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The inversion states of a saturated three-level traveling-wave quantum
paramagnetic amplifier have been investigated under conditions of bistable
resonator pumping. The equations of motion for the vectorial order parameter
have been obtained using adiabatic elimination of fast variables. These
equations are a generalization of the scalar two-level Drummond model for the
case of a three-level quantum active system. Isolated branches of the constant
of inversion have been found from stationary solutions of equations for the
vectorial order parameter. A analysis of bifurcations in the saturated quantum
amplifier with bistable pumping has been represented with full details.

The saturation of transitions between quantum levels of active centers is of paramount
importance at the excitation of states with inverse population difference of energy levels. This
mechanism is the basis for operation of many devices of quantum electronics [1, 2] and other
equipments of this type (for example, acoustical quantum amplifiers and phasers generators [3, 4],
radio-frequency masers based on nuclear magnetic resonance [5] and other active systems [6]).

The investigation of nonlinear processes in optical quantum systems led to the experimental
disclosure of effects of bistability and multistability [7] in the middle 70s. In the case of bistability there
are two different stable states of a nonlinear optical resonator at the same set of control parameters. At
the multistability there are more than two such stable states. The initial interest in optical bistable
systems has been roused by the assumed possibility of their workability as a component basis for
computers of a new generation [8], since the switching time between states of a bistable cell of the
nonlinear optical resonator can be small (less than 107 s).

The microwave analogue of the optical bistability has been also observed in a number of cases
in paramagnetic [9] and gas [7,10] operating media in the frequency range from 10 to 85 GHz, however
the typical switching times for microwave bistable systems turn out to be much more orders greater than
for optical ones. Therefore, to develop computer logic elements, the microwave bistable cells can not be
used. Nevertheless the investigation of bistability in microwave systems is not only of scientific interest
but sharply defined practical interest although from the absolutely different point of view.

The fact is that the ramification of states of a nonlinear system (the bistability and multistability
of this phenomenon are particular cases) is the rule rather than the exception, if the corresponding
nonlinear parameter C exceeds the specific threshold. For the optical bistable system this threshold is
well known C, =4, where C; is the parameter of cooperativity [7, 11] being proportional to the

resonator figure of merit.
The similar threshold exists as well as for the microwave nonlinear resonator that was shown,

" Originally published in Radiophysics and Electronics, Vol. 8, No 1, 2003, pp. 86-98.



for example, for acoustic resonators with saturable paramagnetics[12]. It has been found experimentally
[13, 14] that when in use a high-Q pumping resonator in the traveling-wave quantum paramagnetic
amplifier (maser) the bistability appears on a frequency of pumping. The experiments outlined have
been carried out using the amplifier with an active andalusite crystal at the signal frequency
Qg =43 GHz and the pumping frequency Qp =150 GHz [13, 14]. The electrodynamic system in use

ensured the traveling-wave mode on the frequency € and at the same time the standing-wave mode on
the pumping frequency (3, (the signal and pumping fields had mutually orthogonal polarizations; at

that the grid transmitting the signal field and reflecting the pumping field had been used) [13, 14]. As
experiments shown [13, 14], at the same pumping power there are two stable stationary branches of the
maser system containing a high-Q pumping resonator and a saturable paramagnetic. And so the
inversion can be either large (the constant of inversion K =K,, , where K, is the maximally accessible
value K ) or small (K <<K,, ) depending on the prehistory of the system, that had been observed in the
experiments [13, 14].

At that there is no way to get out of bistability without reducing the Q-factor of the pumping
resonator. At the same time, to obtain K =K,, at a lower Q-factor of the pumping resonator it is

necessary to give a higher pumping power to the system than at the high Q-factor of this resonator. It
can turn out to be absolutely unacceptable from the point of view of the normal operation of the
cryogenic system (all quantum amplifiers operate at low temperatures [1, 2]; the pumping power
capability is usually less than 1 W). In breaking the normal cooling of the crystal for inversion there is a
need in more powerful pumping at a rise in temperature it is more difficultly to saturate the spin-system,
since the time of longitudinal relaxation reduces). This concerns actually the pumping on the frequencies
of the millimeter wave band, where the time of longitudinal relaxation is anyway quite small even at the
liquid helium temperature.

Thus, the branching of stationary inversion states (particularly bistability) is an unavoidable
concomitant of the nonlinear system containing a high-Q resonator with saturated paramagnetic. As a
matter of fact, it is the price which we have to pay for possibility of reduction of the pumping power
keeping the high constant of inversion. If the quantum amplifier works in normal conditions, that is, a
weak signal comes to its input and intensive noise is absent, then the behavior of the pumping bistable
system is entirely controllable. At the beginning of the experiment the necessary branch of inversion
should be chosen and after that the amplifier works in the prescribed regime as long as it is
necessary [13, 14].

However, under the real-life conditions there is always noise (including intensive one) which
can also come to the input of the quantum amplifier resulting in more or less short-time saturation of the
amplifier in the signal channel. Thus, for a certain time the three-level active system turns out to be
saturated by the fields of two frequencies, at that, this saturation is nonadditive since two saturated
quantum transitions has a common spin level. It is obvious that in this case the three-level system should
be considered as a whole and not just the two-level pumping subsystem as it has been done in [13, 14].
In what way does the pumping system behave in this case? After all the state of the pumping system,
and so the current value of K , depend on the prehistory of this system. Does the amplifier come back to
the normal operating mode after stopping the saturating noise? What kind of pumping mode should be
chosen for self-recovery of elevated inversion? The need for solution of these important practical
questions has defined the problem definition of this paper.

The purpose of this work is to study the influence of saturation through the signal channel on the
inversion states formed by the resonator pumping under conditions of its bistability. An analytical model
of a class “B” active (inverse) system [6] is the subject of inquiry, where the times of longitudinal
relaxation exceed essentially all other characteristic times of transient processes.



1. Matter for scientific inquiry

A simple model of the traveling-hypersound-wave quantum paramagnetic amplifier (the wave-
length of hypersound is of order of 1 um) with the bistable electromagnetic resonator pumping (in
millimeter wave band) has been chosen as a concrete subject for investigation. This model consists of
the Fabry-Perot quasi-optical electromagnetic resonator with sizes being much more than the pumping
wave-length. The resonator is filled with dielectric monocrystal with paramagnetic centers (the number
of spin levels is not less than three) and with high hypersound transparency. One of acoustical axes is
directed along the surface of the mirrors of the Fabry-Perot electromagnetic resonator. The hypersound
wave vector is directed, in turn, along the acoustical axis. In this case the traveling-wave mode of
hypersound is provided through the signal channel and the appearance of bistability is possible in the
pumping channel because of nonlinearity of paramagnetic susceptibility and inner back-coupling in the
resonator at the pumping frequency [7].

A similar model describes the electromagnetic traveling-wave maser with delay of a signal wave
at the expense of a high dielectric susceptibility of crystal. Lastly, under conditions of electromagnetic
traveling-wave of the signal the resonator pumping can be also realized on the basis of other systems, for
example, under conditions when polarizations of electromagnetic fields of the signal and pumping are
perpendicular to each other and there is an electrodynamics system (for example, grating) permitting us
to provide the reflection of the pumping field and the transmission of the signal field [13, 14].

In the system under consideration the saturation factor Z(D,C,Y ) on the spin transition of the

pumping can be an ambiguous function of the normalized input amplitude Y of the microwave
pumping field. For this purpose the condition C >4 should hold, where C is the parameter of

cooperativity [7, 11] having the form C =Qé0) /4Q,\,1 = £/4 [15 - 20] in our case. Here Qéo) is the
loaded Q-factor of the pumping resonator out of the regions of the magnetic resonance; Q,, is the

magnetic Q-factor [1, 2] of the considered dissipative system (paramagnetic and microwave resonator) at
the pumping frequency in the absence of saturation of the spin transitions; & is the designation for the

parameter of cooperativity in papers [16-20]. The value D is the population difference normalized to its
thermodynamic equlibrium value on the pumping transition.

We will suppose that the spin system of the active paramagnetic medium possesses three energy
levels E,, E,, E; (the numeration is in ascending order of the energy), at that E; —E, = 7Q,,
E, —E, = 7n€Qg. In the absence of detuning in the traveling-wave maser, where anyone high-Q
resonators at the frequency of signal and frequency of no-load transition Qp = Qp, —Qg are

unavailable, we can restrict ourselves to the scalar adiabatic model of bistability.

This model based on the subjection of fast variables [21] has been suggested for the first time by
Drummond for optical bistable systems [22]. The model mentioned has been studied in details for the
case of microwave pumping systems of paramagnetic masers and phasers in the absence of spin-
transition saturation of the signal [16-20]. Within the frame work of this model it is necessary that all

longitudinal relaxation times Tl(k), k e{P,S,F} (that is on the pumping, signal, and free-running

transitions) are much more than both the transverse relaxation times T z(k) (usually in the active medium
of the traveling-wave maser all transverse relaxation times are the values of one order:
Tz(k) =T, ~ 107-10"s) and the photon life time Teay 1n the pumping resonator (there are no other
resonators in this model). Under such conditions the intensive external disturbance with the frequency
Q) can be taken into account in the form of some renormalizations for the variables of state of this

system. We consider such case in details below.
2. Unsaturated traveling-wave maser



To be specific, we restrict ourselves to the case of the phonon traveling-wave maser (phaser
hypersound amplifier) with a quasi-optical resonator pumping as in [19]. However the most of the
results obtained below are valid for electromagnetic signal traveling-wave masers with resonator
pumping as well. From now on, we use the modification of a bistable pumping model which has been
suggested before in [12] and studied in papers [16-20] for the case of an unsaturated traveling-wave
maser. The initial model [16-20] is semiclassical, as the most analogous models of optical bistability [7].
It is based on the Bonifacho-Lugiato approximation for the splitting variables of state [11], where it is

assumed that the condition of Qéo) /QM — const = ¢ is fulfilled when
1/QY 5 0) A (1/Q,, —0).

In this approximation D (the population difference on the saturated spin pumping transition E, <> E;,
normalized to its thermodynamic equlibrium value) is the parameter of the order. The inversion
coefficient K on the unsaturated signal transition E, <> E, is determined in accordance with the

current value of D (see formulae (6) and (11) in paper [16]). The model [16-20] is the summarizing of
the two-level adiabatic Drummond model (see formulae (5) in paper [22]) for the case of a three-level
system with detuning on the pumping frequency and magnetic field, and with the second unsaturating
field. If the detuning mentioned above is lacking and in our three-level system the signal field remains
unsaturating as before, formulae (6) and (11) from paper [16] can be put in the following simple form:

2
>d_D:1_D_Y—D2;
dt (1+2CD)
K; =(Ky +D[1-D{(C,Y )]-1, )

T,® (1)

where K,, =sup (K(Y )) is the maximal value of the inversion coefficient in the three-level active
Y -

system, depending on the certain properties of the traveling-wave maser spin-system (for example, in the
case of the approximate equation of the probabilities of the spin-lattice relaxation for all the spin
transitions of the active medium [2]; K, =L —1, where L =Q,/2Q; ); K, is the branches of the
inversion coefficient corresponding to the stationary solution Di(St) of equation (1) and index i runs
through the values i = 1, 2, 3 in the general case (the numeration is in ascending order of K ). However
the physically realizable branches D{®) and accordingly K; =K (D{*)) are only these ones for which
the following inequalities are valid:

0<Re [DV(L,C.Y)I<1;
—1<Re [K(D)]<K,, ;
Im[D{*(L,C.Y )]=Im[K (D{*")]=0.

The values L , C, Y are the control system parameters in the space Ri , where R, is the set

of nonnegative real numbers. To realize inversion it is necessary that the inequality L >1 is fulfilled and
the parameters C and Y can possess any nonnegative values bounded above by the characteristic

values C and Y, for each certain traveling-wave masers (in particular Y, <<T,"’/T,). Recall

max

that, by definition, K =—-Dg [2], where Dg is the population difference on the signal spin transition



E, & E;, normalized to its thermodynamic equlibrium value. At the effective pumping the almost
complete saturation of the pumping transition E, <> E; is achieved, i.e. D=¢, where & <<1. Hence,
on the signal transition E; <> E, the value of the inversion coefficient which is close to the maximal one
K =-Dg »K,,, is realized. In the case when pumping is lacking Dg =1, i.e. K =—1. Thus the
dynamics of the three-level traveling-wave maser with an unsaturating signal and bistable pumping
assume the minimal specification in the space M4 ® M, = R, ®R} (index “0” points out the

absence of saturation through the signal channel). Here M, is the space of dynamic variables of the
traveling-wave maser, which in this case is one-dimensional one, M, ={D}; M, is the control

parameter space of the traveling-wave maser M. ={L,C.Y }. The extended expressions for C and Y

have the following form (see [18], where the formulae for the values £=4C and P=Y? are
represented)

C =2 i2Q2y2 £, NT,Te, /2025 + kg6 ;
Y =ypHy \/TI(P)TZTCAV /2TR .

Here y, is the effective gyromagnetic ratio on the transition E, <> E;; f.,, is the fill factor of the
pumping resonator; N is the concentration of the active centers; S is the spin (for our three-level
system S=1); Kg is the Boltzmann constant; € is the temperature of the thermostat; H,, is the
amplitude of the field magnetic component Q, at the input of the pumping resonator; Ty is the delay

time of the electromagnetic field on the length of the pumping resonator. The considered model of the
traveling-wave maser is valid when the following ratios are fulfilled [18]:

Tp <<Tcay 3
hQp << (25 +1)kg0;
Q.T, <<QY), /4C;

Hy << (VPTz(P))_I\/ 2T Meay

TP >>T,,Tear s Ta-

These inequalities bound definitely the region of this model validity of the traveling-wave maser
(in paper [22] only the inequality T,'") >>T,, T, »Tg has been represented).

In this way in the absence of signal transition saturation the stationary inversion states K =K;
are described as the linear transformation of the roots of the Drummond equation

Y 2 D(St)

1-D& - —— — =
(1+2CD")?

)

Using the standard methods of the catastrophe theory [23], from (3) we find that at the simultaneous
achieving both the critical values for the cooperativity parameter C = C(gz] =4 and the pumping

parameter Y =Y 0[2] =33 , the co-dimension bifurcation 2 takes place in our system (the upper index in
the square brackets points out the co-dimension bifurcation, the inferior index “0” indicates the absence



of saturation of the three-level system on the signal channel). At C > C[*) the co-dimension bifurcations
1 are realized at the points Y o[,lT] and YO[,IE (where YO[,IT] >Y O[’lj) corresponding to the jump-like transitions
K, > K; and K; - K,, that is from the smaller stationary value of the inversion coefficient to the

larger one and vice versa.
Expression (2) can be also written in more obvious form

CKyZ(CY)-1
VAR (A TS I

“4)

Hence it follows that for the lower (smooth) branch (i=1, Z®" =27 I(St)) the considerable inversion can
be obtained only at comparatively large K,,, while for the upper (hard) branch (i=3,

2@ =7 557 Y ) the inversion is large even at K, =1. As it follows from equation (1), the
middle branch with i =2 is unstable in view of that /1‘ p-p, >0, where /1‘ p-p, 18 the Lyapunov index of

system on the branch K, (see [16, 18]):

1-D{ (oD )"
T,Y oY )
The possibility to decrease the input amplitude of the pumping field Y to the value
Yo[lj <Y <<Y o[lT] after transferring (at Y ZYo[lT]) from the lower inversion branch to the upper one

(K, = K};) is the most essential advantage of the bistable pumping system. After that the traveling-wave
maser operates in the stationary mode, where to keep the inversion with K = K,, , a smaller pumping

power is required than in the case of common monostable pumping [16-20].
We note that the unidirectional transitions K, = K; and K; — K, of the considered bistable

system are macroscopic (in contrast to quantum transitions between spin levels E, < E;, E, & E,,
E, <> E;). Recall that in the framework of model (1), (2) the valueK is determined exactly by the
value D, not making an reverse impact on the latter, that is K =K (D) but D # D(K). In other words
the population difference D on the pumping transition E, <> E; is the only dynamic variable of the
problem for the linear quantum amplifier, whereas the population difference Dy =—K on the signal
transition E, <> E, is the linear transformation of the population difference D on the pumping
transition E, <> E;.

3. Saturated traveling-wave maser

If a considerable saturation of E, <> E, transition takes place on the signal cannel, model (1),
(2), certainly, becomes inadequate, i.e. the spin system gets considerable disturbance at the same time on
two spin transitions with the frequencies Qp and Qg ; at that the spin level E, is common for these

transitions (i.e. the disturbances are non-additive).
Hence, the task of determination of the values D and K must be self-consistent, at that the mentioned



values start to depend not only on L, C and Y but on the normalized intensity J of the saturated
acoustic signal. Thus, in the general case the desired motion equations must have the following form:

ydD

TI(P t :fD(D,K;‘]vLaC,Y);

)
Tl<s>d—K= f (D,K;J,L,CY),
dt
where the expression for J can be written in the form [19]
I =TTl 12F = - ©)
0
Here (' is the acoustic analogue of the so-called Raby frequency [7], o}’ = |7uU ; | is the

2 . .
; vy 1s the acoustic analogue of the

microwave acoustic signal intensity; 1, =2pVih? /TI(S>'I'2|¢)S
common gyromagnetic ratio, y, = k,®s/h; Kk, =‘ IZU‘= Qg /Vs ; IZU is the wave vector of

hypersound; U is the acoustic signal amplitude; ® is the parameter of the spin-phonon bond at the
signal frequency; Vg is the hypersound speed, o' is the crystal density. For the case of the trigonal
crystal field and longitudinal hypersound propagating along the crystallographic triad axis C (the active
medium of the ruby phaser [2-4]) in accordance with [24] at L(I-T,C )#0 the expression for @g takes
the form

UB =%‘ G33(3<‘//ﬁ §z2|‘/’a>_5(5+1)<‘/’ﬁ V’a>)

b

where G, is the tensor component of the spin-phonon interaction [24]; S, is the projection of the spin

operator S onto the axis Oz ; z//a> is the wave function belonging to the spin level E; <1//ﬂ‘ is the

wave function which is complex-conjugated with respect to the wave function ‘1// ﬂ> belonging to the
spin level E ;.

For longitudinal (l), fast transverse (tf ), and slow transverse (tS) hypersonic waves
propagating along the crystallographic twofold axis & (the active medium of the phaser is in
Ni®* : AL, O; [25]), as it follows from [24], at H |[C,ie. at ‘l//aﬁ> =|J_r1> , the expressions for g take

the form

1
CD(SI) :Z(Gu -Gy, )2 +Glz6 5

(I)(Sts) =[G, sin y +(1/2)(G,; =G, ) cos y]+ (Gssin y + G4 cos;()2 ;
d)(sts) =[G, cos ¥ —(1/2)(G,, = G,,)sin y]+ (G5 cos ¥ — G4 sin;()2 ,

where y is the angle between the polarization vector of transverse hypersound and the axis & .
We emphasize that the value K in (5) is the same dynamic variable like D, and J is a new



control parameter (for clearness all the control parameters in the right-hand parts of equations (5) are
separated by semicolons). Hence the stationary branches of the vector (two-dimensional) parameter of

the order of A % (D,K) can undergo bifurcations at the sufficiently slow scan of the vector of the
control parameters ® ¢ (J,L,C.Y ) in the four-dimensional space. At that, as a rule, the values T®
and T,®) do not differ so much from each other that system (5) can be reduced to one equation. On the

contrary, in a number of cases we can consider T,") = T®) =T, [2]. Thus, here we can not return to

some scalar order parameter using the standard procedure of subjection of variables [21].

Equations (5) represent the minimal model of the traveling-wave maser with saturation through
the signal channel. In the general case we should take into account the relaxation field of the spin system
as well combined action in respect with the combined action of the fields Q. and g occurring at the

frequency of free-running transition Qg = Q, — Qg . However, in view of the fact that for the traveling-
wave maser the inequalities I, = Tz(k) /Tl(k) << 1 are typical, where k € {P,S,F} (usually r, =10°-10"
8 see, for example, [1, 2, 20]) and the considered system does not possess a resonator at the frequency
Qr = Qp —Qg, for all that we can restrict ourselves to the two-dimensional parameter of the order of
A= (D,K). For that we should take into consideration the maximal acceptable values of parameters Y

and J for this model of a traveling-wave maser, namely rFl,/ %Y <<1, r,J << 1, that is usually executed in

real traveling-wave masers with much more reserve.

The similar in appearance situation (although in the different context) takes place for a three-
level laser generator as well [26], where in the absence of off-tunings the minimal model of generation
also is based on some two-dimensional parameter of the order of J . Nevertheless there is a fundamental
difference between our system and laser system presented in paper [26]. For the traveling-wave maser

with saturation through the signal channel the condition T, >>T.,, ,T, is fulfilled (class "B" non-
equilibrium system [6]), whereas in [26] it has been considered the case when T ,, >>T,,T,, that
corresponds to the class "A" non-equilibrium system [6]. In paper [26] the inverse values o =1/T.,y, ,
7= 1/T,, y, =1/T, have been used. In these designations the class "A" system is determined by the

inequality o <<y, 7, .
Therefore, in model [26] the amplitudes « and £ of in-resonator pumping and signal fields are

main dynamic variables (certainly the laser signal appears in the resonator without even an external
saturating field). In our model the population difference D and K = —Dg on the spin pumping and

signal transitions are main variables. Therefore in [26] the parameter of the order of o (a, p) relates

to the field characteristics of the system, whereas our parameter of the order A represents mainly the
condition of the active medium (paramagnetic center system). In other words in paper [26] the fast
relaxing population differences of the system adjust to the behavior of the pumping and signal fields,
whereas in our system, on the contrary, the slowly relaxing population differences determine the global
dynamics and the field variables adjust to them. The similar difference of the lead processes in the class
"A" lasers and in the class "B" paramagnetic active systems has important consequences not only from
the point of view of the adequate model creation of a saturating traveling-wave maser but for
interpretation of the nature of nonlinear effects in other class "B" systems, for example, in a non-
autonomous acoustic quantum generator [25].



4. Motion equation

We find the explicit form of the functions f (ﬁ,@) and fy (ﬁ,@) at the mentioned restrictions

and at the configuration of the traveling-wave maser being similar to the one described in [19], but at
simultaneous saturation of the traveling-wave maser through the signal and pumping channels. Since, in
contrast to paper [19], there is not any detuning (in pumping frequency, magnetic field and so on) in the
considered model, the constitutive equations of our task are simplified in comparison with equations
(2,a) from paper [19] and comes to the balanced motion equations (see, for example, [2]):

%:Z[(nm _ni)Fim +anmi _niWim]’ (7)

where n; =N,;/N; N;

i 1is the filling numbers of the spin levels E;, at that N, +N, +N; =N
W, =W, exp[(E; —E,,)/kg8] is the probabilities (in a unit of time) of spin interaction with heat
phonons [24] determining the times of the longitudinal relaxation Tl(k) (where k €{P,S,F}) for each of

the spin transitions E; <> E,,, at that W,, <<T:a, .T, '; F,, is the probabilities (in a unit of time) of

spin system interaction with the saturating fields (F;,, = F; ), in our case, taking the following form

Fs=F,=F) = J/le(S) ; )
Fo=F;=F =Z/2T1(P) > )
Fe=Fy=F; =0, (10)

at that the essential distinction between F; and F, takes place. The fact is that J is the control

parameter depending on the spin system (on the signal channel the traveling-wave mode of operation is
realized). At the same time the value Z depends not only on the control parameters but on the current
state of the spin system. Indeed, owing to the feedback appearing in the pumping resonator, as it follows
from equations (7) in paper [19], when the detuning is available and after elimination of transverse
magnetization of the spin system, the abridged wave equation for the pumping field takes the following
form

ey %:Y ~X —2CDX , (11)

where X =+/Z is the normalized amplitude in-resonator pumping fields [7,11] which does not depend
evidently on J (but it depends on D(J), that is typical for the all class "B" active systems) to the

Bonifacho-Lugiato approximation and in the absence of detuning. Later on, in view of the fact that
Teaw <<W,'=T®) T® at the joint examination of equations sets (5) and (11) the right-hand
member of equation (11) can be set equal to zero. Then

Y2

Z=Z(D)=m.

(12)



Thus at the adiabatically slow change of the control parameters the factor of the pumping
transition saturation, which is proportional to the squared amplitude of the in-resonator field, “watches”
the current state of the population differences D(J,L,C,Y ) determined, in turn by equations (7). Let us

consider these equations in detail. Expressing n,, n,, n; in terms of n, =n; —n, and ng =n, —n, and
taking into consideration that n, +n, +n, =1 we bring equation (7) to the following form

%:—%PFP “ngFs +Rp; (13)
%:-znsa “neFp» +R, (14)
where
1
Rp =§(po_anP —PsNs); (15)
1
Rs :g(o'o_o'PnP —0o5Ns ). (16)

The explicit expression for p;, o;, where j€{0,P,S}, is found in the following form:

Po =Wy =Wy + Wy =Wy, +2W,5 —2W 5,
Pp =Wpp +2W 5 + W,y =W, +2W 5, +4W5;;
Ps =Wy5 +2W 3 —2W,3 +2W,, =W, —2W5, 5
0o =2W,, =2W, + W3 =Wy, =W +W 3, ;
op =2W, +W; W, —2W,, —2W,, +2W;;;
oy =2W, +W; +2W,, +4W,, + W5, -W;,.

The formulae (13) - (16) describe the saturation in the three-level traveling-wave maser for
arbitrary 7, =hQ, /ky0, where k € {P,S, F}. To simplify the problem, we assume that

-0 =7 /(25+1)= hQ /(254 Dk, << 1,

where n\” are the population difference under the thermodynamic equilibrium conditions of the spin

system Y =J =0 (under the condition all n{” are negative ones). Moreover, we restrict ourselves to the
- k -1

case when W,, =W, =W,; =W (this means that T,*) =T, =(3W )™, k €{P,S,F}). Then pj, o are

brought to the simple expressions

po==3mW; oy =-3nW; (17)
Pp=IW; o5 =9W; (18)
Pp =—3nW; 05 =0. (19)

Let us introduce the dimentionless time 7 =t/T, . Then, using D = n, /n,(,o) , K=-ng /néo) , We
obtain the extension of equations (1) and (2) in the case of an intensive field of the signal saturating the
spin transition E, <> E, in the traveling-wave mode

10



2
d—szD(ﬁ,@)zl—D—Y—Dz—kﬁ; (20)
dz (1+2CD)* 4L
2
d—K:fK(A,é)z—l—K—JK +LDZ, 1)
dr (1+2CD)

where T*) =T, and there is an obvious restriction on the maximal value of the saturating signal
intensity J <<T,/T,. Strictly speaking there is a restricion on J and from below:

J> ‘n(FO)‘ = 1Q: /(25 +1)kz @ , however, to our approximation ‘n(FO)‘ <<1, i.e. at the consideration of the

saturation effects we can assume that J ,, =0.

5. Stationary states

Equations (20) and (21) describe the dynamics of the traveling-wave maser with a saturating
signal in the space M; ; ® M, . R?> ®R?, what is minimally necessary to the investigations of non-

stationary (transition) processes in the active system, that is the dependences A= A(t). Here
M4 ={D.,K}; M, ={J,L,C)Y }; R is the set of real numbers. As regards the stationary states of the
system (20), (21), they can be represented as the renormalized solutions of Drummond’s equation (3)
with the additional control parameter J as shown below. We introduce the coefficients of
renormalization k. and xy :

J
Ke =1l-—r——;
4(J +1L
K, =1- J .
4(J +1)

Then, using the substitutions C =x.C; Y > =x,Y*; D=D/x , at d/dt=0 we obtain from (20) and
(21) Drummond’s modified equation
e
1-B-— 2 0 (22)
(1+2CD)

and the expression for the stationary values of the inversion coefficient in the traveling-wave maser with
bistable pumping and saturation through the signal channel

K+l 5e0(6))-1

k1)
K= 3 ) (23)

Formula (23) can be represented in the more obvious form
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KM
1 x{d)
R Z(@)+1

Z(©)-1

24)
or

_ 1 KyX{(9)-1
1+J &, (XF(O)+1'

(25)

Here D" is the solution to equation (22) and the values Z*"(©)=[D"(®)]"' -1 are the stationary

branches of the renormalized saturation factor of the pumping transition, which, obviously, can be
represented as well as modified ratio (12)

2
K Y

Z(@®)= )
©) [1+2x.CD*(@)F

As it follows from (22) the bifurcations of co-dimension 2 in the subspace of the control
parameters {C,Y } have the form

CJ[z] _ 4’(61(‘] , L ); YJ[Z] — 33/2 kal/z(J ) ,
and the bifurcations of co-dimension 1 for Y (at fulfilling {J,L,C} =const ) take the following form

| 1/2
Y = — [0, 0+ 420,07,
J,TJ« 2KY(‘])[ J J ]
where
W) =C*(J,L)+10C(J,L)+1;
/,131) :\/6(\],L)[C(\];I—)_A"]3 '

The explicit expressions for 5i5t(\] ,L,C.Y) or Z i(St)(J ,L,C.Y ) are very complicated in contrast
to the explicit expressions given above for the bifurcation sets. It is more convenient to use inverse
dependences such as the Bonifacho-Lugiato formula (see [11] and also [15-19]). In particular, we obtain

all three stationary branches Z (Y )=, X} from (22) in the form of the single-valued inverse
function Y =@, (Z), where

(20 = A [1+ N ]

Ky 1+Z

from whence we find the formulae permitting us to draw the amplitude dependences of the stationary in-
resonator pumping field X (Y )| jLc and X(J )| Lcy using the following inverse single-valued functions

(the indices st are omitted later on):
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v =x i+ uChDLRY (26)
1{1— J }xz
4(3 +1)
and
2
. A[Y =X )(1+X?)=2CX ] @7

2(4—chx —(Y —X)(4+3X3)'

6. Analysis of the dependences K(J)

Ratio (26) is the extension of the Bonifacho-Lugiato formula in the case of the three-level
system with two saturating fields and formulae (25) and (27) give the set of equations for determining

K@ )| Lcy - In general case scanning the surface sections of the bifurcations by the hyperplane
{L,C,Y }, give four different regions O, (where pe{L,II, I, IV}) of the saturated traveling-wave
maser behaviour, which are separated by three critical points Y, where g e{L IL, III }. To be specific,

the next case when L =const, C =const is considered. Then at the different Y the dependences
K(J) can vary in the following way:

-region I is the monostability region O; with a small, or even negative, inversion coefficient of

the saturated signal transition K <<K,, (the only branch K(J)

1 3 99
veo, 1s a “precursor” of the lower

branch K,(J)ly o, see below). This region is located on the interval 0<Y <Y, where the critical

point Y, corresponds to the case when K, =K, (the appearance of a hard branch of the inversion
coefficient at J =¢);
- region II is the anhysteresis bistability region O, on the interval Y, <Y <Y, , where the

critical point Y, corresponds to the case when K, =K, (to the collision of the separatrix with the
smooth branch of the inversion coefficient). In the region O, there is the only bifurcation of co-

dimension 1 of JE] -type but there is no bifurcation of JE] -type. In this region ImK,,;=0 at

0<J <J{® and ImK, =0, ImK,; #0 at J > J{*). Here the transition K; — K, which is realized at
the collision of the upper stable branch K (J) with the separatrix K, , is permitted, whereas the inverse
transition K, — K, is forbidden. Correspondingly, in this region the branch K,(J) is isolated at the

slow scanning of J and at J(t=0)< JE]; 0J /ot >0 the inverted state K, is overturned at the point

JE] in an irreversible way. After this all the time the inverse scanning of J keeps the traveling-wave

maser on the low-effective branch K, <<K,,. The hard effect on the system (shaking the control

parameters [12, 19, 20]) can be the only way to overcome this trap. Thus it is the most dangerous case
from the point of view of the normal functioning the traveling-wave maser;
- region III is the hysteresis bistability region O, on the interval Y, <Y <Y, where the

critical point Y,; corresponds to collapse of the bistable state. In the region Oy, there is already both

bifurcations of co-dimension 1, namely JE] and J?] . At the slow scanning of J and at J(t=0)< JE];

13



0J /0t >0 the inverted state K, , as well as in the region Oy, is overturned at the point JE] . However

in contrast to the region O, the inverse scanning of J in the region O, allow us to come back from
the low-effective branch K, to the operating branch K, for which K; =K,, at J =0;

- region IV is the region Oy, , where the inversion monostable mode of the saturated traveling-
wave maser is realized as well as in the region O;, but now the unique branch K(J)y o 1is the

continuation of the upper branch K;(J)\y o~ at the transition Y over the point Yy .

7. Output computation of K(J)

Fig. 1-4 shows the dependences of K(J) obtained for the case when C =5 and L =2 in the
bistability regions O, (Fig. 1-2) and Oy, (Fig. 3-4).

K.
0.6
] Ky
0.41
0.2j
] K1
0_ \
0 005 01 015 02 025 J 0 0.2 0.4 0.6 0.8 J

Fig. 1. The bistability of the inversion coefficient Fig. 2. The bistability of the inversion coefficient

in the saturated traveling-wave maser at
L=2, c=5, Y=6.0 (the region 0, ). The
upper branch (with a high inversion
coefficient) is isolated, the middle one is

in the saturated traveling-wave maser at
Y =6.1 (i.e. in the case when Y=Y, -¢),
when the approach to the hysteresis
bistability region becomes visible. The

unstable, and the lower branch has
practically zero-order inversion

upper branch has non-zero inversion

As follows from the figures the qualitative change in the behavior of K(J), corresponding to
the point Y , takes place on the interval 6.1<Y <6.2. In Fig. 1-2 one can see clearly that the upper
branch K;(J) is isolated, that is, at increasing J it collides with the separatrix (the unstable middle
branch K,) and breaks at J =J['(Y ), where J["~0.2 (Fig. 1) or J|'~0.8 (Fig.2). Owing to the
image point of the system jumps on the lower branch K, (the inversion state is overturned by the
saturating signal). There after the initial operation state (with the excited branch K,) presents no

possible to restore in the traveling-wave maser, if we change only the value J and do not vary the other
parameters, i.e. the image point of the system is situated on the branch K, all the time.
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0 05 1 15 2 25 J 0 2 4 6 8 J
Fig. 3. The hysteresis bistability at v =6.2 (the Fig. 4. The hysteresis bistability in the region o
region 0, ). The parameters L and C are at Y =6.3 (i.e. in the case when Y =Y, - ¢),

the same as in Fig. 1 when the hysteresis loop narrows sharply

along the axis K before outputting the
system into the monostability region o,

(for which v >v,

m

). The parameters L and C
are the same as in Fig. 1

As noted above now the inversion state can be thrown over on the upper branch K, only by

means of hard excitation of the active system. For example, the exciting impulse should be given on the
pumping channel [12, 19]. At that this impulse must be given every time after overturning the inversion
state. Note that the analogous situation can emerge as well in the phaser generator with a high-Q
pumping resonator [25], where instead of the effect of the external saturating acoustic field on the
frequency €2, the self-impact of increasing induced phonon radiation takes place on this frequency.

Indeed the phonon field on the signal frequency (more specifically, on the eigen frequencies of
the acoustical resonator of the phaser system), increasing at the self-excitation of such a generator, can
lead to the overturn of the inversion from the upper branch K, to the lower branch K, . After this, the

generation can either break (at K, <K, <K;, where K, is the threshold value of the inversion
coefficient at which the generation starts) or its power is very low due to the small
(0<K, =K, <<K,; - K, ) self-excitation threshold crossing at K,, <K, <K, . At the pulse pumping in
the system Ni’* : Al,O; the considerable (more than an order) increase of phaser generation intensity,
which has been observed in paper [25], can be explained naturally on the basis of the model considered
here. The pulse pumping restores the high value of K ~Kj at regular intervals, after the self-induced
overturn of the inversion on the branch K,, because of this the time-average intensity of the generated

phonon flow increases considerably in comparison with the case of the unmodulated pumping of the
phaser generator.

As a result of such hard periodic effect on the active system [12, 19], obviously, such
considerable increase in the intensity of the generated phonon flow occurs, which we has discovered

experimentally [25] in the phaser system Ni**:Al,O, on fast transverse waves at Qg =3 GHz (the
carrier pumping frequency €2, ~41.3 GHz, the period of the pulse pumping modulation T, <50 ps). It
should be added to this that the statement about the absence of generation in Ni**: Al,O, at K, > K,
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[27] (here Ky, is the linear inversion coefficient), adduced by Peterson and Jacobsen before, can be also
concerned with the effect of the inversion overturn on the branch K, when K, <K, <K, =Kj,

considered in this paper.
At C=5, L =2 and Y >6.2 (Fig. 3-4) the region, in which the bistability of the inversion
coefficient is realized, is shifted to the direction of the greater values of J , at that the second critical

point JE] < JE] appears, corresponding to the collision of the branch K, with the separatrix (JE] ~0.5

in Fig. 3 and Jg] ~2.3 in Fig. 4). In this case the bistability has a hysteresis nature what ensures the self-

recovery of the initial mode of the traveling-wave maser after stopping the saturation through the signal
channel (J - 0).

8. Discussion of the results

The results under discussion show that in order for to avoid the “seizure” of the active system on
a lower inversion branch and at the same time to operate at a minimally possible pumping level, the fine
adjustment of the control parameters (first of all the input amplitude of the pumping field Y) is essential
for a traveling-wave maser with the high-Q pumping resonator and external saturating signal. For the
phaser generator in which the saturating field arises in the active crystal without an external signal, the
proper pulse pumping mode can be chosen, ensuring the periodical recovery of the high inversion
coefficient.

Using the above-mentioned system Ni*" : Al,O, [25] as an example, we estimate the values of

the hypersound intensity | at which the values of the parameter J ~ 10 are reached. Using ratio (6) and
experimental data from paper [25] for the fast transversal hypersound propagating along the axis & at

2
1=10; p'=dglem’; v =6.7-10° covs; ‘@;f)‘ =270 em? = 1.08-10 Perg; T, =0.02s;

T, =10"s, we obtain | ~1.2 mW/cm”.
Thus, the “overturn” of the inversion state on the branch with a small K can occur even at
comparatively low intensities of the saturating signal. Therefore, in our experiments [25] the intensity of

the induced phonon radiation in the system Ni%*: Al,O, without modulation, is relatively low and, as it

can be assumed, the impulse modulation ensures the periodical return onto the branch with a large
K = Kj;. As a result, the average power of the phaser generation (on transverse waves) in the system

Ni®*: Al,O; increases by more than an order [25] at the pumping modulation, although in this case the

average pumping power decreases significantly.

In the Bonifacho-Lugiato standard model (two-level system with one saturating field) in the
absence of detuning of the active system, the isolated branching states are forbidden, as well-known
from [7, 11], but the bictability is always hysteresis in nature. From this point of view, the behavior of
the three-level system with two saturating fields is much more complicated even for the above-
considered case of the balanced approximation and adiabatic exclusion of field variables. Note that the
model of the three-level traveling-wave maser considered in this paper can be a basis for studying
nonlinear processes in other active systems (excepting microwave and maser ones) [5, 6, 21, 28] in
which there are three-level centers and mechanisms ensuring the appearance of one or another threshold
phenomena as well. The obtained results correlate somewhat with conclusions of paper [29] in which
from the quite different point of view the questions about the possibility of strong, irreversible, and
mutual influence of the registered objects and measuring system are touched upon. Finally, it should be
noted that the approach developed in this paper, can be summarized even for the more complicated case
of two-resonator systems [25, 30-32], with the purpose of the further study of mechanisms of non-
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stationary and induced phonons in autonomous and non-autonomous phasers as well as in other class
"B" multilevel active systems in which the longitudinal relaxation time of the active (excited) medium
exceeds significantly the life times of electromagnetic and acoustical excitations.

9. Conclusions

For the model of the quantum amplifier with a signal traveling wave and high-Q (bistable)
pumping resonator, it is shown that the saturation through the signal channel (for example, under the
influence of noise) can lead to the step-wise transition of the active system on the branch with a low
inversion coefficient. The analytic expressions describing this threshold effect have been obtained. The
conditions have been found, under which the self-recovery of a high inversion occurs after stopping
noise. The conditions, under which such a self-recovery does not take place, have been determined. The
recommendations for choosing the quantum gain modes with the inversion self-recovery have been
given. The possible mechanism of quantum generation with the periodical and forced inversion recovery
has been considered, explaining the effect of increase in the intensity of phaser radiation discovered

experimentally before in the system Ni’**: Al,O, [25].

The author thanks Makovetsky E.D. and Makovetskiy S.D. for the invaluable help in the work as
well as Lavrov S.S. for giving a chance to become familiar with his article [29] before its publication,
the results of which activate the fulfillment of these investigations.
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