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Abstract

In quantum field theory it is generally known that the energy density may be negative at a 

given point in spacetime.  A number of papers have shown that there is a restriction on 

this energy density which is called a quantum inequality (QI).  A QI is the lower bound to 

the “weighted average” of the energy density at a given point integrated over a time 

dependent sampling function.  In this paper we give an example of a sampling function 

for which there is no QI. 
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1. Introduction

In quantum theory it is widely known that that energy density may be unboundedly 

negative at a given point in space-time.  However it has been shown that there are 

restrictions on the negative energy density which are referred to as the quantum 

inequalities (QI) [1].  The QI’s have the following form:  Let  00
ˆ ,T t x be the 

energy density of the normalized state vector  where  00
ˆ ,T tx is the Heisenberg 

picture energy density operator.  Let  s t be a peaked non-negative sampling function 

whose time integral is unity.  The QI takes the form,

      00, 00
ˆ ,AveT T t s t dt F s t





    x (1.1)

That is, there is a lower bound to the quantity 00, AveT which is defined by the above 

equation.  This lower bound is given by the quantity   F s t which is dependent on the 

sampling function  s t .  Ford and Roman [1][2] have considered the specific case where 

the sampling function is given by    2 2
0 0s t t t t    .  Now what happens if we pick a 

different sampling function?  Should we assume that a QI exists for all sampling 

functions or is there something unique about the sampling function specified in the last 

sentence?  

This problem was originally addressed for a zero mass scalar field theory in 1-1D 

spacetime by E.E. Flanagan [3].   Fewster and Eveson [4] extended this work to 4 

dimensions and non-zero mass field.   It will be shown in the following discussion that 

for a zero mass scalar field in four dimensional space-time we can find a sampling 

function for which there is no lower bound to 00, AveT .

2.  Calculating the energy-density.

We will consider scalar field theory with zero mass in four dimensional spacetime.  We 

will start by examining the quantity  00
ˆ 0,T t  which is the expectation value of the 

energy density at the origin 0x .  Referring to Eq. 7 of Ref [1] it can be shown that for 

a zero mass scalar field,
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where V is the integration volume and where  k k .  Also âk and †âk are the usual 

destruction and creation operators, respectively.  They satisfy the commutation 

relationships

† † †ˆ ˆ ˆ ˆ ˆ ˆ, ;   , , 0a a a a a a          k q kq k q k q (2.2)

The vacuum state is defined by 0 and is destroyed by the destruction operators, i.e., 

ˆ 0 0a k .

Let  be given by ˆ 0U  where Û is defined by,

ˆˆ CU e (2.3)

and where Ĉ is,

 † †ˆ ˆ ˆ ˆ ˆ
2

f
C a a a a  k

k k k k
k

(2.4)

In the above expression fk is a real valued constant which will be specified later.

Let the sampling function be given by,
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(2.5)

where,

1 2

1 2

A
 
 




(2.6)

The sampling function obeys the relationship   1s t dt




 .  Given the above we want to 

determine if there is a lower bound to 00, AveT for this sampling function.  To determine 

this proceed as follows.

It is evident that †ˆ ˆC C  therefore 
ˆ† 1ˆ ˆ CU U e   .  This means that Û is a 

unitary operator and satisfies † †ˆ ˆ ˆ ˆ 1UU U U  .   Define the quantity,

ˆ ˆ†ˆ ˆ ˆˆ ˆC Cb U a U e a e k k k (2.7)
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From this we obtain,

ˆ ˆ† † † †ˆ ˆ ˆˆ ˆC Cb U a U e a e k k k (2.8)

Using the Baker-Campbell-Hausdorff relationships to expand (2.7) we obtain,

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , ,
2! 3!

b a a C a C C a C C C                       k k k k k  (2.9)

Use (2.2) and (2.4) in the above to obtain,

†ˆˆ ˆ,a C f a   k k k and † ˆˆ ˆ,a C f a   k k k (2.10)

Use this in (2.9) to yield,

2 3
† † †ˆ ˆ ˆ ˆ ˆ ˆ ˆcosh sinh

2! 3!

f f
b a f a a a a f a f      k k

k k k k k k k k k k (2.11)

Also we can show that,

† †ˆ ˆ ˆcosh sinhb a f a f k k k k k (2.12)

Use the above results to obtain,

† † † † † † †ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ0 0 0 0 0 0a a U a a U U a UU a U b b    k q k q k q k q (2.13)

Similarly we can also show that,

ˆ ˆˆ ˆ 0 0a a b b  k q k q (2.14)

From (2.11) and (2.12) we obtain,

 2†ˆ ˆ0 0 sinhb b fk q kq k (2.15)

and,

  ˆ ˆ0 0 cosh sinhkb b f fk q q k k (2.16)

Next, use the above relationships in (2.1) to obtain,

        2 2
00

Reˆ 0, 2 sinh cosh sinh
2

i tT t f f f e
V

      k
k k k

k

k (2.17)

Use,

         
2 1 2

2 22 2
1 2 1 2

2 21 1
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 k k k

k k k k
(2.18)

and (2.17) in (1.1) to obtain,
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This yields,
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Next assume that fk is a function of k and let V  and make the substitution 
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Let f g k k where 0g k .  Therefore,
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Next define the constants W and  where W  and 1 2,  and 1W W   .  Define 

kg by,

0 for  and g W   k k k (2.23)

and,

   
1 2

2 22 2
1 2

sinh
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(2.24)

Use the above relationships in (2.22) to obtain,
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Next, use the fact that 1 2,  and 1W W   to show that, in the above integral, we can 

substitute  cosh 1kg  and  2 2 2
1 4 4k k   and  2 2 2

2 4 4k k   .  Use these 

approximations in the above integral to yield,
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Use (2.6) in the above to obtain,

 2

1 2
00, 2

ln
128AveT

W

 


    
 

(2.27)

By making  arbitrarily large it is evident that there is no lower bound on 00, AveT .

3. Conclusion

We have examined the energy density for a zero mass scalar field.  We have shown that 

there is no lower bound to the “weighted average” of the energy density for the sampling 

function given by (2.5).  Therefore a QI does not exist for this particular sampling 

function.
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