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We construct an operator for the Aharonov-Anandan phase for time independent Hamiltonians.
This operator is shown to generate the motion of cyclic quantum systems through an equation
of evolution involving only geometric quantities, i.e. the distance between quantum states, the
geometric phase and the total length of evolution. From this equation, we derive an operator for the
Samuel and Bhandari phase (SB-phase) for non cyclic evolutions. Finally we show how the SB-phase
can be used to construct an operator corresponding to a quantum clock which commutator with the
Hamiltonian has a canonical expectation value.
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Although experiments related to the geometric phase
are known since Pancharatnam’s work [1], the concept
of geometric phase was first recognized by M.V. Berry
[2]. In his seminal paper, Berry showed that an eigen-
state of a parameter-dependent Hamiltonian varying adi-
abatically and cyclically, acquires both the well known
dynamical phase and a gauge invariant phase that de-
pends only on the geometry of the path taken by the
Hamiltonian in the space of parameters. The mathemat-
ical explanation to this geometric phase was soon given
by Simon [3] whereas a generalization to Berry’s phase
was discovered by Aharonov and Anandan a few years
later [4]. The Aharonov-Anandan geometric phase (AA-
phase) arises when a quantum system undergoes cyclic
evolutions with time. The concept of geometric phase
has since then been generalized to non cyclic, non uni-
tary evolutions by Samuel and Bhandari [5] (SB-phase).
However the condition of cyclicality required by the AA-
phase, highly constrain the values of the geometric phase
itself, which eventually led to a new algebraic method for
the calculation of the AA-phase [6].

One of the fundamental axioms of quantum mechanics
is that to any measurable physical quantity, an observ-
able, corresponds an operator. Beyond the problems cur-
rently encountered with time-related quantities for which
the construction of the corresponding operator(s) is still
an unsolved question, researchers have produced opera-
tors for all other physical quantities. The AA-phase, as
well as the SB-phase have been observed and measured
experimentally in a large variety of systems ([7] and ref-
erences therein), thus confirming their status of observ-
ables. Accordingly, there should exist operators for these
quantities which construction is the main goal of this
paper. We start by deriving a new expression for the
AA-phase based on a preceding work by the same author
[6]. This expression, which appears as an expectation
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value, is then used to construct the corresponding oper-
ator and to derive a selection rule giving the allowed and
forbidden geometric phases depending on the state and
the Hamiltonian evolving it. In a second part, the role
of the operator for the AA-phase is explored through an
new equation of motion for cyclic quantum systems which
involves neither time nor any fundamental constant and
from which we obtain the operator for the SB-phase. We
continue by deriving an operator for the distance between
quantum states as measured by the Fubini-Study met-
ric along the curves solutions to Schrödinger equation
and the corresponding time-operator. We finish on some
properties of the time-operator and show how it is related
to a quantum clock.

The first step is the derivation of a new expression for
the geometric AA-phase. We start from the results found
in [6]. For a time independent Hamiltonian Ĥ , provided
that a state |ψ〉 undergoes a cyclic motion, the total AA-
phase it acquires after one complete period of evolution
is given by

γ = φ+
τψ
~
〈ψ|Ĥ |ψ〉, (1)

φ and τψ being respectively the total phase and the
period of the cyclic motion. These quantities depend
on both the Hamiltonian Ĥ and the state |ψ〉. Let
B = {|φk〉} be a basis in which Ĥ is diagonal and
Λ = {λk} the corresponding set of its eigenvalues. Let
Bψ ⊆ B be the smallest set of eigenvectors needed to
decompose the state |ψ〉 on B and let Λψ ⊆ Λ be the
corresponding set of eigenvalues. Finally, let ∆Eψ be
the set of non-zero energy spacings in Λψ, i.e. ∆Eψ =
{∆Ek,i = λk − λi}λk,i∈Λψ, λk 6=λi . Then from [6] we have

τψ = 2π~ LCM
(

∆E−1
ψ

)

, (2)

φ = 2π
[

m− λ LCM
(

∆E−1
ψ

)]

, (3)

where LCM means least common multiple and m is an
integer depending on λ. Note that Eq.(3) is valid for
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any λ ∈ Λψ. For the sake of clarity, we will use Lψ =

LCM
(

∆E−1
ψ

)

in the following.

To obtain an expression for the geometric phase γ,
we combine Eq.(1), Eq.(2) and Eq.(3). The expression
for the total phase φ is calculated using an arbitrary
λj ∈ Λψ. Moreover, the expectation value 〈ψ|Ĥ |ψ〉 is
evaluated on B to be

〈ψ|Ĥ |ψ〉 =
∑

λi∈Λψ

λi|φi|2, (4)

where φi = 〈φi|ψ〉. By combining these expressions we
obtain the following expression of the total AA-phase for
a normalized state |ψ〉 undergoing cyclic evolutions

γψ = 2πmj + 2π
∑

λi∈Λψ

(λi − λj)Lψ |φi|2, (5)

mj being an integer that depends on λj . Let us now
define pψ,ij = (λi − λj)Lψ. Independently of the state
under consideration, the coefficients pψ,ij have the fol-
lowing properties :

pij = −pji, (6)

pij = pkj − pki, (7)

pij = mi −mj . (8)

The last equality is obtained by equalizing Eq.(5) calcu-
lated with two different λj . From the above properties,
we obtain a new expression for the total AA-phase accu-
mulated by the state |ψ〉 after one cyclic evolution

γψ = 2π
∑

i

pψ,ij |φi|2 [2π], (9)

γψ = 2π
∑

i

mi|φi|2 [2π], (10)

with both m and p integers. Furthermore, the above for-
mulas Eq.(9) and Eq.(10) are valid in the diagonal basis
of the considered Hamiltonian Ĥ and therefore, cannot
be simultaneously correct for two non commuting Hamil-
tonians Ĥ and Ĥ ′.

Let us now turn to the problem of finding an oper-
ator for the total AA-phase. Interestingly, Eq.(9) (and
equivalently Eq.(10)) can be used to define such an op-
erator, that we call the geometric-operator Ĝψ (the no-
tation is explained in the following), which expectation
value for states undergoing cyclic evolutions when sub-
jected to some time independent Hamiltonian is the total
AA-phase

γψ = 〈Ĝψ〉. (11)

From Eq.(9), the expression of Ĝψ in the basis B is given
by

Gψ,kl = 2πpψ,kjδk,l, (12)

or equivalently

Ĝψ =
∑

i

2πpψ,ij |φi〉〈φi|. (13)

From Eq.(1) and Eq.(3), the relation to the Hamiltonian
is the following

Ĝψ =
τψ
~

(Ĥ − λj), (14)

with λj ∈ Λψ. This operator depends on the considered
state |ψ〉 as both τψ and Λψ depend on |ψ〉. To empha-

size this state-dependence, we denote Ĝψ the geometric
operator for state |ψ〉. This operator is necessarily the
same for any state |ϕ〉 located on the path C solution
to Schrödinger equation passing through |ψ〉 and could
equivalently be denoted Ĝϕ∈C . Thus, although Ĝψ is
linear once |ψ〉 has been specified, an operator acting on
the whole space of states and with expectation value the
AA-phase is non-linear and accepts no matrix represen-
tation. Only the state dependent form Ĝψ accepts one
(given in Eq.(13)).

Before studying the role of the geometric-operator in
the motion of cyclic quantum systems, let us consider
some consequences of Eq.(9). First, note that a simpli-
fication of Eq.(9) occur for a two-level states. As shown
in [6] two-level quantum states (i.e. Λψ contains exactly
two different elements) always undergo cyclic evolutions,
whatever the time independent Hamiltonian considered.
Using the definition of the pji coefficients of Eq.(9), we
see that p1

0 = −1 if λ0 < λ1 and p1
0 = 1 otherwise. This

observation leads to

γ = −2π|φ0|2 = 2π|φ1|2 [2π], (15)

if λ0 < λ1 and all the signs are reversed otherwise. Be-
yond these signs, the only Hamiltonian dependence of
this equation is contained in the |φi|2. This is consis-
tent with the fact that the dynamics of any two-level
system can be mapped on the dynamics of a spin-1/2
particle in a fictitious magnetic field. Indeed this consid-
eration entail that, given that we work in the eigenbasis
of the Hamiltonian, the geometric phase for a spin-1/2
particle is the same than for any other two-level Hamil-
tonian (up to a sign). The geometric-operator Ĝψ for
|ψ〉 = eiΦcos(θ/2)|φ0〉 + sin(θ/2)|φ1〉 takes a particularly
simple form

Ĝψ =

(

±2π 0
0 0

)

. (16)

Then, Eq.(15) or Eq.(11, 16), immediately give the well
known result

γ = ±π(1 − cos(θ))[2π]. (17)

A second notable consequence of Eq.(9) gives a rule of
selection for geometric-phases. Let Ξ be a set of time-
independent Hamiltonians that all commute with one an-
other and |ψ〉 a normalized state that can be expressed
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in the common eigenbasis B of Ξ as

|ψ〉 =
1√
ω

∑

|φi〉∈Bψ

αie
iθi |φi〉, (18)

with all αi integers, θi real numbers, and ω is the small-
est positive integer satisfying Eq.(18). Note that such a
form exists if and only if all |〈φi|Ψ〉|2i∈[0,N ] are rational

numbers. Thus we will say that states obeying Eq.(18)
accept a rational decomposition on B. From the fact that
the pji coefficients of Eq.(9) are integers, it follows that
states accepting a rational decomposition on B, can only
acquire AA-phases of the form

γψ =
2nπ

ω
[2π], n integer, (19)

whatever the Hamiltonian(s) of Ξ and/or the number of
consecutive cyclic evolutions considered. This shows that
only the geometric phases that are rational multiples of

π are allowed for state accepting a rational decompo-
sition on B. This is an intrinsic property of both the
state |ψ〉 and the set Ξ. Note that the rationality of
γψ/π implies a finite number of cyclic evolution giving
different geometric phases. At the opposite, a state |ϕ〉
that does not accept a rational decomposition on B can
only acquire AA-phases that are irrational multiples of

π when subjected to cyclic evolution(s) by some Hamil-
tonian(s) of Ξ. Interestingly this implies in principle the
possibility of distinguishing any number of cyclic evo-
lutions from any other. Indeed since γϕ/π is irrational,
(pγϕ)[2π] 6= (qγϕ)[2π], for any integers p 6= q representing
the number of cyclic evolutions elapsed. However, it can
be shown that there will always be a number q′ of cyclic
evolutions so that the resulting geometric phase is arbi-
trarily close to γϕ[2π] which means that distinguishing
an infinite number of cyclic evolutions would experimen-
tally require an infinite precision in the measurement of
the geometric-phase.

Let us now focus on the role of the geometric oper-
ator in an equation of motion for cyclic quantum sys-
tems. To know how evolves the state of a quantum sys-
tem, a parameter evolving along the path C solution to
Schrödinger equation in the Hilbert space is required.
This parameter is generally chosen to be the time. But
in a paper about the evolution of quantum systems [8],
J. Anandan and Y. Aharonov, gave the expression of the
instantaneous speed of evolution of a quantum system
|ψ(t)〉 in the space of quantum states as

ϑψ(t) =
∆Ĥψ(t)

~
, (20)

where ∆Ĥψ(t) = (〈ψ(t)|Ĥ2|ψ〉−〈ψ(t)|Ĥ |ψ(t)〉2)1/2 is the
uncertainty in energy of the state |ψ(t)〉. For time inde-
pendent Hamiltonians, this speed in a constant of mo-
tion and the passage from a time parametrization to a

distance parametrization of the Schroödinger equation is
straightforward. In [8], J. Anandan and Y. Aharonov,
showed indeed that the distance s as measured by the
Fubini-Study metric in the space of quantum states since
the beginning of the unitary evolution along a curve C is
given by

s =

∫

C

∆Ĥ(t)ψ∈C
~

dt ≡
∫

C

ϑψ(t)dt, (21)

which reduces to s =
∆Ĥψ∈C

~
t for time independent

Hamiltonians, i.e. the time elapsed times the speed of
evolution. This allows to write a simple equation of evo-
lution equivalent to the Schrödinger equation but using
the distance s as parameter

i~
∂|ψ〉
∂s

ds

dt
= Ĥ |ψ〉. (22)

Eq.(21) gives ds
dt =

∆Ĥψ
~

and, for states undergoing cyclic

evolution, we can use Eq.(14) to get ∆Ĝψ = τψ∆Ĥ/~.
These manipulations lead to

i∆Ĝψ
∂|ψ(s)〉
∂s

= (Ĝψ +
λτψ
~

)|ψ(s)〉. (23)

which yields, by dropping the λτψ/~ constant term [9],

i∆Ĝψ
∂|ψ(s)〉
∂s

= Ĝψ|ψ(s)〉. (24)

Now since the evolution is cyclic in time, it is also cyclic
in distance, i.e. there exists a period in length Sψ such
that, n being an integer, |ψ(nSψ + s)〉 = |ψ(s)〉 upto a
phase factor. Logically Sψ = τψϑψ thus Sψ ≡ ∆Gψ and
the motion of a cyclic quantum system is govern by

iSψ
∂|ψ(s)〉
∂s

= Ĝψ |ψ(s)〉, (25)

iτψ
∂|ψ(t)〉
∂t

= Ĝψ |ψ(t)〉. (26)

in the two parametrizations. These two equations are
valid for any quantum state undergoing cyclic evolu-
tions and only for them, or in other terms, their solu-
tions are the cyclic solutions to Schrödinger equation.
Note that Eq.(25) can be considered as a purely geo-
metric equation of motion as it involves only geomet-
ric objects, the geometric-operator (or equivalently the
geometric-phase), the distance between quantum state
as measured by the Fubini-Study metric and the total
length of a cyclic evolution. Now we can use Eq.(25) to
get another expression for the AA-phase as

γψ = iSψ〈
∂

∂s
〉, (27)

and a new expression for the geometric-operator for state
|ψ〉 as

Ĝψ = iSψ
∂

∂s
. (28)
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A simple example of a solution to Eq.(25) is given
by a two level system. The geometric operator is
given by Eq.(16) and let the initial state be |ψ〉 =
eiΦcos(θ/2)|φ0〉+sin(θ/2)|φ1〉. The state at distance s is
then

|ψ(s)〉 = e
±i s

|φ0||φ1| eiΦcos(θ/2)|φ0〉 + sin(θ/2)|φ1〉. (29)

where we have used Sψ = ∆Ĝψ = 2π|φ0||φ1|. The only
Hamiltonian dependence is contained in the decomposi-
tion of the initial state on the eigenbasis {|φ0〉, |φ1〉}.
Again, this is consistent with the possibility of mapping
the dynamics of any two level systems on the one of a
spin-1/2 in a magnetic field.

To find an operator for the SB-phase, we now intro-
duce a third parametrization of the Schrödinger equa-
tion based on the instantaneous geometric phase γ(s),
which is the geometric phase accumulated at a given dis-
tance s. This quantity can be calculated following the
work by Samuel and Bhandari [5] who generalized the
notion of geometric phase to non necessarily closed evo-
lutions of quantum systems. It is found to be simply
γ(s) = sγψ/Sψ. This together with Eq.(28), lead us to

propose the instantaneous geometric-operator Ĝ(s)

Ĝ(s) = is
∂

∂s
, (30)

which is state independent. This is a generalization of
the operator for the AA-phase and corresponds to the
SB-phase in the case of time independent Hamiltonians.
In this parametrization we can contruct an operator Ŝ for
the distance elapsed since an arbitrary point |ψ(s = 0)〉
and so that s = 〈ψ(s)|Ŝ|ψ(s)〉. Indeed, since the instan-
taneous geometric phase fulfill γ(s) = sγψ/Sψ. Thus
s = γ(s)Sψ/γψ and we propose

Ŝ(s) = Ĝ(s)
Sψ
γψ
. (31)

Upon using Eq.(30) and remarking that Sψ/γψ =
∂s/∂γ(s), we obtain

Ŝ(s) = is
∂

∂γ(s)
. (32)

This is consistent with the fact that 〈i ∂
∂γ(s) 〉 = 1, which

can be demonstrated using Eq.(30). It is now straightfor-
ward to obtain a similar expression for a time-operator
T̂ with the parameter t entering Schrödinger equation as
expectation value. Indeed using the speed of quantum
evolution we have T̂ (s) = Ŝ(s)/ϑψ, which gives on using
s/ϑψ = t and s = γ(s)Sψ/γψ,

T̂ (t) = it
∂

∂γ(ϑψt)
, (33)

T̂ (s) = is
τψ
γψ

∂

∂s
. (34)

Note that, since the geometric-operator is Hermitian and
since Sψ is real, Eq.(28) leads to (i∂/∂s)† = i∂/∂s.
Therefore, s, τψ and γψ being real, we conclude using

Eq.(34) that T̂ is Hermitian. Interestingly the commuta-
tors of T̂ with Ĥ and Ĝψ can be calculated and are found
to be

[Ĥ, T̂ (s)] = −~
∂

∂γ(s)
, (35)

[Ĝψ, T̂ (s)] = −τψ
∂

∂γ(s)
, (36)

with, as 〈i ∂
∂γ(s)〉 = 1, the following expectation values

〈[Ĥ, T̂ (s)]〉 = i~, (37)

〈[Ĝψ, T̂ (s)]〉 = iτψ, (38)

remarkably the first quantity is both time and state in-
dependent. Furthermore, at t = τψ , the operator T̂ (t)

becomes T̂ (τψ) = iτψ
∂
∂γψ

which, on using the relation

between geometric phase γψ and energy ǫ = 〈Ĥ〉 − λ,
τψǫ = ~γψ (see Eq.(14)) leads to

T̂ (τψ) = i~
∂

∂ǫ
. (39)

This operator has already been proposed for time in
quantum mechanics, see [10].

We emphasize that the operators Ŝ and T̂ proposed
here correspond respectively to the distance and the
time elapsed since an arbitrarily chosen initial state. In
other terms if the expectation value of T̂ was obtained
on a ensemble of quantum systems at two different mo-
ments, then the difference between those expectation val-
ues would be the time elapsed between the two series of
measurements. This could therefore be used as quan-
tum clock measuring the time of unitary Schrödinger-
evolution.

We thank M. Bhattacharya for starting our interest
in geometric phases and for helpful discussions and P.
Meystre whose support allowed this work.
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