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The inversion states of a saturated three-level traveling-wave quantum 
paramagnetic amplifier have been investigated under conditions of bistable 
resonator pumping. The equations of motion for the vectorial order parameter 
have been obtained using adiabatic elimination of fast variables. These 
equations are a generalization of the scalar two-level Drummond model for the 
case of a three-level quantum active system. Isolated branches of the constant 
of inversion have been found from stationary solutions of equations for the 
vectorial order parameter. A analysis of bifurcations in the saturated quantum 
amplifier with bistable pumping has been represented with full details.  

 
 

The saturation of transitions between quantum levels of active centers is of paramount 
importance at the excitation of states with inverse population difference of energy levels. This 
mechanism is the basis for operation of many devices of quantum electronics [1, 2] and other 
equipments of this type (for example, acoustical quantum amplifiers and  phasers generators [3, 4], 
radio-frequency masers based on nuclear magnetic resonance [5] and other active systems [6]). 

The investigation of nonlinear processes in optical quantum systems led to the experimental 
disclosure of effects of bistability and multistability [7] in the middle 70s. In the case of bistability there 
are two different stable states of a nonlinear optical resonator at the same set of control parameters. At 
the multistability there are more than two such stable states. The initial interest in optical bistable 
systems has been roused by the assumed possibility of their workability as a component basis for 
computers of a new generation [8], since the switching time between states of a bistable cell of the 
nonlinear optical resonator can be small (less than 10-9 s).  

The microwave analogue of the optical bistability has been also observed in a number of cases 
in paramagnetic [9] and gas [7,10] operating media in the frequency range from 10 to 85 GHz, however 
the typical switching times for microwave bistable systems turn out to be much more orders greater than 
for optical ones. Therefore, to develop computer logic elements, the microwave bistable cells can not be 
used. Nevertheless the investigation of bistability in microwave systems is not only of scientific interest 
but sharply defined practical interest although from the absolutely different point of view. 

The fact is that the ramification of states of a nonlinear system (the bistability and multistability 
of this phenomenon are particular cases) is the rule rather than the exception, if the corresponding 
nonlinear parameter C  exceeds the specific threshold. For the optical bistable system this threshold is 
well known =optC 4, where optC  is the parameter of cooperativity [7, 11] being proportional to the 
resonator figure of merit.  

The similar threshold exists as well as for the microwave nonlinear resonator that was shown, 
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for example, for acoustic resonators with saturable paramagnetics[12]. It has been found experimentally 
[13, 14] that when in use a high-Q pumping resonator in the traveling-wave quantum paramagnetic 
amplifier (maser) the bistability appears on a frequency of pumping. The experiments outlined have 
been carried out using the amplifier with an active andalusite crystal at the signal frequency 

=ΩS 43 GHz and the pumping frequency ≈ΩP 150 GHz [13, 14]. The electrodynamic system in use 
ensured the traveling-wave mode on the frequency SΩ  and at the same time the standing-wave mode on 
the pumping frequency PΩ  (the signal and pumping fields had mutually orthogonal polarizations; at 
that the grid transmitting the signal field and reflecting the pumping field had been used) [13, 14]. As 
experiments shown [13, 14], at the same pumping power there are two stable stationary branches of the 
maser system containing a high-Q pumping resonator and a saturable paramagnetic. And so the 
inversion can be either large (the constant of inversion MKK ≈ , where MK  is the maximally accessible 
value K ) or small ( MKK << ) depending on the prehistory of the system, that had been observed in the 
experiments [13, 14]. 

At that there is no way to get out of bistability without reducing the Q-factor of the pumping 
resonator. At the same time, to obtain MKK ≈  at a lower Q-factor of the pumping resonator it is 
necessary to give a higher pumping power to the system than at the high Q-factor of this resonator. It 
can turn out to be absolutely unacceptable from the point of view of the normal operation of the 
cryogenic system (all quantum amplifiers operate at low temperatures [1, 2]; the pumping power 
capability is usually less than 1 W). In breaking the normal cooling of the crystal for inversion there is a 
need in more powerful pumping at a rise in temperature it is more difficultly to saturate the spin-system, 
since the time of longitudinal relaxation reduces). This concerns actually the pumping on the frequencies 
of the millimeter wave band, where the time of longitudinal relaxation is anyway quite small even at the 
liquid helium temperature.  

Thus, the branching of stationary inversion states (particularly bistability) is an unavoidable 
concomitant of the nonlinear system containing a high-Q resonator with saturated paramagnetic. As a 
matter of fact, it is the price which we have to pay for possibility of reduction of the pumping power 
keeping the high constant of inversion. If the quantum amplifier works in normal conditions, that is, a 
weak signal comes to its input and intensive noise is absent, then the behavior of the pumping bistable 
system is entirely controllable. At the beginning of the experiment the necessary branch of inversion 
should be chosen and after that the amplifier works in the prescribed regime as long as it is 
necessary [13, 14].           

However, under the real-life conditions there is always noise (including intensive one) which 
can also come to the input of the quantum amplifier resulting in more or less short-time saturation of the 
amplifier in the signal channel. Thus, for a certain time the three-level active system turns out to be 
saturated by the fields of two frequencies, at that, this saturation is nonadditive since two saturated 
quantum transitions has a common spin level. It is obvious that in this case the three-level system should 
be considered as a whole and not just the two-level pumping subsystem as it has been done in [13, 14]. 
In what way does the pumping system behave in this case? After all the state of the pumping system, 
and so the current value of K , depend on the prehistory of this system. Does the amplifier come back to 
the normal operating mode after stopping the saturating noise? What kind of pumping mode should be 
chosen for self-recovery of elevated inversion? The need for solution of these important practical 
questions has defined the problem definition of this paper. 

The purpose of this work is to study the influence of saturation through the signal channel on the 
inversion states formed by the resonator pumping under conditions of its bistability. An analytical model 
of a class “B” active (inverse) system [6] is the subject of inquiry, where the times of longitudinal 
relaxation exceed essentially all other characteristic times of transient processes.     
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1. Matter for scientific inquiry 
 
A simple model of the traveling-hypersound-wave quantum paramagnetic amplifier (the wave-

length of hypersound is of order of 1 µm) with the bistable electromagnetic resonator pumping (in 
millimeter wave band) has been chosen as a concrete subject for investigation. This model consists of 
the Fabry-Perot quasi-optical electromagnetic resonator with sizes being much more than the pumping 
wave-length. The resonator is filled with dielectric monocrystal with paramagnetic centers (the number 
of spin levels is not less than three) and with high hypersound transparency. One of acoustical axes is 
directed along the surface of the mirrors of the Fabry-Perot electromagnetic resonator. The hypersound 
wave vector is directed, in turn, along the acoustical axis. In this case the traveling-wave mode of 
hypersound is provided through the signal channel and the appearance of bistability is possible in the 
pumping channel because of nonlinearity of paramagnetic susceptibility and inner back-coupling in the 
resonator at the pumping frequency [7]. 

A similar model describes the electromagnetic traveling-wave maser with delay of a signal wave 
at the expense of a high dielectric susceptibility of crystal. Lastly, under conditions of electromagnetic 
traveling-wave of the signal the resonator pumping can be also realized on the basis of other systems, for 
example, under conditions when polarizations of electromagnetic fields of the signal and pumping are 
perpendicular to each other and there is an electrodynamics system (for example, grating) permitting us 
to provide the reflection of the pumping field and the transmission of the signal field [13, 14]. 

In the system under consideration the saturation factor ),,( YCDZ  on the spin transition of the 
pumping can be an ambiguous function of the normalized input amplitude Y  of the microwave 
pumping field. For this purpose the condition >C 4 should hold, where C  is the parameter of 
cooperativity [7, 11] having the form =C ( ) =MC QQ 40 4ξ  [15 - 20] in our case. Here ( )0

CQ  is the 
loaded Q-factor of the pumping resonator out of the regions of the magnetic resonance; MQ  is the 
magnetic Q-factor [1, 2] of the considered dissipative system (paramagnetic and microwave resonator) at 
the pumping frequency in the absence of saturation of the spin transitions; ξ  is the designation for the 
parameter of cooperativity in papers [16-20]. The value D  is the population difference normalized to its 
thermodynamic equlibrium value on the pumping transition. 

We will suppose that the spin system of the active paramagnetic medium possesses three energy 
levels 1E , 2E , 3E  (the numeration is in ascending order of the energy), at that =− 13 EE PΩ , 

=− 12 EE  SΩ . In the absence of detuning in the traveling-wave maser, where anyone high-Q 
resonators at the frequency of signal and frequency of no-load transition =ΩF SP Ω−Ω  are 
unavailable, we can restrict ourselves to the scalar adiabatic model of bistability. 

This model based on the subjection of fast variables [21] has been suggested for the first time by 
Drummond for optical bistable systems [22]. The model mentioned has been studied in details for the 
case of microwave pumping systems of paramagnetic masers and phasers in the absence of spin-
transition saturation of the signal [16-20]. Within the frame work of this model it is necessary that all 
longitudinal relaxation times )(

1
kT , },,{ FSPk ∈  (that is on the pumping, signal, and free-running 

transitions) are much more than both the transverse relaxation times )(
2

kT  (usually in the active medium 
of the traveling-wave maser all transverse relaxation times are the values of one order:  

≈)(
2

kT ≈2T 10–7–10–8 s) and the photon life time CAVT  in the pumping resonator (there are no other 
resonators in this model). Under such conditions the intensive external disturbance with the frequency 

SΩ  can be taken into account in the form of some renormalizations for the variables of state of this 
system. We consider such case in details below. 
2. Unsaturated traveling-wave maser 
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To be specific, we restrict ourselves to the case of the phonon traveling-wave maser (phaser 
hypersound amplifier) with a quasi-optical resonator pumping as in [19]. However the most of the 
results obtained below are valid for electromagnetic signal traveling-wave masers with resonator 
pumping as well. From now on, we use the modification of a bistable pumping model which has been 
suggested before in [12] and studied in papers [16-20] for the case of an unsaturated traveling-wave 
maser. The initial model [16-20] is semiclassical, as the most analogous models of optical bistability [7]. 
It is based on the Bonifacho-Lugiato approximation for the splitting variables of state [11], where it is 
assumed that the condition of ( ) →MC QQ 0 =const ξ  is fulfilled when 

 
( ) ∧→ )0/1( 0
CQ )0/1( →MQ . 

 
In this approximation D  (the population difference on the saturated spin pumping transition 31 EE ↔ , 
normalized to its thermodynamic equlibrium value) is the parameter of the order. The inversion 
coefficient K  on the unsaturated signal transition 21 EE ↔  is determined in accordance with the 
current value of D  (see formulae (6) and (11) in paper [16]). The model [16-20] is the summarizing of 
the two-level adiabatic Drummond model (see formulae (5) in paper [22]) for the case of a three-level 
system with detuning on the pumping frequency and magnetic field, and with the second unsaturating 
field. If the detuning mentioned above is lacking and in our three-level system the signal field remains 
unsaturating as before, formulae (6) and (11) from paper [16] can be put in the following simple form:  
 

2

2
)(

1 )21(
1

CD
DYD

dt
dDT P

+
−−= ;     (1) 

1)],(1)[1( )( −−+= YCDKK st
iMi ,    (2) 

 
 where ( ))(sup YKK

Y
M

∞→
=  is the maximal value of the inversion coefficient in the three-level active 

system, depending on the certain properties of the traveling-wave maser spin-system (for example, in the 
case of the approximate equation of the probabilities of the spin-lattice relaxation for all the spin 
transitions of the active medium [2]; 1−= LK M , where SPL ΩΩ= 2 ); iK  is the branches of the 

inversion coefficient corresponding to the stationary solution )( st
iD  of equation (1) and index i  runs 

through the values =i  1, 2, 3 in the general case (the numeration is in ascending order of K ). However 
the physically realizable branches )( st

iD  and accordingly )( )( st
ii DKK =  are only these ones for which 

the following inequalities are valid:     
 

1)],,([Re0 )( ≤< YCLD st
i ;  

M
st

i KDK <≤− )]([Re1 )( ; 

0)](Im[)],,(Im[ )()( == st
i

st
i DKYCLD . 

 
The values L , C , Y  are the control system parameters in the space 3R + , where +R  is the set 

of nonnegative real numbers. To realize inversion it is necessary that the inequality 1>L  is fulfilled and 
the parameters C  and Y  can possess any nonnegative values bounded above by the characteristic 
values maxC  and maxY  for each certain traveling-wave masers (in particular 2

)(
1max /TTY P<< ). Recall 

that, by definition, SDK −=  [2], where SD  is the population difference on the signal spin transition 
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31 EE ↔ , normalized to its thermodynamic equlibrium value. At the effective pumping the almost 
complete saturation of the pumping transition 31 EE ↔  is achieved, i.e. ε=D , where 1<<ε . Hence, 
on the signal transition 21 EE ↔  the value of the inversion coefficient which is close to the maximal one 

MS KDK ≈−= , is realized. In the case when pumping is lacking 1=SD , i.e. 1−=K . Thus the 
dynamics of the three-level traveling-wave maser with an unsaturating signal and bistable pumping 
assume the minimal specification in the space ⊂⊗ cd ,0,0 MM 31 RR ++ ⊗  (index “0” points out the 
absence of saturation through the signal channel). Here d,0M  is the space of dynamic variables of the 
traveling-wave maser, which in this case is one-dimensional one, }{M ,0 Dd = ; c,0M  is the control 
parameter space of the traveling-wave maser },,{M ,0 YCLc = . The extended expressions for C  and Y  

have the following form (see [18], where the formulae for the values C4≡ξ  and 2YP ≡  are 
represented)  

 
2 2 2

2 2(2 1)P P CAV CAV BC f NT T s kπ γ θ= Ω + ; 

RCAV
P

WP TTTTHY 22
)(

1γ= . 
 
Here Pγ  is the effective gyromagnetic ratio on the transition 31 EE ↔ ; CAVf  is the fill factor of the 
pumping resonator; N  is the concentration of the active centers; s  is the spin (for our three-level 
system =s 1); Bk  is the Boltzmann constant; θ  is the temperature of the thermostat; WH  is the 
amplitude of the field magnetic component PΩ  at the input of the pumping resonator; RT  is the delay 
time of the electromagnetic field on the length of the pumping resonator. The considered model of the 
traveling-wave maser is valid when the following ratios are fulfilled [18]:  
 

<<RT CAVT ;  
<<ΩP θBks )12( + ;  

<<Ω RPT ( ) CQCAV 40 ;  

<<WH CAVR
P

P TTT /2)( 1)(
2

−γ ; 

RCAV
P TTTT ,,2

)(
1 >> . 

 
These inequalities bound definitely the region of this model validity of the traveling-wave maser 

(in paper [22] only the inequality RCAV
P TTTT ,,2

)(
1 >>  has been represented). 

In this way in the absence of signal transition saturation the stationary inversion states iKK =  
are described as the linear transformation of the roots of the Drummond equation  

 
2 ( )

( )
( ) 21 0

(1 2 )

st
st

st
Y DD

CD
− − =

+
.     (3) 

 
Using the standard methods of the catastrophe theory [23], from (3) we find that at the simultaneous 
achieving both the critical values for the cooperativity parameter =C =]2[

0C 4  and the pumping 

parameter == ]2[
0YY 33 , the co-dimension bifurcation 2 takes place in our system (the upper index in 

the square brackets points out the co-dimension bifurcation, the inferior index “0” indicates the absence 
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of saturation of the three-level system on the signal channel). At >C ]2[
0C  the co-dimension bifurcations 

1 are realized at the points ]1[
,0 ↑Y  and ]1[

,0 ↓Y  (where >↑
]1[

,0Y ]1[
,0 ↓Y ) corresponding to the jump-like transitions 

31 KK →  and 13 KK → , that is from the smaller stationary value of the inversion coefficient to the 
larger one and vice versa.  

Expression (2) can be also written in more obvious form 
 

1),(
1),(

)(

)(

+
−

=
YCZ

YCZKK st
i

st
iM

i .    (4) 

 
Hence it follows that for the lower (smooth) branch ( 1=i , )(

1
)( stst ZZ = ) the considerable inversion can 

be obtained only at comparatively large MK , while for the upper (hard) branch ( 3=i , 
)(

1
)(

3
)( ststst ZZZ >>=  ) the inversion is large even at 1≈MK . As it follows from equation (1), the 

middle branch with 2=i  is unstable in view of that 0
2
>=DDλ , where 

2DD=λ  is the Lyapunov index of 

system on the branch 2K (see [16, 18]): 
 

== 2DDλ
1

2

)(
2

2
1

)(
2

)(
1

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂−

Y
D

YT
D stst

. 

 
The possibility to decrease the input amplitude of the pumping field Y  to the value 

<↓
]1[

,0Y <<Y ]1[
,0 ↑Y  after transferring (at ≥Y ]1[

,0 ↑Y ) from the lower inversion branch to the upper one 

( 31 KK → ) is the most essential advantage of the bistable pumping system. After that the traveling-wave 
maser operates in the stationary mode, where to keep the inversion with MKK ≈ , a smaller pumping 
power is required than in the case of common monostable pumping [16-20]. 

We note that the unidirectional transitions 31 KK →  and 13 KK →  of the considered bistable 
system are macroscopic (in contrast to quantum transitions between spin levels 31 EE ↔ , 21 EE ↔ , 

32 EE ↔ ). Recall that in the framework of model (1), (2) the value K  is determined exactly by the 
value D , not making an reverse impact on the latter, that is )(DKK =  but )(KDD ≠ . In other words 
the population difference D  on the pumping transition 31 EE ↔  is the only dynamic variable of the 
problem for the linear quantum amplifier, whereas the population difference KDS −≡  on the signal 
transition 21 EE ↔  is the linear transformation of the population difference D  on the pumping 
transition 31 EE ↔ . 

 
 

3. Saturated traveling-wave maser 
 
If a considerable saturation of 21 EE ↔  transition takes place on the signal cannel, model (1), 

(2), certainly, becomes inadequate, i.e. the spin system gets considerable disturbance at the same time on 
two spin transitions with the frequencies PΩ  and SΩ ; at that the spin level 1E  is common for these 
transitions (i.e. the disturbances are non-additive).    
Hence, the task of determination of the values D  and K  must be self-consistent, at that the mentioned 
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values start to depend not only on L , C  and Y  but on the normalized intensity J  of the saturated 
acoustic signal. Thus, in the general case the desired motion equations must have the following form:  
 

⎪
⎩

⎪
⎨

⎧

=

=

,),,,;,(

;),,,;,(

)(
1

)(
1

YCLJKDf
dt
dKT

YCLJKDf
dt
dDT

K
S

D
P

    (5) 

 
where the expression for J  can be written in the form [19]  
 

=J ( ) ( ) 2
1 2 1[ / 2]S S

UT T ω =
0I
I .    (6) 

 
Here )(

1
S

Uω  is the acoustic analogue of the so-called Raby frequency [7], =)(
1

S
Uω UUγ ; I  is the 

microwave acoustic signal intensity; 2
2

)(
1

23
0 2 S

S
S TTvI Φ′= ρ ; Uγ  is the acoustic analogue of the 

common gyromagnetic ratio, =Uγ SUk Φ ; == UU kk SS vΩ ; Uk  is the wave vector of 

hypersound; U  is the acoustic signal amplitude; SΦ  is the parameter of the spin-phonon bond at the 
signal frequency; Sv  is the hypersound speed, ρ′  is the crystal density. For the case of the trigonal 
crystal field and longitudinal hypersound propagating along the crystallographic triad axis c  (the active 
medium of the ruby phaser [2-4]) in accordance with [24] at 0),( ≠∠ cH  the expression for SΦ  takes 
the form 
 

))1(3(
2
1 2

33 αβαβ ψψψψ +−=Φ sssG zS , 

 
 where 33G  is the tensor component of the spin-phonon interaction [24]; zs  is the projection of the spin 

operator s  onto the axis Oz ; αψ  is the wave function belonging to the spin level αE ; βψ  is the 

wave function which is complex-conjugated with respect to the wave function βψ  belonging to the 

spin level βE .  
 For longitudinal )(l , fast transverse )(tf , and slow transverse )(ts  hypersonic waves 
propagating along the crystallographic twofold axis a  (the active medium of the phaser is in 

32
2 OAl:Ni +  [25]), as it follows from [24], at cH || , i.e. at 1, ±=βαψ , the expressions for SΦ  take 

the form 
 

;)(
4
1 2

16
2

1211
)( GGGl

S +−=Φ  

( ) 2
14 11 12 15 16[ sin (1/ 2)( )cos ] ( sin cos ) ;ts

S G G G G Gχ χ χ χΦ = + − + +  
( ) 2

14 11 12 15 16[ cos (1/ 2)( )sin ] ( cos sin ) ,ts
S G G G G Gχ χ χ χΦ = − − + −  

 
 where χ  is the angle between the polarization vector of transverse hypersound and the axis a . 

We emphasize that the value K  in (5) is the same dynamic variable like D , and J  is a new 
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control parameter (for clearness all the control parameters in the right-hand parts of equations (5) are 
separated by semicolons). Hence the stationary branches of the vector (two-dimensional) parameter of 
the order of ),(def KD=∆  can undergo bifurcations at the sufficiently slow scan of the vector of the 
control parameters ),,,(def YCLJ=Θ  in the four-dimensional space. At that, as a rule, the values )(

1
PT  

and )(
1

ST  do not differ so much from each other that system (5) can be reduced to one equation. On the 

contrary, in a number of cases we can consider ≈)(
1

PT ≈)(
1

ST 1T  [2]. Thus, here we can not return to 
some scalar order parameter using the standard procedure of subjection of variables [21].  

Equations (5) represent the minimal model of the traveling-wave maser with saturation through 
the signal channel. In the general case we should take into account the relaxation field of the spin system 
as well combined action in respect with the combined action of the fields PΩ  and SΩ  occurring at the 
frequency of free-running transition =ΩF SP Ω−Ω . However, in view of the fact that for the traveling-
wave maser the inequalities ≡kr <<)(

1
)(

2 / kk TT 1 are typical, where },,{ FSPk ∈  (usually =kr 10–6–10–

8, see, for example, [1, 2, 20]) and the considered system does not possess a resonator at the frequency 
=ΩF SP Ω−Ω , for all that we can restrict ourselves to the two-dimensional parameter of the order of 

),( KD=∆ . For that we should take into consideration the maximal acceptable values of parameters Y  

and J  for this model of a traveling-wave maser, namely <<YrP
21 1, <<JrS 1, that is usually executed in 

real traveling-wave masers with much more reserve.  
The similar in appearance situation (although in the different context) takes place for a three-

level laser generator as well [26], where in the absence of off-tunings the minimal model of generation 
also is based on some two-dimensional parameter of the order of δ . Nevertheless there is a fundamental 
difference between our system and laser system presented in paper [26]. For the traveling-wave maser 
with saturation through the signal channel the condition >>1T 2,TTCAV  is fulfilled (class "B" non-
equilibrium system [6]), whereas in [26] it has been considered the case when >>CAVT 21,TT , that 
corresponds to the class "A" non-equilibrium system [6]. In paper [26] the inverse values =σ CAVT1 , 

=||γ 11 T , =⊥γ 21 T  have been used. In these designations the class "A" system is determined by the 

inequality ⊥<< γγσ ,|| . 
Therefore, in model [26] the amplitudes α  and β  of in-resonator pumping and signal fields are 

main dynamic variables (certainly the laser signal appears in the resonator without even an external 
saturating field). In our model the population difference D  and ≡K SD−  on the spin pumping and 
signal transitions are main variables. Therefore in [26] the parameter of the order of ),(def βαδ =  relates 

to the field characteristics of the system, whereas our parameter of the order ∆  represents mainly the 
condition of the active medium (paramagnetic center system). In other words in paper [26] the fast 
relaxing population differences of the system adjust to the behavior of the pumping and signal fields, 
whereas in our system, on the contrary, the slowly relaxing population differences determine the global 
dynamics and the field variables adjust to them. The similar difference of the lead processes in the class 
"A" lasers and in the class "B" paramagnetic active systems has important consequences not only from 
the point of view of the adequate model creation of a saturating traveling-wave maser but for 
interpretation of the nature of nonlinear effects in other class "B" systems, for example, in a non-
autonomous acoustic quantum generator [25].  
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4. Motion equation 
 
We find the explicit form of the functions ),( Θ∆Df  and ),( Θ∆Kf  at the mentioned restrictions 

and at the configuration of the traveling-wave maser being similar to the one described in [19], but at 
simultaneous saturation of the traveling-wave maser through the signal and pumping channels. Since, in 
contrast to paper [19], there is not any detuning (in pumping frequency, magnetic field and so on) in the 
considered model, the constitutive equations of our task are simplified in comparison with equations 
(2,a) from paper [19] and comes to the balanced motion equations (see, for example, [2]): 

 

∑
≠

−+−=
im

imimimimim
i WnWnFnn

dt
dn ])[( ,    (7) 

 
 where ≡in NN i ; iN  is the filling numbers of the spin levels iE , at that =++ 321 NNN N ; 

=imW ])(exp[ θBmimi kEEW −  is the probabilities (in a unit of time) of spin interaction with heat 

phonons [24] determining the times of the longitudinal relaxation )(
1

kT  (where },,{ FSPk ∈ ) for each of 

the spin transitions mi EE ↔ , at that <<imW 1
2

1 , −− TTCAV ; imF  is the probabilities (in a unit of time) of 
spin system interaction with the saturating fields ( =imF miF ), in our case, taking the following form 
 

)(
12112 2 S

S TJFFF === ;    (8) 
)(

13113 2 P
P TZFFF === ;    (9) 

03223 === FFFF ,    (10) 
 
at that the essential distinction between SF  and PF  takes place. The fact is that J  is the control 
parameter depending on the spin system (on the signal channel the traveling-wave mode of operation is 
realized). At the same time the value Z  depends not only on the control parameters but on the current 
state of the spin system. Indeed, owing to the feedback appearing in the pumping resonator, as it follows 
from equations (7) in paper [19], when the detuning is available and after elimination of transverse 
magnetization of the spin system, the abridged wave equation for the pumping field takes the following 
form  
 

CDXXY
dt
dXTCAV 22 −−= ,    (11) 

 
 where ZX =  is the normalized amplitude in-resonator pumping fields [7,11] which does not depend 
evidently on J  (but it depends on )(JD , that is typical for the all class "B" active systems) to the 
Bonifacho-Lugiato approximation and in the absence of detuning. Later on, in view of the fact that 

<<CAVT ≈−1
imW ,)(

1
ST )(

1
PT , at the joint examination of equations sets (5) and (11) the right-hand 

member of equation (11) can be set equal to zero. Then  
 

2

2

)21(
)(

CD
YDZZ

+
== .    (12) 
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Thus at the adiabatically slow change of the control parameters the factor of the pumping 
transition saturation, which is proportional to the squared amplitude of the in-resonator field, “watches” 
the current state of the population differences ),,,( YCLJD  determined, in turn by equations (7). Let us 
consider these equations in detail. Expressing 1n , 2n , 3n  in terms of 13 nnnP −≡  and 12 nnnS −≡  and 
taking into consideration that =++ 321 nnn 1 we bring equation (7) to the following form 

 

PSSPP
P RFnFn

dt
dn

+−−= 2 ;    (13) 

SPPSS
S RFnFn

dt
dn

+−−= 2 ,    (14) 

 where 

)(
3
1

0 SSPPP nnR ρρρ −−= ;    (15) 

)(
3
1

0 SSPPS nnR σσσ −−= .    (16) 

 
The explicit expression for jρ , jσ , where },,0{ SPj∈ , is found in the following form: 
 

3113322321120 22 WWWWWW −+−+−=ρ ; 

313221231312 422 WWWWWWP ++−++=ρ ; 

313221231312 2222 WWWWWWS −−+−+=ρ ; 

3223311321120 22 WWWWWW +−−+−=σ ; 

313221231312 2222 WWWWWWP +−−−+=σ ; 

313221231312 422 WWWWWWS −++++=σ . 
 
 The formulae (13) - (16) describe the saturation in the three-level traveling-wave maser for 
arbitrary θη Bkk kΩ= , where },,{ FSPk ∈ . To simplify the problem, we assume that 
 

≡− )0(
kn ≡+ )12( skη <<+Ω θBk ks )12( 1, 

 
 where )0(

kn  are the population difference under the thermodynamic equilibrium conditions of the spin 

system 0== JY  (under the condition all )0(
kn  are negative ones). Moreover, we restrict ourselves to the 

case when WWWW === 231312  (this means that ≈)(
1

kT 1
1 )3( −≡ WT , },,{ FSPk ∈ ). Then jρ , jσ  are 

brought to the simple expressions 
 

;3;3 00 WW SP ησηρ −=−=     (17) 
;9;9 WW SP == σρ     (18) 
0;3 =−= SFP W σηρ .    (19) 

 
Let us introduce the dimentionless time 1Tt=τ . Then, using ≡D )0(

PP nn , ≡K )0(
SS nn− , we 

obtain the extension of equations (1) and (2) in the case of an intensive field of the signal saturating the 
spin transition 21 EE ↔  in the traveling-wave mode  
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L
JK

CD
DYDf

d
dD

D 4)21(
1),( 2

2

+
+

−−=Θ∆=
τ

;     (20) 

,
)21(

1),( 2

2

CD
DLYJKKf

d
dK

K +
+−−−=Θ∆=

τ
     (21) 

 
where 1

)(
1 TT k ≈  and there is an obvious restriction on the maximal value of the saturating signal 

intensity <<J 21 TT . Strictly speaking there is a restriction on J  and from below: 

≡> )0(
FnJ θBF ks )12( +Ω , however, to our approximation 1)0( <<Fn , i.e. at the consideration of the 

saturation effects we can assume that 0min ≈J . 
 
5. Stationary states 

 
Equations (20) and (21) describe the dynamics of the traveling-wave maser with a saturating 

signal in the space ⊂⊗ cJdJ ,, MM 42 RR +⊗ , what is minimally necessary to the investigations of non-

stationary (transition) processes in the active system, that is the dependences =∆ )(t∆ . Here 
},M K{DJ,d = ; },,,{M YCLJJ,c = ; R  is the set of real numbers. As regards the stationary states of the 

system (20), (21), they can be represented as the renormalized solutions of Drummond’s equation (3) 
with the additional control parameter J  as shown below. We introduce the coefficients of 
renormalization Cκ  and Yκ : 

 

LJ
J

C )1(4
1

+
−=κ ; 

)1(4
1

+
−=

J
J

Yκ . 

 
Then, using the substitutions CC Cκ=

~ ; 22~ YY Yκ= ; CDD κ=~ , at 0/ =dtd  we obtain from (20) and 
(21) Drummond’s modified equation 
 

0
)~~21(

~~~1
2

2

=
+

−−
DC

DYD     (22) 

 
and the expression for the stationary values of the inversion coefficient in the traveling-wave maser with 
bistable pumping and saturation through the signal channel 
 

( )
J

D
J

K

K

st
i

Y

M

i +

−Θ−
+

=
1

1)(~1
)(
1 )(

κ .    (23) 

 
Formula (23) can be represented in the more obvious form  
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1)(~

1)(~
)(

1
1

)(

)(

+Θ

−Θ
⋅

+
= st

i

st
i

Y

M

i Z

Z
J

K

J
K κ      (24) 

or 
 

 .
1)()(

1)(
1

1
2

2

+Θ
−Θ

⋅
+

=
iY

iM
i XJ

XK
J

K
κ

     (25) 

 
Here )(~ st

iD  is the solution to equation (22) and the values ≡Θ)(~ )( st
iZ 1)](~[ 1)( −Θ −st

iD  are the stationary 
branches of the renormalized saturation factor of the pumping transition, which, obviously, can be 
represented as well as modified ratio (12) 
 

2)(

2
)(

)](~21[
)(~

Θ+
=Θ st

iC

Yst
i DC

YZ
κ
κ . 

 
As it follows from (22) the bifurcations of co-dimension 2 in the subspace of the control 

parameters },{ YC  have the form  
 

)(3;),(4 2123]2[1]2[ JkYLJC YJCJ
−− == κ , 

 
and the bifurcations of co-dimension 1 for Y  (at fulfilling const},,{ =CLJ ) take the following form 
 

1 2[1] (1) (2)
,

1 ( , ) ( , )
2 ( ) J JJ

Y

Y J L J L
J

µ µ
κ↑↓

⎡ ⎤= ±⎣ ⎦ , 

 where 
 

 1),(~10),(~ 2)1( ++= LJCLJCJµ ; 

 3)1( ]4),(~)[,(~ −= LJCLJCJµ . 
 

The explicit expressions for ),,,(~ YCLJD st
i  or ),,,(~ )( YCLJZ st

i  are very complicated in contrast 
to the explicit expressions given above for the bifurcation sets. It is more convenient to use inverse 
dependences such as the Bonifacho-Lugiato formula (see [11] and also [15-19]). In particular, we obtain 
all three stationary branches ≡)(~ )( YZ st

i
2
iY Xκ  from (22) in the form of the single-valued inverse 

function )~( )( st
Y ZY φ= , where  

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+= )(

)(
)(

~1
21

~
)~( st

i

C

Y

st
ist

Y Z
CZZ κ

κ
φ , 

 
from whence we find the formulae permitting us to draw the amplitude dependences of the stationary in-
resonator pumping field CLJYX ,,)(  and YCLJX ,,)(  using the following inverse single-valued functions 
(the indices st  are omitted later on): 
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⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
+

−+

⎥
⎦

⎤
⎢
⎣

⎡
+

−
+=

2

)1(4
11

)1(4
12

1
X

J
J

LJ
JC

XY ,     (26) 

and 

)34)((142

]2)1)([(4
3

2

XXYCX
L

CXXXYJ
+−−⎟

⎠
⎞

⎜
⎝
⎛ −

−+−
= .     (27) 

 
 

6. Analysis of the dependences K(J)  
 
Ratio (26) is the extension of the Bonifacho-Lugiato formula in the case of the three-level 

system with two saturating fields and formulae (25) and (27) give the set of equations for determining 

L,C,YJK )( . In general case scanning the surface sections of the bifurcations by the hyperplane 

},,{ YCL , give four different regions pO  (where }IVIII,II,I,{∈p ) of the saturated traveling-wave 

maser behaviour, which are separated by three critical points qY , where }IIIII,I,{∈q . To be specific, 
the next case when const=L , const=C  is considered. Then at the different Y  the dependences 

)(JK  can vary in the following way: 
- region I  is the monostability region IO  with a small, or even negative, inversion coefficient of 

the saturated signal transition MKK <<  (the only branch 
I

)( OYJK ∈  is a “precursor” of the lower 

branch 
II

)(1 OYJK ∈   see below). This region is located on the interval I0 YY << , where the critical 

point IY  corresponds to the case when 32 KK =  (the appearance of a hard branch of the inversion 
coefficient at ε=J ); 

- region II  is the anhysteresis bistability region IIO  on the interval III YYY << , where the 
critical point IIY  corresponds to the case when 12 KK =  (to the collision of the separatrix with the 
smooth branch of the inversion coefficient). In the region IIO  there is the only bifurcation of co-
dimension 1 of ]1[

↓J -type but there is no bifurcation of ]1[
↑J -type. In this region 0Im 3,2,1 =K  at 

)(0 stJJ ↓<<  and 0Im 1 =K , 0Im 3,2 ≠K  at )( stJJ ↓> . Here the transition 13 KK →  which is realized at 

the collision of the upper stable branch )(JK  with the separatrix 2K , is permitted, whereas the inverse 
transition 31 KK →  is forbidden. Correspondingly, in this region the branch )(3 JK  is isolated at the 
slow scanning of J  and at ]1[)0( ↓<= JtJ ; 0/ >∂∂ tJ  the inverted state 3K  is overturned at the point 

]1[
↓J  in an irreversible way. After this all the time the inverse scanning of J  keeps the traveling-wave 

maser on the low-effective branch MKK <<1 . The hard effect on the system (shaking the control 
parameters [12, 19, 20]) can be the only way to overcome this trap. Thus it is the most dangerous case 
from the point of view of the normal functioning the traveling-wave maser; 

- region III  is the hysteresis bistability region IIIO  on the interval IIIII YYY << , where the 
critical point IIIY  corresponds to collapse of the bistable state. In the region IIIO  there is already both 
bifurcations of co-dimension 1, namely ]1[

↓J  and ]1[
↑J . At the slow scanning of J  and at ]1[)0( ↓<= JtJ ; 
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0/ >∂∂ tJ  the inverted state 3K , as well as in the region IIO , is overturned at the point ]1[
↓J . However 

in contrast to the region IIO  the inverse scanning of J  in the region IIIO  allow us to come back from 
the low-effective branch 1K  to the operating branch 3K , for which MKK ≈3  at 0≈J ; 

- region IV  is the region IVO , where the inversion monostable mode of the saturated traveling-

wave maser is realized as well as in the region IO , but now the unique branch 
IV

)( OYJK ∈  is the 

continuation of the upper branch 
III

)(3 OYJK ∈  at the transition Y  over the point IIIY .  

 
 

7. Output computation of K(J) 
 
Fig. 1-4 shows the dependences of )(JK  obtained for the case when =C 5 and =L 2 in the 

bistability regions IIO  (Fig. 1-2) and IIIO  (Fig. 3-4).  
 

  
Fig. 1. The bistability of the inversion coefficient 

in the saturated traveling-wave maser at 
L = 2, C = 5, Y = 6.0 (the region IIO ). The 
upper branch (with a high inversion 
coefficient) is isolated, the middle one is 
unstable, and the lower branch has 
practically zero-order inversion 

Fig. 2. The bistability of the inversion coefficient 
in the saturated traveling-wave maser at 
Y = 6.1 (i.e. in the case when IIY Y ε= − ), 
when the approach to the hysteresis 
bistability region becomes visible. The 
upper branch has non-zero inversion 

 
 

As follows from the figures the qualitative change in the behavior of )(JK , corresponding to 
the point IIIY , takes place on the interval 6.1 ≤≤Y 6.2. In Fig. 1-2 one can see clearly that the upper 
branch )(3 JK  is isolated, that is, at increasing J  it collides with the separatrix (the unstable middle 
branch 2K ) and breaks at =J )(]1[ YJ↓ , where ≈↓

]1[J 0.2 (Fig. 1) or ≈↓
]1[J 0.8 (Fig. 2). Owing to the 

image point of the system jumps on the lower branch 1K  (the inversion state is overturned by the 
saturating signal). There after the initial operation state (with the excited branch 3K ) presents no 
possible to restore in the traveling-wave maser, if we change only the value J  and do not vary the other 
parameters, i.e. the image point of the system is situated on the branch 1K  all the time.  
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Fig. 3. The hysteresis bistability at Y = 6.2 (the 

region IIIO ). The parameters L and C are 
the same as in Fig. 1 

Fig. 4. The hysteresis bistability in the region IIIO  
at Y = 6.3 (i.e. in the case when IIIY Y ε= − ), 
when the hysteresis loop narrows sharply 
along the axis K  before outputting the 
system into the monostability region IVO  
(for which IIIY Y> ). The parameters L and C 
are the same as in Fig. 1 

 
 
As noted above now the inversion state can be thrown over on the upper branch 3K  only by 

means of hard excitation of the active system. For example, the exciting impulse should be given on the 
pumping channel [12, 19]. At that this impulse must be given every time after overturning the inversion 
state. Note that the analogous situation can emerge as well in the phaser generator with a high-Q 
pumping resonator [25], where instead of the effect of the external saturating acoustic field on the 
frequency SΩ , the self-impact of increasing induced phonon radiation takes place on this frequency.  

Indeed the phonon field on the signal frequency (more specifically, on the eigen frequencies of 
the acoustical resonator of the phaser system), increasing at the self-excitation of such a generator, can 
lead to the overturn of the inversion from the upper branch 3K  to the lower branch 1K . After this, the 
generation can either break (at 31 KKK tr << , where trK  is the threshold value of the inversion 
coefficient at which the generation starts) or its power is very low due to the small 
( trtr KKKK −<<−< 310 ) self-excitation threshold crossing at 31 KKK tr << . At the pulse pumping in 

the system 32
2 OAl:Ni +  the considerable (more than an order) increase of phaser generation intensity, 

which has been observed in paper [25], can be explained naturally on the basis of the model considered 
here. The pulse pumping restores the high value of 3KK ≈  at regular intervals, after the self-induced 
overturn of the inversion on the branch 1K , because of this the time-average intensity of the generated 
phonon flow increases considerably in comparison with the case of the unmodulated pumping of the 
phaser generator. 

As a result of such hard periodic effect on the active system [12, 19], obviously, such 
considerable increase in the intensity of the generated phonon flow occurs, which we has discovered 
experimentally [25] in the phaser system 32

2 OAl:Ni +  on fast transverse waves at =ΩS 3 GHz (the 
carrier pumping frequency ≈ΩP 41.3 GHz, the period of the pulse pumping modulation ≤mT 50 µs). It 

should be added to this that the statement about the absence of generation in 32
2 OAl:Ni +  at trlin KK >  
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[27] (here linK  is the linear inversion coefficient), adduced by Peterson and Jacobsen before, can be also 
concerned with the effect of the inversion overturn on the branch 1K  when 31 KKKK lintr ≈<< , 
considered in this paper. 

At =C 5, =L 2 and ≥Y 6.2 (Fig. 3-4) the region, in which the bistability of the inversion 
coefficient is realized, is shifted to the direction of the greater values of J , at that the second critical 
point ]1[]1[

↓↑ < JJ  appears, corresponding to the collision of the branch 1K  with the separatrix ( ≈↑
]1[J 0.5 

in Fig. 3 and ≈↑
]1[J 2.3 in Fig. 4). In this case the bistability has a hysteresis nature what ensures the self-

recovery of the initial mode of the traveling-wave maser after stopping the saturation through the signal 
channel ( 0→J ). 

 
 

8. Discussion of the results 
 
The results under discussion show that in order for to avoid the “seizure” of the active system on 

a lower inversion branch and at the same time to operate at a minimally possible pumping level, the fine 
adjustment of the control parameters (first of all the input amplitude of the pumping field Y) is essential 
for a traveling-wave maser with the high-Q pumping resonator and external saturating signal. For the 
phaser generator in which the saturating field arises in the active crystal without an external signal, the 
proper pulse pumping mode can be chosen, ensuring the periodical recovery of the high inversion 
coefficient. 

Using the above-mentioned system 32
2 OAl:Ni +  [25] as an example, we estimate the values of 

the hypersound intensity I  at which the values of the parameter ≈J 10 are reached. Using ratio (6) and 
experimental data from paper [25] for the fast transversal hypersound propagating along the axis a  at 

=J 10; =′ρ 4 g/cm3; =)(tf
Sv 6.7⋅105 cm/s; =Φ

2)(tf
S 270 cm–2 = 1.08⋅10–29erg2; =)(

1
ST 0.02 s;  

=2T 10–8 s, we obtain ≈I 1.2 mW/cm2. 
Thus, the “overturn” of the inversion state on the branch with a small K  can occur even at 

comparatively low intensities of the saturating signal. Therefore, in our experiments [25] the intensity of 
the induced phonon radiation in the system 32

2 OAl:Ni +  without modulation, is relatively low and, as it 
can be assumed, the impulse modulation ensures the periodical return onto the branch with a large 

3KK ≈ . As a result, the average power of the phaser generation (on transverse waves) in the system 

32
2 OAl:Ni +  increases by more than an order [25] at the pumping modulation, although in this case the 

average pumping power decreases significantly. 
In the Bonifacho-Lugiato standard model (two-level system with one saturating field) in the 

absence of detuning of the active system, the isolated branching states are forbidden, as well-known 
from [7, 11], but the bictability is always hysteresis in nature. From this point of view, the behavior of 
the three-level system with two saturating fields is much more complicated even for the above-
considered case of the balanced approximation and adiabatic exclusion of field variables. Note that the 
model of the three-level traveling-wave maser considered in this paper can be a basis for studying 
nonlinear processes in other active systems (excepting microwave and maser ones) [5, 6, 21, 28] in 
which there are three-level centers and mechanisms ensuring the appearance of one or another threshold 
phenomena as well. The obtained results correlate somewhat with conclusions of paper [29] in which 
from the quite different point of view the questions about the possibility of strong, irreversible, and 
mutual influence of the registered objects and measuring system are touched upon. Finally, it should be 
noted that the approach developed in this paper, can be summarized even for the more complicated case 
of two-resonator systems [25, 30-32], with the purpose of the further study of mechanisms of non-
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stationary and induced phonons in autonomous and non-autonomous phasers as well as in other class 
"B" multilevel active systems in which the longitudinal relaxation time of the active (excited) medium 
exceeds significantly the life times of electromagnetic and acoustical excitations.  

 
 

9. Conclusions 
 
For the model of the quantum amplifier with a signal traveling wave and high-Q (bistable) 

pumping resonator, it is shown that the saturation through the signal channel (for example, under the 
influence of noise) can lead to the step-wise transition of the active system on the branch with a low 
inversion coefficient. The analytic expressions describing this threshold effect have been obtained. The 
conditions have been found, under which the self-recovery of a high inversion occurs after stopping 
noise. The conditions, under which such a self-recovery does not take place, have been determined. The 
recommendations for choosing the quantum gain modes with the inversion self-recovery have been 
given. The possible mechanism of quantum generation with the periodical and forced inversion recovery 
has been considered, explaining the effect of increase in the intensity of phaser radiation discovered 
experimentally before in the system 32

2 OAl:Ni +  [25]. 
The author thanks Makovetsky E.D. and Makovetskiy S.D. for the invaluable help in the work as 

well as Lavrov S.S. for giving a chance to become familiar with his article [29] before its publication, 
the results of which activate the fulfillment of these investigations. 
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