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Regular spiking in asymmetrically delay-coupled FitzHugh-Nagumo systems
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Abstract— We study two delay-coupled FitzHugh-
Nagumo systems, introducing a mismatch between the
delay times, as the simplest representation of inter-
acting neurons. We demonstrate that the presence of
delays can cause periodic oscillations which coexist
with a stable fixed point. Periodic solutions observed
are of two types, which we refer to as a “long” and a
“short” cycle, respectively.

I. INTRODUCTION

Being an inherent feature of a human, laziness was
always that force which engendered invention of new
devices, supposed to work instead of people. And
in our epoch of vast technological progress, there are
thousands of useful gadgets already existing. Though
recently the science is advancing with seven-league
strides, there are still a great number of phenomena
which are waiting for a better insight. One has to
admit that none of the existing complex machines
and powerful computers can substitute a single human
brain. Which means that we still do not draw close
enough to clearing up a mystery of how this accumu-
lation of grey matter really works.

Since the end of the last century, study of neural
networks picks up speed. In order to describe its in-
tricate behavior, the brain is often represented as an
ensemble of coupled nonlinear dynamical elements,
capable of producing spikes and exchanging informa-
tion between each other [1–3]. Such neural popula-
tions are usually spatially localized and contain both
excitatory and inhibitory neurons [4].

Some researchers, starting from the simplest case of
two interconnected neurons, show how more compli-
cated dynamics emerges in larger sets [5]. The others
explore extremely complex network of subnetworks,
focusing on the hierarchically clustered organization

of interacting excitable elements [6].
Most studies base on the present oscillatory behav-

ior of individual system elements, which then pro-
duces observable patterns due to collective synchro-
nization [7–9]. Thus, for modeling a single neuron,
phase oscillators are often used. For instance, to char-
acterize mutual dynamics of cells in certain brain ar-
eas, responsible for giving the onset to Parkinson’s
disease or epilepsy, a well-known Kuramoto model is
considered [10–13].

Here, we rely on the works by FitzHugh [14] and
Nagumoet al. [15] who have shown that for describ-
ing the main characteristics of a neuron dynamics, it
is sufficient to consider a 2-dimensional system. The
latter is also widely used nowadays as one of the sim-
plest models for examining brain dynamics and has
been essentially studied in many papers (see, for in-
stance, [16–19] and references therein).

Having an intention to move from simple to com-
plex, we consider below a set of equations consisting
only of two identical FitzHugh-Nagumo subsystems
(see also [20, 21]). Their interaction is described by
a linear coupling term which includes delays (τ1 and
τ2), accounted for the fact that the signal transmission
between neurons is not instantaneous:

ǫẋ1 = x1 −
x3

1

3
− y1 + C(x2(t − τ2) − x1(t))

ẏ1 = x1 + a

ǫẋ2 = x2 −
x3

2

3
− y2 + C(x1(t − τ1) − x2(t))

ẏ2 = x2 + a

(1)

Here (x1, y1) and (x2, y2) are the phase coordinates
for the first and the second subsystem respectively.
The parametera determines whether the individual
neuron is in the excitable regime or exhibits self-
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sustained periodic firing. The time scale parameterǫ
is chosen during the numerical simulations to be0.01,
which results in fast activator variablesx1, x2 and
slow inhibitor variablesy1, y2. For further simplic-
ity, the coupling strengthC is also taken symmetric.

II. SKETCH DYNAMICS

A. Fixed point

As it was already mentioned, the dynamics of an
isolated 2-dimensional FitzHugh-Nagumo system is
already well-investigated. Its single fixed pointP2 =
(−a, a3/3−a) is stable fora > 1 and exhibits a super-
critical Hopf bifurcation when the excitability param-
eter crosses unity, which implies periodic spiking for
a < 1. Provided thata > 1, the system is excitable,
namely, if a sufficient external impulse is added, it
emits a spike and then rests again in theP2 state.

For our numerical simulations, we takea = 1.3,
so that the individual subsystems are in the ex-
citable regime. The coupling term of the consid-
ered form is canceled for a fixed point orbit, thus,
the 4-dimensional equilibriumP4 = (−a,−a +
a3/3,−a,−a + a3/3), being existent for the uncou-
pled system, persists as well for the Eq. (1). Changing
the coupling strength or the delays also does not influ-
ence its stability, as it was recently shown [20].

B. Regular spiking

However, besides the stable fixed point solution,
the system (1) can also produce periodic oscillations.
Intuitively, this phenomenon can be explained as fol-
lows. One can perturb, for instance, the first neuron,
so that it emits a spike. Then, with the delayτ1 this
perturbation reaches the second neuron, which pro-
vokes it to spike as well. Again with the delayτ2 the
second neuron “informs” the first one that it has been
stimulated, which causes a new run of the cycle, and
the process repeats (see schematic representation in
the Fig 1(a)).

Fig. 1
SCHEMATIC REPRESENTATION OF PERIODIC FIRING IN

A SYSTEM WITH DELAY. (A) “ LONG” CYCLE; (B)
“ SHORT” CYCLE
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Fig. 2
PHASE PORTRAITS((A) AND (B)) AND TIME SERIES

((C), (E) AND (D), (F)) FOR LONG AND SHORT CYCLES

RESPECTIVELY. ON THE TIME SERIES PLOTS, SOLID

LINE CORRESPOND TOx1,2 AND DASHED LINE

CORRESPOND TOy1,2. THE PARAMETERS ARE

a = 1.3, ǫ1,2 = 0.01, C = 0.5, τ1 = 3, τ2 = 1.

Though, in the numerical simulations, starting from
various initial conditions, we observed periodic solu-
tions of two different types, which are referred to in
the following as a “long” and a “short” cycle respec-
tively. The former is of the periodT ' τ1 + τ2, while
the latter has the periodT ' (τ1 + τ2)/2.

Again, intuitively, to obtain this second solution
one would add an initial impulse not to one, but to
both neurons, then roughly the short cycle dynamics
can be plotted as in the Fig. 1(b). One could remark
that, in this case, the initial perturbation for the second
neuron should arrive before the delayed signal of the
first one, namely fort ∈ (0, τ1). Although there are
infinitely many variations for choosing the time mo-
ment for the second impulse, in our numerical simula-
tions we were able to observe only that pattern, which
is depicted in the Fig. 1(b).

In the Fig. 2, we plot the phase portraits and the
data series for these two attractors for certain fixed
parameter values.

III. PERIODIC SOLUTIONS: DEEPER INSIGHT

The next point to investigate in connection with the
periodic firing patterns obtained, is a question whether
these solutions exist for all couplings. Is their stability



region large enough or such solutions appear only for
separate parameter values?

A. “Long” cycle

As it was already noticed in [20], such oscillations
appear through a saddle-node bifurcation of limit cy-
cles, creating a pair of a stable and an unstable peri-
odic orbit. In the Fig. 3(a), the bifurcation curves of
this attractor type are plotted in the(C, τ1)-plane, for
τ2 = 0.5, τ2 = 1 andτ2 = 2. It is easy to conclude,
that with increasingτ2 the bifurcation curve moves to
the left, closer to the wall valueC = 0.
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Fig. 3
BIFURCATION CURVES FOR APPEARANCE OF THE

(τ1 + τ2)-PERIODIC SOLUTION(LONG CYCLE) IN

(C, τ1)-PLANE. (A) DIAGRAMS FOR DIFFERENTτ2

VALUES. (B) DIAGRAM FOR THE CASE OFτ1 = τ2 = τ .
(C) OVERLAY OF THE FIGURES(A) AND (B). VERTICAL

DASHED LINE INDICATES A CRITICAL VALUE OF C .

This implies that for some large enough coupling
periodic firing still exists even if one of the delays is
close to zero. For comparison, in the Fig. 3(b), the bi-
furcation curve for the caseτ1 = τ2 is present. When
overlaying the two graphs of (a) and (b) (Fig. 3(c)),
one can notice that the critical coupling value (indi-
cated by a vertical dashed line) does not depend on
the delay times difference, but only on their sum (see
Appendix).

In support to this last statement, we depict in the
Fig. 4(a, b) phase portraits and time series for three
different periodic solutions, namelyτ1 = τ2 = 2,
τ1 = 3, τ2 = 1 and τ1 = 3.5, τ2 = 0.5, while the
sum of delays is always 4 and the coupling strength
C = 0.5. As it could be clearly seen, the phase tra-
jectories coincide perfectly as well as the time series.
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Fig. 4
PHASE PORTRAIT AND TIME SERIES FOR3 DIFFERENT

LONG CYCLES WITHC = 0.5.

We also would like to examine the question how
the cycle period is related to the coupling terms. The
Fig. 5(a) represents several plots of the orbit periodT
vs. τ1, while τ2 = 0.5, 1, 2 andC = 0.5.

In the Fig. 5(b), dependence of the period onC is
depicted (τ2 is the same as in (a), andτ1 is chosen so
that the sum of delays does not change). As it is ex-
pected (cf. [20]),T increases linearly withτ1. How-
ever, it decays with increasingC.
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Fig. 5
EVOLUTION OF THE PERIOD FOR THE LONG CYCLE

SOLUTION DEPENDING ON THE COUPLING TERM. (A)
PERIOD T VS. τ1 FOR DIFFERENT FIXED VALUES OFτ2 ,
C = 0.5. (B) PERIOD T VS. C , FOR DIFFERENT VALUES

OF τ1 AND τ2 SO THAT τ1 + τ2 = 4.

B. “Short” cycle

For the short cycle, the situation is almost the same.
Again it is born through a saddle-node bifurcation. In
the Fig. 6(a), we also plot the bifurcation curves, sepa-
rating the regions of existence and absence of the short
cycle, in the(C, τ1)-plane (as earlierτ2 = 0.5, τ2 = 1
andτ2 = 2). Again with increasingτ2 the bifurcation
curve moves to the left, however, in comparison with
the long cycle the short one occurs for larger values of
coupling strength. And after laying over the curve for
the case of equal delaysτ1 = τ2 (Fig. 6(b)), one can
notice that the criticalC depends only on the delays
sum (see Fig. 6(c)). The phase portraits and the time
series for three different periodic solutions, plotted in
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Fig. 6
BIFURCATION CURVES FOR APPEARANCE OF THE

(τ1 + τ2)/2-PERIODIC SOLUTION(SHORT CYCLE) IN

(C, τ1)-PLANE. (A) DIAGRAMS FOR DIFFERENTτ2

VALUES. (B) DIAGRAM FOR THE CASE OFτ1 = τ2 = τ .
(C) OVERLAY OF THE FIGURES(A) AND (B).

the Fig. 7, coincide as well.
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Fig. 7
PHASE PORTRAIT AND TIME SERIES FOR3 DIFFERENT

SHORT CYCLES WITHC = 0.5.

Finally, in the Fig. 8(a),(b), the graphs disclosing
the relation between the period and the coupling term
configuration are presented. As in the case of the long
cycle, T is a linear function ofτ1 and has a gradual
decrease onC.

IV. CONCLUSIONS

In the present paper we have considered two asym-
metrically delay-coupled FitzHugh-Nagumo systems
for modelling interacting excitable neural elements.
Such an “intrusion” gives rise to the regular spiking
in the system investigated. For sufficiently large cou-
pling strength and delays, one can observe periodic
solutions of two different types (long and short cy-
cles), depending on whether only one subsystem is
perturbed initially or both. The long cycle period ap-
proximately equalsτ1 + τ2, while the short one has a
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Fig. 8
EVOLUTION OF THE PERIOD FOR THE SHORT CYCLE

SOLUTION DEPENDING ON THE COUPLING TERM. (A)
PERIOD T VS. τ1 FOR DIFFERENT FIXED VALUES OFτ2 ,
C = 0.5. (B) PERIOD T VS. C , FOR DIFFERENT VALUES

OF τ1 AND τ2 SO THAT τ1 + τ2 = 4.

period of about a half of this amount.
Furthermore, the numerical simulation, as well as

the mathematical anlysis, shows that phase portraits
and time series of these solutions do not depend on
the difference of delays, but only on their sum.
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APPENDIX

A. TRANSFORMATION TO SYMMETRIC COUPLING

Consider the general system

ẋ1 = f(x1) + C(x2(t − τ2) − x1(t)), (2)

ẋ2 = f(x2) + C(x1(t − τ1) − x2(t)). (3)

Without losing generality assume thatτ1 > τ2 and
denoteτ ≡ (τ1 + τ2)/2 and∆τ ≡ (τ1 − τ2)/2, so
thatτ1 = τ +∆τ andτ2 = τ −∆τ . Then introducing
a new functioñx2(t) = x2(t + ∆τ) we use

x2(t − τ2) = x̃2(t − τ)

in eq. (2) and rewrite the equation (3) as follows

˙̃x2(t) = f(x̃2(t)) + C(x1(t + ∆τ − τ1) − x̃2(t))

= f(x̃2(t)) + C(x1(t − τ) − x̃2(t)),

which leads to

ẋ1 = f(x1) + C(x̃2(t − τ) − x1(t)),

˙̃x2 = f(x̃2) + C(x1(t − τ) − x̃2(t)).
(4)

This corresponds to a system with symmetric delay
coupling, and the functioñx2(t) fully coincides with
the functionx2(t) of the initial problem, but with a
shift along the time axis by∆τ = (τ1 − τ2)/2.

We also note that the inhibitor variablesy1, y2 of
the system (1) depend only onx1(t) andx2(t), respec-
tively. Therefore, omitting them in the above analysis
does not influence the resulting conclusion.
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