not isomorphic with a uni-
tary group (which implies divisibility), then it must con-
tain some form of orthogonal algebra with the hope that
maybe relativity will somehow arise from it. For a Her-
mitian matrix H , one has: Tr(H2) > 0 and Tr(−I) < 0
and therefore standard complexification does not con-
tain generalizations of complex numbers. Only internal
complexification can lead to non-unitary quantal algebras
and so(2, 4) is the only possible orthogonal solution. To
obtain relativity, recall that we are looking only at a sub-
set space defined by the constraint: Jαf = 0. Once J is
selected, quantions are defined into a subspace of so(2, 4),
the centralizer space OJ(2, 4). The centralizer reduces it-

self to a complex Minkowski space of dimensionality 8:
M0(C) = M0 ⊕ iM0 and any element f ∈ OJ (2, 4) is of
the form:

f = fr + Jβfi (13)

with fr and fi real. The linear space L(2,4) on which
the group SO(2, 4) acts, is a distinguished unique space,
because only in this case one can define uniquely com-
plex conjugation as a reflection that cannot be undone
by continuous transformations.

A. Algebraic properties of quantions

Let us explore same basic properties of the quantions.
This section will follow closely the quantionic book of
Emile Grgin [5]. The first observation is that J =

√

(−e)
is not unique. There are an infinity of solutions of dimen-
sionality 3 which are transitively related by the SO(1, 3)
group. The algebraic unit e of quantion algebra D is a
contravariant complex four vector that defines the time
direction in the local frame.

In terms of complex numbers, a quantion is a 2 × 2

matrix

(

z v
u w

)

with the following multiplication rule:

(

a c
b d

)

∗
(

z v
u w

)

=

(

az + cu av + cw
bz + du bv + dw

)

(14)

Using the Minkowski scalar product:

(u, v) ≡ ηµνu
µvν (15)

where ηµν = diag(1,−1,−1,−1) and renaming the unit
e as Ω, the product β is:

uβv = (Ω, u)v + (Ω, v)u − (u, v) − i ∗ (Ω ∧ u ∧ v) (16)

where ∗ is the Hodge duality mapping.
In general, one can decompose any arbitrary quantion

in the following form:

u = UΩ + −→u (17)

If we introduce Π as the 3-dimensional hyperplane or-
thogonal to Ω, and choosing a set {−→e1 ,−→e2 ,−→e3} of orthonor-
mal vectors in Π, then the multiplication table for β is:

β Ω −→e1 −→e2 −→e3
Ω Ω −→e1 −→e2 −→e3
−→e1 −→e1 Ω i−→e3 −i−→e2
−→e2 −→e2 −i−→e3 Ω i−→e1
−→e3 −→e3 i−→e2 −i−→e1 Ω

(18)

This multiplication table is identical with the Pauli
matrices multiplication table with the following identifi-
cation: (Ω ↔ σ0,

−→ei ↔ σi). Hence, in a fixed tetrad, the
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algebra of quantions can be represented by the algebra
of 2 × 2 complex matrices. This is because the Lorenz
group is isomorphic with SL(2,C). Expressed in terms
of Pauli matrices, a quantion can be written as:

q = q0I + −→q .−→σ (19)

This form was first studied by James Edmonds [16] in
1972.

Quaternionic multiplication table is:

. 1
−→
i

−→
j

−→
k

1 1
−→
i

−→
j

−→
k

−→
i

−→
i −1

−→
k −−→

j
−→
j

−→
j −−→

k −1
−→
i−→

k
−→
k

−→
j −−→

i −1

(20)

Comparing quaternions to quantions, the transforma-
tion rule between the two algebras is:

Ω = 1

i−→e1 =
−→
i

i−→e2 =
−→
j

i−→e3 =
−→
k

(21)

The linear spaces of real quantions and real quater-
nions are different four-dimensional slices of the algebra
of complex quaternions.

Given the tetrad {Ω,−→e1 ,−→e2 ,−→e3}, let us introduce the
null tetrad {l, n,m,m} by the relations:

l = 1
2 (Ω + −→e3)

n = 1
2 (Ω −−→e3)

m = 1
2 (−→e1 + i−→e2)

m = 1
2 (−→e1 − i−→e2)

(22)

Up to the coefficients, those are also the Newman-
Penrose null tetrads [17].

The multiplication table for {l, n,m,m} is:

β l m m n

l l 0 m 0

m m 0 n 0

m 0 l 0 m

n 0 m 0 n

(23)

This multiplication table was first obtained in 1882 by
Benjamin Pierce [18] and was named algebra g4.

B. Quantions: a mixed relativity and quantum

mechanics object

In quantum field theory an important theorem is the
CPT theorem. This theorem mixes quantum mechan-
ics and relativity concepts. Complex conjugation and

charge are properties of the quantum theory, and parity
and time are relativity concepts. Since the quantionic al-
gebra D is the only possible mathematical structure that
structurally unifies relativity with quantum mechanics,
the CPT theorem arises naturally from it via the group
of discrete transformation for quantions.

A real quantion is defined as p =

(

r z∗

z s

)

where r, s ∈

R and z ∈ C. Expressing r, s, and z in terms of four real
variables: p0, p1, p2, p3:

r = p0 + p3

s = p0 − p3

z = p1 + ip2

(24)

one has:

(p, p) = p0
2 − p1

2 − p2
2 − p3

2 (25)

and

(

r z∗

z s

)−1

=
1

(p, p)

(

s −z
−z∗ r

)

(26)

Quantions are not a division algebra, and the real
quantions that lack an inverse are the null rays in the
Minkowski cone. Having an inverse is not a mandatory
property in quantum mechanics. An easy way to see this
is the fact that we do not divide by the wavefunctions
directly. In the case of perturbation theory, Feynman
diagrams, and propagators, one deforms the integration
contour to avoid exactly the points where quantions do
not have an inverse.

III. QUANTIONS: LIFTING A DEGENERACY

OF COMPLEX NUMBERS

Quantionic algebra was originally discovered in 1882,
but its properties remained unexplored for a very long
time until the quantal algebra research program rediscov-
ered them using a systematic approach. However, there
is another road that leads to quantions, this time com-
pletely in the realm of mathematics. For a long time,
there was a mathematical bias towards division algebras,
and the reason for this was an old Hurwitz theorem that
states that there are only four normed division algebras:
real numbers R, complex numbers C, quaternions H, and
octonions O [19]. Probably the original appeal of the the-
orem stems from the restriction of the number of such
algebras, as opposed to an infinite number of associa-
tive non-division algebras. However, as seen earlier, null
space-time intervals do not have an inverse in quantionic
algebra D, and imposing the unnecessary division prop-
erty eliminates relativity from D, forcing us back at using
complex numbers.

But the complex numbers themselves have an addi-
tional property that can be regarded as a “defect”: they
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have a mathematical degeneracy of algebraic and geo-
metrical concepts which if lifted will lead uniquely to the
quantionic algebra. The algebraic norm of complex num-
bers is defined as:

A(z) = zz∗ (27)

Expanding A(z) in terms of the components z = x+iy,
one has:

A(z) = x2 + y2 (28)

Now Eq. 28 can be understood as a metric (M(z) =
x2 + y2) and this is a geometric concept. Since complex
numbers were introduced for their property of algebraic
closure, and since the metric is the trivial Euclidean met-
ric in two dimensions, it takes a bit of effort to see A(z)
and M(z) as really separate concepts. However, once
the separation is made, straightforward algebraic anal-
ysis will lead uniquely to the quantionic algebra D as
the only algebra that is able to lift this degeneracy [5]
and has different algebraic and geometric norms. The
two norms of quantions also have a remarkable physics
interpretation. The algebraic property of quantions is re-
lated to standard quantum mechanics, and the geometric
property is related to relativity.

In quantionic algebra one can introduce complex con-
jugation (∗) and metric dual (♯) as follows:

q∗ = {a∗, c∗, b∗, d∗} (29)

q♯ = {d,−b,−c, a} (30)

where q = {a, b, c, d}.
The quantionic algebraic norm A(q) is defined using

standard Hermitian conjugation:

A(q) = q∗q = {a∗a+ b∗b, c∗a+ d∗b, a∗c+ b∗d, c∗c+ d∗d}
(31)

and the quantionic metric norm M(q) is the determinant
of the quantionic matrix:

M(q) = ad− bc (32)

The inverse of a quantion is:

q−1 =
q♯

M(q)
(33)

Since M(q) may be zero, quantions are not a division
algebra.

Not only A(q) 6= M(q) in general, but as functions
they reduce an eight-dimensional quantion to a four, and
a two dimensional object respectively. M(q) is obviously
a complex number and A(q) is a real quantion because:

(A(q))∗ = (q∗q)∗ = q∗q∗∗ = q∗q = A(q) (34)

M(q) maps quantions to complex numbers and non-
relativistic quantum mechanics, while A(q) maps quan-
tions into Minkowski four vectors, thus extracting rela-
tivity.

By removing the algebraic-geometric degeneracy of
complex numbers, quantions are the next number sys-
tem in the sequence: natural numbers, real numbers,
and complex numbers. Quantionic physics does not de-
form the Hilbert space; it only replaces complex num-
bers with a new number system. The unnecessary di-
vision property of complex numbers was the main hin-
drance in uncovering the relativity structure. Due to
their uniqueness, quantions are nature’s number system
where a lot of physics will follow straight as mathematical
theorems with no external ad-hoc justification. Another
reason of calling quantions a number system is the exis-
tence of a hyperquantionic sequence. For real numbers,
the Cayley-Dickson construction combines two real num-
bers into a complex number, four real numbers into a
quaternion number, eight real numbers into an octonion
number, and so forth using the powers of two. In the
hyperquantionic sequence one starts with complex num-
bers and constructs groups of complex numbers using the
powers of four.

IV. BORN AND ZOVKO INTERPRETATION OF

THE WAVE FUNCTION

Standard quantum mechanics based on complex num-
bers consists of several parts. First, we have the Hilbert
space. Then, we need to postulate space and time as
concepts outside Hilbert space. Finally, we need to
add Born’s interpretation of the wave function and the
Schrödinger equation. Generalizations of quantum me-
chanics were attempted to solve the unification problem.
One approach is to uncover first the geometrical formula-
tion of quantum mechanics [20]. Hilbert space is under-
stood as a Kähler space endowed with a symplectic and a
metric structure. The starting point is the Hermitian in-
ner product decomposition into real and imaginary parts:

< Φ,Ψ >=
1

2~
G(Φ,Ψ) +

i

2~
Ω(Φ,Ψ) (35)

with G(Φ,Ψ) = Ω(Φ, JΨ), J = G−1Ω, and J2 =
−1. The space of physical states is the projective
Hilbert space CP (n) = U(n + 1)/U(n) × U(1) and the
Schrödinger equation describes a Killing Hamiltonian
flow along CP (n).

A complex number z = x + iy can be represented as

z = xG + yΩ where G =

(

1 0

0 1

)

and Ω =

(

0 1

-1 0

)

. We

can see that from Born’s interpretation, complex num-
bers occurs naturally in quantum mechanics but the in-
terpretation of G and Ω have completely different mean-
ing when compared with the complex numbers intro-
duced as a consequence of the composability principle.
This geometric approach stems from the usual quanti-
zation procedure of replacing the Poisson brackets with
commutators. What this does is to augment a symplectic
structure with a metric structure resulting into a Kähler
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space. Born’s interpretation of the function ρ = ψ∗ψ
as a probability density implies a positive norm which
in turn guarantees a division algebra. Since quantions
are not a division algebra, if one is to find deformations
of quantum mechanics to obtain (structural) unification
with relativity, the staring point must be the replacement
of Born’s interpretation with something else. In 2002,
Nikola Zovko proposed a generalization of Born’s inter-
pretation. In quantionic algebra, Zovko’s interpretation
uses a current probability density j = q†q with j being a
future oriented time-like Minkowski vector. Combining
quantions with Zovko’s interpretation leads to Dirac and
Schrödinger equations. Moreover, the Minkowski metric
is fully contained within quantions and does not need to
be postulated as an outside component.

So far we have discussed the main algebraic properties
of quantions. As a 2 × 2 matrix, quantions has only
the symmetries of the Lorenz group. To have equations
of motions, we need to introduce additional degrees of
freedom and the new structure requires the Riemannian
space. Only in the flat case, derivations generate the
Abelian group of translations and therefore the Poincaré
group. The unique way to generalize quantions is using a
sub-algebra of the 4×4 complex matrices in the following
block diagonal form [21]:

Q =

(

A 0

0 A

)

(36)

where

A =

(

z v

u w

)

(37)

is a regular 2 × 2 quantion. This representation appears
naturally from the complex number degeneracy elimina-
tion problem.

Up to a similarity transformation, Q are unique gen-
eralizations of the 2× 2 quantions. The extension, called
the left algebra of quantions, allows derivation, limited
analyticity properties, quantion-spinor complementarity,
and Dirac equation [21]. The algebra of matrices Q is a
representation in terms of matrices the quantionic alge-
bra, acts on ket column vectors, and has the SU(2)×U(1)
electroweak symmetry. Associated with the left repre-
sentation is a right representation which acts on bra row
vectors and the left and right representations commute.
The commutation property is equivalent with the asso-
ciative property of quantions.

Those advanced topics are outside the scope of this in-
troductory paper and interested readers should consult
the Structural Unification of Quantum Mechanics and

Relativity book by Emile Grgin[21].

V. DISCUSSIONS AND OPEN PROBLEMS

The author believes that structural unification of rela-
tivity and quantum mechanics is a major milestone in un-

derstanding nature because it holds the potential to sup-
port a new physics paradigm centered on the old question
of physics axiomatization. Although quantionic physics
is still in the early development stages with many critical
questions not yet researched, quantionic physics may put
the phenomenological postulates of the Standard Model
on a solid axiomatic foundation and might one day be-
come the backbone of an ultimate theory of everything
challenging string theory’s aspirations in this area. While
Emile Grgin refrains from speculations about the future
and prefers to follow the math wherever it may lead, in
this section the author is free to use the glimpses and
insights learned from this new research area to provide
discussions, conjectures and speculations. As such, math
rigor will be replaced mostly by heuristic and philosoph-
ical arguments. Existing results will be presented in a
way that will support the new paradigm, and although
this paradigm is inspired in part by quantionic research,
it is independent from it, or from the original intention
of the other cited results.

One of the major successes of quantionic physics is the
fact that structural unification is only possible for a four
dimensional space time obeying the Minkowski metric.
Without a complete unification theory, the proof of the
space-time dimensionality is incomplete, but quantionic
research is a big step forward. No other unification ap-
proaches (string theory included) can claim any credible
success in this area. (Outside unification approaches, the
four dimensionality is singled out as the only case where
Yang-Mills theories are renormalizable. Also, from the
geometrical point of view, one can construct uncount-
ably many inequivalent differential structures and have
an interplay between Hodge duality and two-forms [22].)
However, quantionic research is just beginning and there
are many open problems. Structural unification does not
offer yet answers for quantum gravity, or even for the
complete Standard Model.

Non-commuting geometry [4] provides the Lagrangeian
for the entire Standard Model, but the “clothes for the
SM beggar” as Connes put it do not have a clear physics
origin, or a provable uniqueness associated with it. (It
is also possible, and probably a better explanation, that
the lack of clear physics origin is only a reflection of the
author’s lack of understanding of non-commuting geom-
etry.) In quantionic physics, the natural symmetry is
Uq(1) = U(1) × SU(2), and determining the origin of
the strong force SU(3) symmetry is an open problem
currently under vigorous research. Increasing the avail-
able degrees of freedom by considering Uq(2) can lead to
SU(3), but the question becomes why stop here and not
consider for example Uq(17), or any arbitrarily high num-
ber. What is the distinguishing property of SU(3) from
quantionic perspective? Preliminary results appear to
answer fully this question, but it is premature to present
them here.

Another open problem is the elimination of split com-
plex numbers. From the point of view of degeneracy,
split complex numbers have a different degeneracy, that
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of identity operation and of complex conjugation. They
form a non-division algebra, but the concept of charge
is not well defined. In this case the SO(2, 4) group is
replaced most likely by the SO(3, 3) group.

In terms of quantum gravity, there are links between
the SO(2, 4) group and loop quantum gravity [23],[24]
and between twistors and string theory [25]. The major
problems of general relativity such as renormalizability,
singularities, and global structure do not yet get much
clarification from quantionic physics. Structural unifica-
tion provides some backing for the impossibility of exis-
tence of closed time-like curves (CTCs), because in this
case quantionic algebra is not possible. The very point
of Grgin complexification and of the linear space L(2,4)

was to find a space where reflections cannot be undone
by continuous transformations, and on a CTC space one
can undo the reflections. This corresponds to a particle
being created at a point, going back in time and acquiring
a phase shift, and then being reabsorbed at the creation
point thus loosing the phase information [26] and break-
ing unitarity [27].

Second quantization and spontaneous symmetry
breaking are not yet researched in quantionic theory. As
non-Abelian gauge theories, electroweak theory is renor-
malizable and the strong force is renormalizable only at
high energy or small distances. Is renormalizability al-
ways satisfied in quantionic physics? Probably yes and
the best way to prove it is to interpret quantionic physics
as a Yang-Mills theory using Uq(1). This should not be
very hard since electroweak theory is a Yang-Mills quan-
tum field theory already. Then one can use either the
massless or the massive on-shell Yang-Mills renormaliz-
ability property [28] or other more laborious methods.

However, although not exceptionally hard, second
quantization and obtaining (at least) the electroweak in-
teraction are far from being a trivial task either. First,
let us view quantions a as a number system and compare
their internal symmetry Uq(1) with the U(1) symmetry of
the complex numbers. QED is a far more sophisticated
theory than what one might expect from the complex
number symmetry alone. If quantions are simply a num-
ber system, then one would not expect a lot of physics
to follow from it. Existing and preliminary unpublished
results shows however that critical features of the Stan-
dard Model are naturally appearing in quantionic alge-
bra and this looks to be more than just a mathemati-
cal coincidence. In electroweak and strong force, nature
exhibits nonlinear self-interaction, and quantions are a
linear algebra. The author’s expectation is that compos-
ability principle (which may also include split-complex
composability) and the Yang-Mills local symmetry prin-
ciple would generate the full axiomatization of the Stan-
dard Model. The main thrust of Grgin’s research is how-
ever in a slightly different direction. The current aim
of quantionic research is to discover first all the “inher-
ent” properties of quantionic algebra without using gauge
symmetry or any other concepts outside quantions.

From the principle of local symmetry, converting the

global symmetries of quantions into local gauge symme-
tries resulting in a quantionic Yang-Mills theory will in-
troduce nonlinearity. The following important questions
will then arise: how does the CPT quantionic prop-
erty, the space-time dimensionality, and all other inherent
quantionic properties survive the opposite local to global
transition?

If we analyze isomorphisms between unitary and or-
thogonal groups, at low dimensionality, we have only four
such cases:

U(1) ≈ SO(2)

SU(2) ≈ SO(3)

SU(4) ≈ SO(6)

SU(2,2) ≈ SO(2,4)

(38)

If quantizing general relativity does not take the route
of quantions, then one is restricted to using one or all of
the top three isomorphisms above instead. The first iso-
morphism is too simplistic and the SU(4) ≈ SO(6) does
not yet appear to play any significant role in physics.
The SU(2) ≈ SO(3) isomorphism is used by loop quan-
tum gravity, and from the renormalizability property,
if true, it is at least conceivable that we may have a
dual unification problem: a canvas space-time quantiza-
tion, and a matter quantization using quantions. The
strong force may then arise out of the necessity of mak-
ing the two unification approaches compatible. Using any
of the first three isomorphism above (and in particular
the SU(2) ≈ SO(3) isomorphism) has a major disadvan-
tage in terms of the time problem for canonical quantum
gravity [29], but SU(2) is a core symmetry of quantionic
physics and the link between loop quantum gravity and
quantions could appear naturally [23],[24].

Standard Model has the U(1) × SU(2) × SU(3) sym-
metry, and Geoffrey Dixon proposed using the algebra
C⊗H⊗O[30]. From quantionic algebra, we can see that
using only norm division algebras is not enough to con-
struct the correct axiomatization of the Standard Model.

In terms of normed division algebras, one has the fol-
lowing isomorphisms:

sl(2, R) ≈ so(2,1)

sl(2, C) ≈ so(3,1)

sl(2, H) ≈ so(5,1)

sl(2, O) ≈ so(9,1)

(39)

Quantions are related to the second isomorphism, while
the last isomorphism is related to the10-dimesional su-
perstring theory [1], and to supersymmetric gauge the-
ories [31]. Given the correct space-time dimensional-
ity predicted by sl(2,C) under the structural relativity-
quantum mechanics unification, the space-time dimen-
sionality predicted by superstring theory, and the rigidity
of the algebraic structures, then the likelihood of string
theory to be the correct fundamental physics theory is
now much lower.
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As a speculation, in the dual unification approach,
maybe the space-time quantization should be done us-
ing split-complex composability, the electroweak quan-
tization should be done using quantionic physics, and
the strong force is a mixed object of both split-complex
and regular composability [32], within the Pati-Salam
SU(4) × SU(4) grand unification theory [33] (The AdS-
CFT correspondence[34] hints towards the deep connec-
tion between gravity and strong force.). However, three
serious arguments count against the dual composabil-
ity approach: the von Newman uniqueness property of
quantum mechanics based on complex numbers [8], the
non-commuting geometry framework for the Standard
Model using only complex numbers [4], and the inherent
Standard Model properties contained inside quantionic
algebra which is also based on elliptical composability.
Also it is not clear at this point if quantizing gravity
is even possible in a split-complex quantum mechanics.
However, the non-uniqueness of the split-complex quan-
tum mechanics may not be that serious of a problem
on curved space-time. Even in standard quantum me-
chanics uniqueness is not absolute since the Unruh effect
shows that the number of particles is not globally de-
finable. Standard composability leads to elliptical quan-
tum mechanics, while split-complex composability leads
to hyperbolic quantum mechanics. Due to its unbounded
nature, hyperbolic quantum mechanics may explain the
inflation period before the Big Bang and the current value
of the cosmological constant Λ. If this were true, then
cosmology would run along the lines of Penrose’s before
the Big Bang ideas [35]. Expanding on those ideas, the
universe is always dominated by hyperbolic composabil-
ity, experiences locally a parabolic fluctuation leading to
inflation and Big Bang, followed by the normal cosmic
evolution. Some of the fundamental constants may in-
corporate the remnants of the frozen original interaction
between hyperbolic and elliptic composability3, and our
universe may be only one of uncountable other universes,
majority of them being uninteresting due to the lack of
stable atoms4. Later, after all black holes evaporate and
all matter decays, the original traces of the elliptical com-
posability are erased and the cycle can start anew.

Speculation aside, the major quantionic problem is

[3] Are all of the Standard Model physical constants derivable from
fundamental principles? Some of the constants have already
been “derived” from some mathematical arguments, but with-
out a complete theory it is easy to dismiss them as “numerol-
ogy”. Grgin makes two arguments in favor of deriving the con-
stants. First, algebraic methods are more powerful than tra-
ditional gauge theory methods which have only the power of
dimensional analysis. Second, if the constants have some value
at some point in space-time why would they not have another
value at another point unless there is a mathematical necessity
for their value in the first place?

[4] Because this argument is similar with the anthropic principle, it
should be used only as a speculative philosophical argument at
this time. The author believes that anthropic principal can be
used, but only after the fact and not to make predictions.

then this: can the unification of gravity and relativity
be worked out completely inside quantionic physics, or
are we faced with a double unification problem? Ei-
ther way, quantionic renormalizability, asymptotic free-
dom, quark charges, split-complex composability, AdS-
CFT correspondence, non-commutative geometry, Higgs
mechanism, and the Uq(2) symmetries are the major puz-
zle pieces in constructing a coherent theory of nature.

The author conjectures that quantionic physics can be
proved always renormalizable. It is unclear if we may
be facing in fact a double unification problem with the
strong force arising out of the necessity of making the
two unification approaches compatible. It is important
to find out if gravity can be also quantized using split-
complex composability, because the answer can decide if
split-complex quantum mechanics will ever play a phys-
ical role (like the positron solutions from Dirac’s equa-
tion), or it is just a mathematical dead end.

A. Axiomatization of physics

After the Galilean revolution, physics became an ex-
perimental science. Now, with quantionic advances in
unifying quantum mechanics and relativity, here is the
boldest speculation of all: what if nature enjoys unique-
ness in the sense that four dimensional space time,
general relativity, and quantum mechanics are manda-
tory consequences of a hypothetical theory of every-
thing? What if all physics can be derived mathemati-
cally without the need for experiments in a post Galilean
era5? Since Gödel’s famous incompleteness theorem[36],
we know that mathematics is infinite. But how about
physics? Is physics axiomatizable? This is not a new
question. It was first proposed in 1900 by David Hilbert
as problem six of his famous twenty three problems that
should define the next century of mathematics [37]. If
problem six is solvable, uniqueness results are critical.
So far, the author is aware of the following uniqueness
results of various strengts: quantions, time, orthogonal
groups, and Hilbert space.

When considering this problem, one should consider
axioms that are not mere technical postulates, like for
example the definition of Hilbert space, but principles
that will separate the Platonic world of abstract mathe-
matics from the real physical world. One such postulate
is the composability principle discussed above.

[5] Those speculations are not new and are periodically rediscovered
independently in slightly different forms by the people working in
the foundational areas which by its very nature forces to consider
them. Big caution has to be exercised however because if the
speculation is false, its utopian appeal can have very real negative
consequences in terms of pursuing other options as the history
of the string theory shows [38]. This is not an argument against
string theory per se, since it applies to the quantionic approach
as well. It is a warning against abandoning the Galilean era too
soon.

8



Dimensional analysis of Lie groups is a very powerful
tool to prove uniqueness, and two important results were
obtained in this way. First, in general relativity, if we
demand that one needs to support local mathematical
structures of infinite complexity (in other words a gen-
eral ontology), then one necessarily obtains the orthog-
onal groups [39]. For ontology to be possible, orthogo-
nal groups are required. Second, if quantum mechanics
is defined as a framework of reasoning when hypothesis
forms a continuum and the maximum evidence accessi-
ble through experiment is not allowed to exceed a finite
upper bound, then by dimensional analysis one obtains
unitary groups and the Hilbert space [40].

Orthogonal groups correspond to real numbers, and if
nature were to be described by real numbers only, then
EPR’s definition of reality would hold: “If, without in
any way disturbing a system, we can predict with cer-
tainty (. . . ) the value of a physical quantity, then there
exists an element of physical reality corresponding to this
physical quantity.” [41]. Creating a universe using only
orthogonal and symplectic groups might not be logically
possible. If we add general relativity (a subset of the
ways orthogonal and symplectic groups can be coherently
combined), then there are three supporting arguments for
this conclusion. Recall that in general relativity any ob-
ject falling inside of a black hole will reach the end of
a geodesic line in a finite time, meaning that it will be
erased out of existence/ontology. While solving the infor-
mation paradox is extremely hard in quantum gravity, in-
formation is guaranteed to be lost for sure in the absence
of quantum mechanics. Another argument would be the
existence of singularities in general relativity, but the Big
Bang may have very well started from a singularity, and
therefore this is a weak argument. The third argument
is the existence of CTCs in general relativity which can
easily lead to paradoxes [42]. (There are counter argu-
ments along the line of the principle of minimal action
which try to eliminate the initial conditions leading to
paradoxes [43], but those arguments demand that free
will is only an illusion, and more importantly, have unin-
tended unphysical consequences [44]). Taking the three
arguments together, unitary groups (and global hyper-
bolicity, because unitary groups do not solve the CTC
problem) may be a necessity if nature is to be self consis-
tent. This argument for the necessity of unitary groups
is incomplete because we need to prove first the necessity
of general relativity. General relativity follows from the
equivalence principle, and uses mass as a fundamental
concept. As a concept, mass lacks a clear mathemati-
cal and physical origin and may force us into a circular
argument (the spontaneous symmetry breaking origin of
mass requires unitary groups).

Let us continue the discussion by proposing two other
principles: the deformability principle and the universal
truth property principle.

One principle that should never be used is the an-
thropic principle because this principle can hide all un-
solved problems in a scientific dishonest way. If we strip

away the need for the existence of our universe as is, we
are left with requiring just its existence (ontology must
be present, but we do not specify how), and then this is
a scientifically valid principle (falsifiable). To avoid con-
fusion and to keep it consistent with the original paper
where it was first mentioned [39], this principle should be
called the “deformability” principle. In the original pa-
per context, deformability meant that the local physical
structure was allowed to vary freely which corresponded
to the requirement that arbitrary matter distributions
should be allowed. Expressed in terms free of general
relativity concepts, this principle demands the support
of local mathematical structures of infinite complexity
which in turn imply the existence of orthogonal groups
of arbitrary signature SO(p, q). The existence of time,
or the transition from SO(p, q) to SO(1, n − 1) requires
yet another principle: the universal truth property.

In general in mathematics, the truth value of a state-
ment depends on the context. For example, the state-
ment that two parallel lines never meet is true in Eu-
clidean geometry, and false on Riemannian geometry.
The mathematical meaning of truth is coded by the
Tarski theorem [45] which roughly states that inside an
axiomatic system, one cannot define the truth value of its
own predicates. Thus, in mathematics, truth means that
something is derived from axioms, while in the physical
world truth is usually defined as something correspond-
ing to reality and has a ubiquitous non-trivial (but easily
overlooked) universal property. In physics, events occur-
ring on the four dimensional event manifold are true for
all observers and across all contexts. This is a remark-
able property that can be shown to lead to the necessity
of time as the only way to avoid self-referencing para-
doxes via the Liar’s paradox [46].

The original inspiration for this result was Gödel’s in-
completeness of arithmetic theorem, but this theorem
was not used directly due to the continuous nature of
the event manifold. The incompleteness theorem shows
that mathematics in infinite in the sense that, at least in
some cases, one can always find a new statement (or in
the mathematical terminology a predicate) p, which can-
not be proved or disproved within the existing axiomatic
system. If the predicate is then added as a new axiom,
the process can be repeated again in the extended ax-
iomatic system. Since the new axiom can be added as
either (p) or (not p), the process generates two new in-
compatible axiomatic systems. This process shows that
the outside space and time Platonic world of mathemat-
ics is not only infinite, but also filled with contradictory
axiomatic systems that cannot be organized into a coher-
ent system.

In the physical world however (which share at least the
same complexity as the mathematical world since we can
discover the mathematical axioms), the universal truth
property (or equivalently global consistency) leads to a
constraint which manifests itself as global hyperbolicity,
or time.

Gödel’s proof can be translated almost one to one into
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the time proof theorem with only one twist at the end
because event manifolds are “decidable” on the account
of the universal truth property. Event manifolds use
real numbers which have a complete axiomatization and
the difficult part was solving the conceptual problem of
finding a mapping between the two domains: formalized
arithmetic and continuous event manifolds. The concep-
tual mapping is as follows: predicate ↔ event, proof ↔
affine transformation, gödelization of proofs (assigning
numbers to proofs) ↔ parameterization of initial condi-
tions, diagonal argument ↔ self-interaction. Once the
conceptual problem is solved (which in hindsight looks
obvious and trivial, but was particularly hard to discover
in the first place), straightforward technical details fol-
low easily. In the end of the proof, unlike Gödel, we are
forced to conclude that we do have inconsistency instead
of incompleteness for non-globally hyperbolic event man-
ifolds. Only globally hyperbolic event manifolds save the
physical world from contradictions.

The proof can also be expressed in terms of time travel
and CTC spaces. Here the Liar’s paradox is typically pre-
sented as the grandfather paradox when one goes back in
time to kill his own grandfather and thus is preventing
his own birth. Proponents of time travel use quantum
(and sometimes classical) mechanics as a justification for
Novikov’s principle [47] which forbids all self-referencing
paradoxes. The justification is that there are no self-
referencing paradoxes in classical or quantum mechan-
ics (see also the no clone theorem of quantum mechanics
[48]) due to the symplectic structure contained in both of
them. (In phase space for example, closed self-consistent
evolution loops do exist.) However, analyzing its con-
sequences, this principle leads to infinities [44]. Gödel’s
incompleteness proof relies on multiplication to perform
the “ gödelization of proofs”, while the necessity of time
proof relies on the ability to have initial conditions lead-
ing to paradoxes (or the ability to extend the local pa-
rameterization of the initial conditions into globally in-
consistent self-interaction). To the extent that this is not
possible due to the symplectic structure of either classi-
cal or quantum mechanics, the infinities mentioned above
play a critical role in completing the proof6. The impos-
sibility of CTC spaces does not provide a mechanism for
which the creation of wormholes or CTC spaces is im-
possible. This remains an important open problem to be
solved under a complete unified theory.

The last (conceptual) problems in a hypothetical the-
ory of everything are the problem of free will and the to-
tal information of the universe. In a totally deterministic

[6] The proof of the necessity of time did not originate from an
attempt to prove the impossibility of time travel, but it naturally
led there. On this (easier) track, all that remained to be proven
was the rejection of Novikov’s principle. Since this principle is
sometimes understood as a tautology, the way to reject it was
not to prove it wrong directly, but to analyze its consequences
[44].

universe, free will is just an illusion while in a completely
chaotic universe, there is no controllability and hence free
will does not exist as well. Chaitin’s algorithmic informa-
tion theory shows that “if one has ten pounds of axioms
and a twenty-pound theorem, then that theorem cannot
be derived from those axioms” as Chaitin puts it [49].
So why do we have free will and how come we can dis-
cover the infinite world of mathematics if physics is truly
axiomatizable using only a handful of axioms?

The composability principle may provide the answer
to both of those questions. Here are the extremely high
level heuristic arguments.

First, free will is equivalent with the ability to set the
orientation of physics detectors [50] (for example the spin
orientation of an electron does not have a definite value
before measurement) which corresponds to the ability to
split a composed system (or generators and observables
for a single particle) into sub-systems in an arbitrary
fashion.

Second, in terms of information, quantum mechanics
is equivalent with having a continuous set of possibilities
and only a finite set of answers. The total information
of a system able to be decomposed in an infinite number
of ways is infinite and this is why our infinitely complex
universe can exist and mathematicians can continue to
discover new mathematical axioms. As a speculation, in
conjunction to this, hyperbolic quantum mechanics and
Penrose’s before the Big Bang ideas may explain the low
entropy at the time of the Big Bang and the arrow of
time.

B. Uniqueness of structural unification

Structural unification of non-relativistic quantum me-
chanics and relativity requires changes on either quan-
tum mechanics or relativity. Quantions take the alge-
braic route of changing quantum mechanics by remov-
ing the unnecessary division property. On the geomet-
ric route, adding division to relativity is impossible be-
cause it would either contradict the experimental evi-
dence (a Galilean era argument), or will violate the uni-
versal truth property (a post-Galilean era argument).
Therefore the geometric route to structural unification
is not allowed. Only within the boundaries of the more
“complicated” Hilbert space (relative to the Lorenz met-
ric signature), the non-relativistic quantum mechanics
can be changed (see Eq. 13 and its similarity with com-
plex numbers). Another route on the geometric track is
the conformal compactification of the Minkowski space
(using the SO(2, 4) group). In this case, a null ray is
mapped to a point, and a point on the Minkowski space
becomes a Riemann sphere transforming geometry into
complex numbers. As seen from quantionic research, the
SO(2, 4) group expands the quantionic centralizer, and
while the twistor space possesses shared relativity and
quantum mechanics characteristics, this unification goes
outside the regular Hilbert space and special relativity.
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In the original derivation of quantions [12] a mistake was
uncovered [15] and as a result the strength of the unique-
ness result was weakened. The only open problem at this
point is to seek a stronger proof of uniqueness of struc-
tural unification which would include large dimensional-
ity and this is currently under active research.

C. Discussion summary

Quantionic research is the latest attempt in construct-
ing a unified physics theory. The SU(3) symmetry re-
search effort in the quantionic program is the most active
area right now and holds the promise of unexpected new
insights. In particular, it may lead to the correct grand
unification theory (GUT), if nature does indeed have one.
Second quantization, renormalizability, nonlinear self-
interaction, spontaneous symmetry breaking, the links
with non-commuting geometry, canonical quantum grav-
ity, and string theory are not yet researched in this new
approach. If composability is to be taken seriously7 and
physics is axiomatizable, then either hyperbolic quantum
mechanics is a real physical phenomenon which may ex-
plain the positive cosmological constant, or some other
fundamental principle is yet to be discovered.

In the end, following the mathematics will lead us into
the right direction, but at this point, the author offers the
following conjectures: quantionic physics will be proved
always renormalizable8. The second (not so novel) con-

jecture is that physics is axiomatizable and Hilbert’s
sixth problem is completely solvable. Three new physics
principles which clearly separate the real physical world
from the Platonic world of mathematics were identified so
far: composability from quantionic research, deformabil-
ity principle from Lie group dimensional analysis, and
the universal truth property from the impossibility of
closed timelike curves. In addition to the Yang-Mills local
gauge symmetry principle, they may completely explain
the Standard Model and may possibly lead to GUT and
quantum gravity9.

Lacking the critical mass evidence to make it a con-
jecture but presented as a speculation backed by indi-
rect supporting results, split-complex hyperbolic quan-
tum mechanics may get to play an actual physical role in
the gravity unification problem and in the strong force.
Two core results are needed to settle this question: re-
search the hyperbolic equivalent of quantions, and the
feasibility of using split-complex numbers into a modi-
fied diffeomorphism invariant quantum gravity theory.
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