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We present a universal framework for quantum error-correcting codes, i.e., the one 

that applies for the most general quantum error-correcting codes. This framework is 

established on the group algebra, an algebraic notation for the nice error bases of 

quantum systems. The nicest thing about this framework is that we can characterize 

the properties of quantum codes by the properties of the group algebra. We show how 

it characterizes the properties of quantum codes as well as generates some new results 

about quantum codes. 
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I. INTRODUCTION 

The quest to build a scalable quantum computer that is resilient against 

decoherence errors and operational noise has sparked a lot of interest in quantum 

error-correcting codes [1-9]. Although arbitrary error operators might affect a 

quantum state, it is always possible to keep track of the error amplitudes by 

expressing them in terms of an error operator basis. A particularly useful class of 

unitary error bases, called nice error bases, has been introduced by Knill in [10]. The 

nice error bases are the pillar of quantum error-correcting codes [11]. 



When a new physical problem occurs, it is always desirable to find an appropriate 

framework for it, such as quantum mechanics for quantum physics. Since the 

occurrence of quantum codes, almost all the researches are carried out on the specific 

types of quantum codes, for example, mainly on stabilizer codes, pure codes and 

codes over finite field. In this paper we are mainly interested in universal framework 

for quantum codes, i.e., the one which applies for all codes, no matter they are pure or 

not, stabilizer codes or not, over finite field or not. Firstly we recall the properties of 

nice error bases. Then we give the definitions of the group algebra and characters 

associated with nice error basis. Finally, based on the group algebra, we establish a 

universal framework for quantum codes. Through the discussion we show this 

framework can characterizes the properties of quantum codes as well as generates 

some new results about quantum codes. It is a powerful tool in future works on 

quantum codes. 

II. PRELIMINARIES 

Quantum information can be protected by encoding it into a quantum 

error-correcting code. An  quantum code is a -dimensional subspace 

of the state space of  quantum systems with  levels that can detect all errors 

affecting less than  quantum systems, but cannot detect some errors affecting  

quantum systems. 
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Let  be a quantum system with  levels and let G  be an additive 

group of order  with identity element 0. A nice error basis of  is a set 

m=H C m

2m H

{ |gE g G= ∈E  of unitary operators on  such that H



i) 0E  is the identity operator, 

ii) ,0tr g gE nδ=  for all , g G∈

iii) g h gh g hE E Eω +=  for all ,g h G∈ , 

where complex numbers ghω  have modulus 1. We call  the index group of the 

error basis . Moreover  is a 

nice error basis of  quantum systems 

G

E
1 1{ | ( , ,

n

n n
n g g g nE E E g g g G⊗ = ⊗ ⊗ = ∈� � " …E E ) }

n n⊗H . 

Lemma 1. If the index group  is Abelian, then for any nonzero , G h G∈

 0gh hg
g G

ω ω
∈

=∑ . 

Proof. From property iii) of the nice error basis, it follows that 

( ) ( )( )a b h bh hb a h b ah ha bh hb h a bE E E E E E E E Eω ω ω ω ω ω= =  

and 

( ) ( ) ( ) ( )( ) ( )a b h ab a b h ab a b h h a b h a b a b h h a b h a bE E E E E E E E E Eω ω ω ω ω ω+ + + + + += = = , 

which means 

                     ( ) (( )( )ah ha bh hb a b h h a b)ω ω ω ω ω ω+ += .                   (1) 

Now let { |h gh hgG g }Gω ω= ∈ . Then from (1)  is a subgroup of a cyclic group 

since all 

hG

ghω  generate a cyclic group [12]. Thus  itself is a nontrivial cyclic 

group for any nonzero .                                       Q.E.D. 

hG

h G∈

In the next section we shall give the concept of the group algebra based on the nice 

error basis with the Abelian index group. For simplicity, we assume throughout the 

paper that the index group  of the error basis  is Abelian. This assumption is 

reasonable because such nice error basis exists for a quantum system with arbitrary 

 levels [10]. 
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III. GROUP ALGEBRA 

We are going to describe the elements of  by formal polynomials in . 

In general 

nE 1, , nz z…

1 ng g gE E= ⊗ ⊗" E  is represented by 1 2
1 2

ngg g
nz z z" , which we abbreviate 

gz . We make the convention that i i i ig h g
i i iz z z h+= . This makes the set of all gz  into a 

multiplicative group denoted by Z . Thus  and nG Z  are isomorphic groups, with 

addition in  nG

 1 1 1 1( , , ) ( , , ) ( , , )n n ng h g g h h g h g hn+ = + = +… … … +  

corresponding to multiplication in Z  

 1 1 1 1
1 1 1

n n n ng h g hg h g hg h g
n n nz z z z z z z z z++ h+= ⋅ = =" " " . 

Definition 2. The group algebra ZC  of Z  over the complex numbers  consists 

of all formal sums 

C

n

g
g

g G

a z
∈
∑ , ga ∈C , gz Z∈ . 

Addition and multiplication of elements of ZC  are defined in the natural way by 

( )
n n n

g g g
g g g g

g G g G g G

a z b z a b z
∈ ∈ ∈

+ = +∑ ∑ ∑ , 

n n

g g
g g

g G g G

r a z ra z
∈ ∈

=∑ ∑ , r∈C  

and 

,n n n

g h g
g h g h

g G h G g h G

a z b z a b z h+

∈ ∈ ∈

⋅ =∑ ∑ ∑ . 

To each  we associate the mapping nh G∈ hχ  from Z  to the complex numbers 

given by 

† †( ) trg n
h h g h gz E E E Eχ = m , 

hχ  is called a character of Z . hχ  is extended to act on ZC  by linearity: 

† †( ) ( ) tr
n n n

g g n
h g g h g h g h g

g G g G g G

a z a z a E E E E mχ χ
∈ ∈ ∈

= =∑ ∑ ∑ . 
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Note that 

                         
1

( )
i i i i

n
g

h h g
i

z g hχ ω ω
=

=∏ .                        (2) 

Let 

n

g
g

g G

C c
∈

= z∑  

be an arbitrary element of the group algebra ZC , with the property that 

0
n

g
g G

M c
∈

= ≠∑ . 

Definition 3. The transform of  is the element C C′  of ZC  given by 

1 ( )
n

h
h

h G

C C
M

χ
∈

′ = ∑ z , 

where χ  was defined above. 

Suppose 

n

h
h

h G

C c
∈

z′ ′= ∑ , 

then 

           † †1 1( ) tr
n

n
h h g h g h g

g G

c C c E E E E
M M

χ
∈

′ = = ∑ m , ,          (3) nh G∈

and . Now we describe several weight enumerators of the group algebra 0 1c′ = ZC . 

Let the elements of  be denoted by G 20 1 1
0, , ,

m
α α α

−
= … , in some fixed order. 

The first weight enumerator to be considered specifies the group algebra 

completely by introducing enough variables. In general, the variables  means that 

the  place in the vector  is the  element 

ijz

thi g thj jα  of G . The vector 

1 2
( , , , )

na a ag α α α= …  is described by the polynomial 

 
1 21 2( )

na a naf g z z z= " . 
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Thus  is uniquely determined by g ( )f g . This requires the use of  variables 

, . 

2nm

ijz 21 ,0i n j m≤ ≤ ≤ ≤ −1

What we shall call the exact enumerator of  is then defined as C

 ( )
n

C g
g G

c f g
∈

= ∑E . 

Then the exact enumerator of C′  is 

( )
n

C h
h G

c f h′
∈

′= ∑E . 

Theorem 4. 

2 2 2

2 0 0 2 21 1

1 1 1

10 1( 1)
0 0 0

1( , , , , ) , , , ,
s s s r r s s sm m

m m m

C ir C s isn m
s s s

z z z z z z
M α α α α α α α α α α α αω ω ω ω ω ω

− −

− − −

′ −
= = =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ∑… … … …E E ns . 

Proof. From (2) and (3), the LHS is equal to 

2 2 2

1 2

1 1 1

0 0 0 1

1 1( ) ( ) ( )
s i i s ii in n n n

n

nm m m
g

h g h g g
s s s ih G g G h G g G

c f h c z f h c
M M α αχ ω

− − −

= = = =∈ ∈ ∈ ∈

′ = =∑ ∑ ∑ ∑ ∑ ∑ ∑∏" g iszω  

            
2 1

01

1
s i i s

n

n m

g g g is
sig G

c z
M α αω ω

−

==∈

= ∑ ∑∏  

which is equal to the RHS.                                          Q.E.D. 

The next weight enumerator to be considered classifies vectors  in  

according to the number of times each group element 

g nG

iα  appears in . g

Definition 5. The composition of 1( , , )ng g g= … , denoted by , is 

 where  is the number of components 

comp( )g

20 1 1
( , , , )

m
s s s

−
… ( )i is s g= jg  equal to iα . 

Clearly 

2 1

0

m

i
i

s n
−

=

=∑ . 
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We call the set  the complete weight distribution of  where  is the 

sum of 

{ ( )}A t C ( )A t

gc  with . We also define the complete weight 

enumerator of  to be 

20 1
comp( ) ( , , )

m
g t t t

−
= = …

C

2 20 1 0
2 20 01 1

( , , ) ( ) m m

n

t st s
C gm m

t g G

z z A t z z c z z 1
20 1m

− −

− −
∈

= =∑ ∑… "W
−

" . 

Then the complete weight distribution of C′  is { ( )}A t′ , where ( )A t′  is the sum of 

 with hc′ 20 1
comp( ) ( , , )

m
h t t t

−
= = … , and the complete weight enumerator of  is C′

20 1
2 20 01 1

( , , ) ( ) m
tt

C m m
t

z z A t z z −
′ − −

′= ∑… "W . 

Theorem 6. 

2 2 2

2 0 0 2 21 1

1 1 1

0 1
0 0 0

1( , , , , ) , , , ,
s s s r r s s sm m

m m m

C r C s sm
s s s

z z z z z z
M α α α α α α α α α α α αω ω ω ω ω ω

− −

− − −

′ −
= = =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ∑… … … …W W s

1

1

. 

Proof. Set  for  in Theorem 4.             Q.E.D. ij jz z= 21 ,0i n j m≤ ≤ ≤ ≤ −

By setting certain variables equal to each other in the complete weight enumerator 

we obtain the Lee and Hamming weight enumerators, which give progressively less 

and less information about the group algebra, but become easier to handle. 

Definition 7. Suppose now that 2 2m δ= +  is odd, and let the elements of  be 

labeled 

G

20 1 1 1
0, , , , , ,

mδ δα α α α α+ −
= … … , where 2 im i

α α
−
= −  for 1 i δ≤ ≤ . The Lee 

composition of a vector , denoted by , is ng G∈ Lee( )g 0 1( , , , )l l lδ…  where 

,  for 10 0 ( )l s g= 2( ) ( )i i m i
l s g s g

−
= + i δ≤ ≤ . 

We call the set  the Lee weight distribution of  where  is the sum 

of 

{ ( )}L t C ( )L t

gc  with 0Lee( ) ( , , )g t t tδ= = … . We also define the Lee weight enumerator of  

to be 

C

0 01 1
0 0 1 0( , , ) ( )

n

t t lt l
C g

t g G

z z L t z z z c z z z1
lδ δ

δ δ δ
∈

= =∑ ∑… "L " . 
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Then the Lee weight distribution of C′  is { ( )}L t′ , where ( )L t′  is the sum of  

with 

hc′

0Lee( ) ( , , )h t t tδ= = … , and the Lee weight enumerator of C′  is 

0 1
0 0( , , ) ( ) t tt

C
t

z z L t z z z1
δ

δ δ′ ′= ∑… "L . 

Theorem 8. The Lee enumerator for the transform C′  is obtained from the Lee 

enumerator of  by replacing each C iz  by 

 0
1
( )

s i i s s i i s s
s

z z
δ

α α α α α α α αω ω ω ω
=

+ +∑ , 

and dividing the result by M . 

Proof. Set  for 12 im i
z

−
= z i δ≤ ≤  in Theorem 6.                       Q.E.D. 

The Hamming weight, or simply the weight, of a vector  is 

the number of nonzero components , and is denoted by . 

1( , , ) n
ng g g G= ∈…

ig wt( )g

We call the set { }iA  the Hamming weight distribution of  where C iA  is the 

sum of gc  with . We also define the Hamming weight enumerator of  

to be 

wt( )g = i C

wt( ) wt( )

0
( , )

n

n
n i i n g g

C i g
i g G

W x y A x y c x y− −

= ∈

= =∑ ∑ . 

Then the Hamming weight distribution of C′  is { }iA′ , where iA′  is the sum of  

with , and the Hamming weight enumerator of 

hc′

wt( )h = i C′  is 

0
( , )

n
n i i

C i
i

W x y A x y−
′

=

′= ∑ . 

Theorem 9. 

21( , ) ( ( 1) , )C CW x y W x m y x y
M′ = + − − . 

Proof. In Theorem 6 put 0z x= , 21 2 1m
z z z y

−
= = = =" , and use Lemma 1.  Q.E.D. 
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IV. UNIVERSAL FRAMEWORK FOR QUANTUM CODES 

In this section, we establish the universal framework for quantum codes based on 

the group algebra defined in the last section. 

Given an arbitrary quantum code (( , , ))mn K d=C , let 
1

K
i ii

P v
=

= v∑  be the 

orthogonal projection onto  where { }  is a set of orthonormal basis of , and 

let  be the index group of any nice error basis  of the quantum system with  

levels. Then we can formulize the quantum code  as an element 

C iv C

G E m

C n
g

gg G
C c

∈
=∑ z  

from the group algebra ZC  where 

               
2

† †
2 2

1

1 1(tr )(tr )
K

g g g i g
i

c E P E P v E
K K =

= = ∑ iv .             (4) 

We call  the element associated with the quantum code  in the group algebra C C

ZC . 

From (3), the transform of  is given by C n
h

hh G
C

∈
c z′ ′=∑  where 

† † † †
2

1 1 (tr )(tr ) tr
n

n
h g g h g

g G

c E P E P E E E
M K∈

′ = ∑ h gE m  

2† †
2 2

1 1
tr

n n K K

h h i h j
i j

m mE E v E v
K M K M = =

= = ∑∑P P             (5) 

where n gg G
M c

∈
=∑ . Since 0 1c′ = , from (5) we get nM m K= . Thus 

2

1 1

1 K K

h i h
i j

c v E
K = =

′ = ∑∑ jv .                     (6) 

From (4), (6), and using the Cauchy-Schwartz inequality we deduce that g gc c′≤  for 

all . Furthermore, from the definition of the minimum distance  we get 

that if  then 

ng G∈ d

1K > g gc c′=  for all  satisfying wtg ( )g d<  and there exist some  g
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with  such that wt( )g d= g gc c′≠ ; if 1K =  then g gc c′=  for all  and the 

minimum nonzero weight of  such that 

ng G∈

g 0gc ≠  is . d

So far we have established the universal framework for quantum codes: 

For arbitrary quantum code (( , , ))mn K d=C  we can characterize it as the element 

n
g

gg G
C c

∈
=∑ z  of the group algebra ZC , called the element associated with the 

quantum code , and the transform C n
h

hh G
C c

∈
z′ ′=∑  of C  so that 

1) the dimension  of  equals K C nm M  where n gg G
M c

∈
=∑ , 

2) the minimum distance  of  equals the minimum weight of  such that d C g

g gc c′≠  if ; the minimum nonzero weight of  such that  if 

. 

1K > g 0gc ≠

1K =

V. DISCUSSION 

The nicest thing about the framework is that we can characterize the properties of 

quantum codes by the properties of the group algebra. So the problems about 

unfamiliar quantum codes can be transformed into those about familiar classical 

group algebra. 

For example, we can define the weight distributions of the quantum code  as 

the weight distributions of the element  associated with  in the group algebra 

C

C C

ZC  and define the dual weight distributions of  as the weight distributions of the 

transform  of . Then for any quantum code, its weight distributions and dual 

weight distributions must satisfy the identities in Theorem 4, 6, 8, and 9. Note that the 

results about exact enumerators, complete enumerators and Lee enumerators of 

quantum codes are completely new. For Hamming weight enumerators, the binary 

C

C′ C
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version was first proved for quantum stabilizer codes by Calderbank et al. in [13], and 

later generalized by Rains in [14]. The nonbinary version for stabilizer codes was 

proved by Ketkar et al. in [15]. The result given here is a generalization to the most 

general quantum codes. 

Again the purity of quantum codes can also be characterized by the group algebra. 

For arbitrary quantum code , let (( , , ))mn K d=C n
g

gg G
C c

∈
= z∑  be the element 

associated with  in the group algebra C ZC . Then  is pure if and only if  

for . 

C 0gc =

0 wt( )g d< <

Finally if  is a quantum stabilizer code, from the definition of stabilizer codes, 

the element associated with  in the group algebra 

C

C ZC  can be written as 

g
g

C =∑ z  where the summation is over all such  that the operator g gE  belongs 

to the stabilizer of . In addition, the transform of  can be written as 

 where the summation is over all such  that the operator 

C C

h
h

C′ =∑ z h hE  belongs 

to the normalizer of . Both forms imply the relationship between quantum 

stabilizer codes and classical codes. 

C

To sum up, we have presented a universal framework for quantum codes and 

shown how it characterizes the properties of quantum codes as well as generates new 

results about quantum codes. We can assert that this framework is a very useful and 

potential tool in studying the problems about quantum error-correcting codes. 
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III. GROUP ALGEBRA
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Definition 2. The group algebra 
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be an arbitrary element of the group algebra 
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Definition 3. The transform of 
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Theorem 4.




[image: image106.wmf]222


2


0022


11


111


101


(1)


000


1


(,,,,),,,,


sssrrsss


mm


mmm


CirCsisns


nm


sss


zzzzzz


M


aaaaaaaaaaaa


wwwwww


--


---


¢


-


===


æö


=


ç÷


èø


ååå


KKKK


EE


.


Proof. From (2) and (3), the LHS is equal to
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which is equal to the RHS.                                          Q.E.D.


The next weight enumerator to be considered classifies vectors 
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We call the set 
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Then the complete weight distribution of 
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Theorem 6.
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Proof. Set 
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By setting certain variables equal to each other in the complete weight enumerator we obtain the Lee and Hamming weight enumerators, which give progressively less and less information about the group algebra, but become easier to handle.


Definition 7. Suppose now that 
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We call the set 
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Theorem 8. The Lee enumerator for the transform 
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The Hamming weight, or simply the weight, of a vector 
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We call the set 
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Then the Hamming weight distribution of 
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IV. UNIVERSAL FRAMEWORK FOR QUANTUM CODES


In this section, we establish the universal framework for quantum codes based on the group algebra defined in the last section.


Given an arbitrary quantum code 
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We call 
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From (4), (6), and using the Cauchy-Schwartz inequality we deduce that 
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So far we have established the universal framework for quantum codes:


For arbitrary quantum code 
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V. DISCUSSION


The nicest thing about the framework is that we can characterize the properties of quantum codes by the properties of the group algebra. So the problems about unfamiliar quantum codes can be transformed into those about familiar classical group algebra.


For example, we can define the weight distributions of the quantum code 
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 as the weight distributions of the element 
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 associated with 
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. Then for any quantum code, its weight distributions and dual weight distributions must satisfy the identities in Theorem 4, 6, 8, and 9. Note that the results about exact enumerators, complete enumerators and Lee enumerators of quantum codes are completely new. For Hamming weight enumerators, the binary version was first proved for quantum stabilizer codes by Calderbank et al. in [13], and later generalized by Rains in [14]. The nonbinary version for stabilizer codes was proved by Ketkar et al. in [15]. The result given here is a generalization to the most general quantum codes.


Again the purity of quantum codes can also be characterized by the group algebra. For arbitrary quantum code 
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Finally if 
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 is a quantum stabilizer code, from the definition of stabilizer codes, the element associated with 
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 in the group algebra 

[image: image262.wmf]Z


C


 can be written as 

[image: image263.wmf]g


g


Cz


=


å


 where the summation is over all such 

[image: image264.wmf]g


 that the operator 

[image: image265.wmf]g


E


 belongs to the stabilizer of 

[image: image266.wmf]C


. In addition, the transform of 

[image: image267.wmf]C


 can be written as 

[image: image268.wmf]h


h


Cz


¢


=


å


 where the summation is over all such 

[image: image269.wmf]h


 that the operator 

[image: image270.wmf]h


E


 belongs to the normalizer of 

[image: image271.wmf]C


. Both forms imply the relationship between quantum stabilizer codes and classical codes.


To sum up, we have presented a universal framework for quantum codes and shown how it characterizes the properties of quantum codes as well as generates new results about quantum codes. We can assert that this framework is a very useful and potential tool in studying the problems about quantum error-correcting codes.
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