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On the Salecker-Wigner-Peres clock and double barrier tunneling
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In this work we revisit the Salecker-Wigner-Peres clock formalism and show that it can be directly
applied to the phenomenon of tunneling. Then we apply this formalism to the determination of the
tunneling time of a non relativistic wavepacket, sharply concentrated around a tunneling energy,
incident on a symmetric double barrier potential. In order to deepen the discussion about the
generalized Hartmann effect, we consider the case in which the clock runs only when the particle
can be found inside the region between the barriers and show that, whenever the probability to find
the particle in this region is non negligible, the corresponding time (which in this case turns out to
be a dwell time) increases with the barrier spacing.

PACS numbers: 03.65.Xp, 73.40.Gk

I. INTRODUCTION

An unambiguous definition of a tunneling time is an
important problem in quantum mechanics, due to both
its applications and its relevance to the foundations of
the theory. It is, however, a problem which has eluded
physicists since the beginnings of the quantum theory.
Many attempts have been made to define such a time
scale (see [1, 2, 3, 4] for reviews). However, most of these
definitions (phase time, dwell time, Larmor time, etc.),
while being valid to describe some specific characteristic
of the tunneling process, also present difficulties if one
tries to interpret them as traversal times in general.

Perhaps the most striking of the above mentioned diffi-
culties concerns the issue of superluminality, a direct con-
sequence of the Hartmann effect [5], which asserts that
the phase time saturates for opaque barriers. More re-
cently, the Hartmann effect has been considered for the
double barrier potential, and it was verified that in the
opaque limit the phase time does not depend on the
spacing between the barriers either, a phenomenon re-
ferred to as the generalized Hartman effect [6] (also see
[7, 8, 9]). Although there are no real paradoxes associ-
ated with these phenomena, since it is well known that
the group velocity cannot be associated to the signal ve-
locity in such a situation [10], the subject has originated
intense debate in the literature (see, for example, [11] and
the references there cited). Independently of these con-
troversial interpretations, it is in fact a counterintuitive
result that in the opaque limit the phase time does not
depend on the spacing between the barriers, because one
could expect group velocity to have the usual physical
meaning in that free region. Subsequent investigations,
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both in the non-relativistic [12] and in the relativistic [13]
cases, indicate that this lack of dependence may be an ar-
tifact of the opaque limit, but the subject still deserves
further investigation.

A fruitful avenue of investigation on tunneling times
considers the use of quantum clocks. A quantum clock
is a secondary dynamical system weakly coupled to the
system of interest and having a degree of freedom evolv-
ing uniformly in time. One of the most prominent works
along this line leads to the Larmor time [14, 15], but
other clocks are possible (see for example, [2] and refer-
ences there cited). Here we are particularly interested in
the clock formalism introduced by Salecker and Wigner
[16] and later revisited by Peres [17], who used it to in-
vestigate, among other problems, the time-of-flight for a
non-relativistic particle (see also [18]). The extension for
a relativistic particle was later done by Davies [19].

In [17] Peres also introduced a “time operator” (not

canonically conjugate to the clock’s Hamiltonian), whose
expectation values do not lead to sensible results for the
tunneling time in the presence of a localized potential, as
was later shown by Leavens et al [20, 21]. To overcome
such a difficulty, these authors proposed a modification of
the original Salecker-Wigner-Peres (SWP) formalism by
the introduction of a calibration procedure. However, in
his treatment of the time-of-flight problem Peres [17] did
not use directly such an operator, but defined the time
given by the clock (tc) as the derivative of the phase shift
of the wavefunction with respect to the perturbation po-
tential. In this work we demonstrate that Peres’ original
approach, contrary to what is usually stated, can be di-
rectly applied to the tunneling time problem, without
the need for calibration. In section II we present a brief
review of the SWP formalism and clarify some impor-
tant issues related to it. In particular, we present a sim-
ple proof of the general result that tc (averaged over the
scattering channels) is exactly equal to the well known
dwell time (a result obtained by Leavens through the ex-
pectation values of the Peres’ “time operator” only after
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calibration). In section III we apply the SWP formalism
to the tunneling through a symmetric double barrier and
analyze the dependence of tc with the spacing between
the barriers. It must be noticed that although in this
case the (transmitted or reflected) time resulting from
the SWP clock is exactly the dwell time, this formalism
proves to be operationally better suited to address the
question of independence or not of the tunneling time
with respect to the barrier spacing in the limit of opaque
barriers, providing a simpler procedure for the direct cal-
culation of the time spent by the wavepacket only between

the two barriers. Therefore, such approach allows us to
deepen the discussions about the generalized Hartmann
effect. In Section IV we discuss the results and their
interpretation. In the Appendix we list the explicit ex-
pressions for some terms appearing in the expressions for
the times obtained in section III.

II. THE SWP CLOCK AND THE TUNNELING

TIME PROBLEM

The free SWP clock consists of a quantum rotor, which
for a Hilbert space of dimensionN has Hamiltonian given
by [17]

Hc = ωJ , (1)

with J =−i~ ∂
∂θ

, ω= 2π
Nτ

and τ is the clock’s resolution.

The energy eigenstates are um = eimθ

√
2π

, θ ∈ [0, 2π), with

eigenvalues Vm =m~ω (m = −j, ..., j). Another conve-
nient orthonormal basis for the clock’s Hilbert space is
[17]

vk(θ) =
1√

2πN

sin
[

N
2 (θ − ωkτ)

]

sin
[

1
2 (θ − ωkτ)

] , θ ∈ [0, 2π) (2)

with k = 0, ..., N−1. These are the eigenstates of the
Hermitian operator

T =

N−1
∑

k=0

kτPk , with Pkvl = δklvl, (3)

with eigenvalues kτ . The above operator plays the role
of a “time” operator, despite not being canonically con-
jugate to the Hamiltonian. The motivation for this iden-
tification is that, for large N , the wavefunctions vk are
sharply peaked around θ = ωkτ , with a width 2π

N
, and

their time evolution is given by

exp

(

− i

~
Hct

)

vk(θ) = vk(θ − ωt). (4)

Thus, vk(θ) evolves rigidly and uniformly within the in-
terval [0, 2π). In particular, for large N the peaks trans-
late from ωkτ to ω(kτ + t) (mod 2π).

It must be noticed that it is only for times t = nτ , with
n an integer, that

vk(θ − ωnτ) = v(k+n) (mod N)(θ),

such that the whole set of eigenfunctions vk(θ) can be
obtained from any of them (say v0) through a sequence
of (discrete) time translations. This fact is at the ori-
gin of the discrepancies found by Leavens [20] between
the intrinsic time t in (4) and the expectation value of
(3) whenever t is not an integer multiple of τ . To over-
come such a difficulty, Leavens introduced a calibration

procedure, later revised by Leavens and McKinnon [21],
designed in such a way that after calibration the clock
times (given as an average over an ensemble of freely
running clocks) coincided with the intrinsic ones.

On the other hand, the above properties of the wave-
functions vk under time evolution allowed Peres to con-
sider them as the proper clock’s hand, with the clock’s
“reading” given by the angle ωtc (the translation of the
wavefunction’s peak). In applying this approach to the
one-dimensional scattering of a particle of mass µ by
a localized potential V (z) confined within the region
0 < z < L, the clock-system coupling can be designed
to measure the time the wavepacket spends within an
arbitrary region z1<z<z2. In this case the Hamiltonian
for the coupled system is given by [17]

H = Hs + P (z)Hc, (5)

where Hs = p2

2µ
+ V (z), Hc is the clock Hamiltonian

(1) and P (z) is a projection operator into the interval
(z1, z2). Let us consider a particle in a stationary state of
energy E incident from the left (the results remain valid
for a wavepacket strongly concentrated around E). For
the initial (free) clock state we choose, following Peres,
v0(θ). Then, assuming that the highest eigenvalue of the
clock, Vm, is negligible when compared to all the relevant
energy scales in the problem, the final (asymptotic) state
of the whole system is given by [17, 20]

Ψ(z, θ)=







T eikz v0
(

θ − ω tTc
)

, z ≥ max {z2, L}

R e−ikz v0
(

θ − ω tRc
)

, z ≤ min {z1, 0} ,

where T and R are the transmission and reflection coeffi-
cients (which depend on the energy E) for the system in
the absence of the clock. From the above expressions and
(4), one identifies the Peres’ transmission and reflection

times, respectively, by

tTc (E)= −~
∂φ

(m)
T

∂Vm

∣

∣

∣

∣

∣

Vm=0

and tRc (E)= −~
∂φ

(m)
R

∂Vm

∣

∣

∣

∣

∣

Vm=0

,

(6)

where φ
(m)
T (φ

(m)
R ) is the phase delay of transmis-

sion(reflection) in the presence of the clock, and the
superscript (m) indicates the m-th clock’s eigenstate.
In deriving the above result it is assumed that in the

vanishingly weak coupling limit T (m) ≈ |T | eiφ
(m)
T and

R(m) ≈ |R| eiφ
(m)
R [17].

A relation between the dwell time and (6) can be ob-
tained by following steps similar to those Winful used
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to derive a relation between the dwell time and the
phase times [22] (see also [23]). In order to do this,
one must realize that for a stationary incident parti-
cle and when the clock is in its m-th stationary state
the problem is reduced to the solution of the time-
independent Schrödinger equation with a localized po-
tential V (m)(z)=V (z)+VmP(z) [17, 20], whose solution
outside the potential region is given by

ψ(m)(z) =







T (m)eikz , z ≥ max {z2, L}

eikz +R(m)e−ikz , z ≤ min {z1, 0} ,
(7)

where k = 1
~

√
2µE. Considering the Schrödinger equa-

tion with the potential V (m)(z) and its complex conju-
gate we obtain, after taking the vanishingly weak cou-
pling limit Vm→0,

P(z)ψ∗ψ = − ~
2

2µ

∂

∂z

[

(

∂ψ∗

∂z

) (

∂ψ(m)

∂Vm

)

Vm=0

−ψ∗
(

∂2ψ(m)

∂Vm∂z

)

Vm=0

]

, (8)

where ψ denotes the wavefunction after the limit Vm→0.
Integrating the above expression over the region (z1, z2)
we obtain −2µ

~2

∫ z2

z1
dz|ψ|2 = [...]z2 − [...]z1 , where [...] cor-

responds to the term into brackets in the above expres-
sion, which is constant for all z ≥ z2 and for all z ≤ z1,
because P(z) = 0 in those regions. Taking advantage of
this fact, we can use any value of z > z2 to compute the
bracket [...]z2 . For convenience we choose z into the re-
gion corresponding to the transmitted wave. In the same
way, we can choose z into the incident/reflection region
to compute the bracket [...]z1 . This procedure, together
with (7), yields

µ

i~2k

∫ z2

z1

dz|ψ|2 =T ∗
(

∂T (m)

∂Vm

)

Vm=0

+R∗
(

∂R(m)

∂Vm

)

Vm=0

,

which can be rewritten as

µ

~k

∫ z2

z1

dz|ψ|2 = |T |2
[

−~
∂φ

(m)
T

∂Vm

]

Vm=0

+ |R|2
[

−~
∂φ

(m)
R

∂Vm

]

Vm=0

.

Identifying the incident flux jin = ~k
µ

, the l.h.s. of the

above expression is the well known expression for the
dwell time tD [1, 2]. Finally, from (6) we obtain

tD = |T |2tTc + |R|2tRc . (9)

Although the above relation was also obtained by
Sokolovski et al. [24] through the use of Feynman’s
path integrals, our proof is worth mentioning due to its
simplicity. Analogous results were also obtained in the
framework of weak measurements or through the Lar-
mor clock formalism, but involving, in general, complex
times [25, 26, 27]. Relation (9), however, involves only
real times. Leavens and McKinnon [21] showed that us-
ing the “time operator”, eq. (3), such relation can only
be obtained after applying their calibration procedure.
As another important point concerning the above rela-
tion we emphasize that, as long as the transmission and
reflection times are defined by (6), no interference term
enter it (the analogous relation involving phase times nec-
essarily requires such a term [22]). The validity of such
a relation has been much debated in the literature (see,
for instance, [1, 2, 28] for different points of view) and we
hope that the above derivation helps to clarify the fact
that it all depends on how the transmission and reflection
times are defined (see also [3, 25] for further discussions).

Finally, we note that when the whole potential V (z)+
VmP(z) is symmetric the reflected and the transmitted
phases differ only by a constant [15], which leads to tD =
tTc = tRc [4, 13]. In such a case it must also be noted that
any of the expressions in (6) constitute an operationally
simpler way to calculate the exact dwell time. We shall
take advantage of this fact in the next section.

III. THE DOUBLE BARRIER TUNNELING

Let us now consider a particle having a given energy
E (or a wavepacket sharply concentrated around this en-
ergy) incident from the left on a symmetric double barrier
potential, given by

V (z) = V0 {Θ(z)Θ(a− z) + Θ(z − d− a)Θ(d+ 2a− z)} .
(10)

We will consider only the case E < V0, characterizing
a tunneling process. Even though we are chiefly con-
cerned with the case in which the clock runs only if the
particle is inside the region separating the two barriers
(a < z < a + d), it is instructive to first consider the
clock running when the particle is anywhere within the
potential region (0, 2a+ d). The solution of the time-
independent Schrödinger equation outside the potential
region in this case is of the form (7), with the transmis-
sion amplitude given by

T (m) = 8ikpmq
2
me

−i(2a+d)k
{

2 sin(pmd)(k
2 + q2m)(p2

m + q2m) −
[

(k − iqm)2 (2pmqm cos(pmd)

+ (p2
m − q2m) sin(pmd)

)

e−2qma + (qm − ik)2
(

2pmqm cos(pmd) − (p2
m − q2m) sin(pmd)

)

e2qma
]}−1

, (11)



4

where qm =
√

2µ(V0 + Vm − E)/~ and pm =
√

2µ(E − Vm)/~. The corresponding phase is

φ
(m)
T = −(2a+ d)k − tan−1

(

βm

αm

)

, (12)

with αm and βm defined as

αm ≡ 2kqm [2pmqm cos(pmd) cosh(2qma)

+ (q2m − p2
m) sin(pmd) sinh(2qma)

]

;

(13)

βm ≡ −(k2 + q2m)(p2
m + q2m) sin(pmd)

+ 2pmqm(q2m − k2) cos(pmd) sinh(2qma)

+ (q2m − p2
m)(q2m − k2) sin(pmd) cosh(2qma).

From the symmetry of the total potential (including the
term due to the clock) it follows that tD = tRc = tTc . So,
using (6) we obtain

tD = tTc = − µ

~ (α2
0 + β2

0)

(

h1

k
− h2

q

)

, (14)

where α0 and β0 are obtained from (13) by taking the
limit Vm → 0 (which corresponds to pm → k and qm →
q = 1

~

√

2µ(V0 − E)). The explicit expressions for α0 and
β0 as well as for h1 and h2 are given in the Appendix.

Now, let us consider the case in which the SWP clock
runs only when the particle can be found inside the region
between the two barriers, namely in the interval (a, a+d).
The (transmitted) Peres’ time tbet

c in this case can be
obtained from the above results simply by taking the
limit qm → q in (12) before taking the derivative in (6),
which gives

tbet
c = − µ

~k

h1

α2
0 + β2

0

. (15)

Using the above expression, we can rewrite (14) as

tD = tbet
c + tbar

c , (16)

where

tbar
c =

µ

~q

h2

α2
0 + β2

0

(17)

is just the (transmitted) Peres’ time obtained by allowing
the clock to run only when the particle passes within any

of the two barriers (which corresponds to take pm →
k in all the above perturbed expressions, before taking
the derivative in (6)). From the proof presented in the
previous section, together with the symmetry of the total
potential, it follows that (15) and (17) are the dwell times

spent in the regions between and within the two barriers,
respectively.

In order to discuss the generalized Hartman effect we
specialize our results to the opaque limit qa → ∞, in
which the Peres’ time (14) for the whole potential region
saturates to the value

tD = tTc
qa→∞
−→ µ

~q2
2kq

(k2 + q2)
. (18)

Then, in the opaque limit the behavior of the Peres’ time
(dwell time) for the whole potential region is analogous to
that of the phase time, in which it is independent both
of the barriers width a and the barrier spacing a, and
we obtain a version of the generalized Hartman effect.
The above saturated result could also be obtained from
the non relativistic limit for the dwell time obtained in
[13] (in that reference the dwell time was obtained from
a relation among the phase and the dwell times involv-
ing interference terms [23]). However, methods based on
the phase time, which is an asymptotically extrapolated
quantity, are not suitable to study the behavior of the
time the particle spends only inside the region between

the barriers.

In the opaque limit qa → ∞, the expression (15) im-
mediately yields tbet

c → 0. A more careful analysis taking
into account the leading terms in the asymptotic situa-
tion in which qa is large, but finite, shows that

tbet
c

qa≫1
−→ 4µq2

~

e−2qa

(k2 + q2)

{

2kd(k2 + q2) + 4kq sin2(kd) + (k2 − q2) sin(2kd)
}

{(k2 − q2) sin(kd) − 2kq cos(kd)}2 . (19)

Apart from terms coming from the multiple reflections
and/or interference at the barriers, this expression clearly
displays an increasing (almost linear) dependence of tbet

c

with respect to the barrier spacing d , for any finite qa.
Fig. 1 shows the behaviors of the three times entering
expression (16), with increasing d. Fig. 1a concerns a
large but finite barrier width a. We can observe the
almost linear increasing of tbet with increasing d. In

Fig. 1b the barrier width is increased three times and
we can already observe the tendency to saturation (ex-
cept by the peaks) of the three times: tD and tbar

c tends
to the saturated value (18), while tbet

c tends to saturate
to zero. Increasing even more the barrier width makes
the peaks vanish. It can also be shown that if the clock
runs only within the first barrier, the corresponding sat-
urated dwell time in the opaque limit is exactly the same
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FIG. 1: (Color online) Peres’ clock time dependence with
respect to the distance d between the two barriers. In both
figures the three clock times appearing in relation (16) are
shown, corresponding to the whole potential region (0, 2a+d),
to the region between the barriers (a, a+d), and to the region
within the two barriers (0, a) ∪ (a + d, 2a + d). Natural units
were used (~ = c = 1), so that mass and energies are expressed
in units of the particle mass µ, and distances and times are
expressed in units of µ−1. In both figures E = 0.01 and
V0 = 0.018. (a) a = 10; (b) a = 30.

as (18). Summarizing, in the opaque limit qa → ∞ the
transmission amplitude beyond the first barrier goes to
zero, and its associated phase becomes meaningless. This
fact corroborates the view that the generalized Hartman
effect, which asserts the independence of the tunneling
time on d, is indeed an artifact of the opaque limit (see
also [12, 13]).

IV. CONCLUDING REMARKS

In this work we revisited the SWP clock formalism,
which (despite of being based on a thought experiment) is
useful to understand the fundamental concepts involved
in the definition of a time scale for tunneling processes.
We showed that in Peres’ version it can be directly ap-
plied to the problem of tunneling times. We demon-
strated that departures from the Peres’ approach are not
necessary, even in the case of localized potentials, if one
focuses, as Peres did, on the time evolution of the eigen-
functions of his “time operator”, instead of focusing on
its expectation values, as did Leavens et al [21].

Using the Peres’ approach, and through a simple ex-
tension of a proof originally designed by Winful in the
context of phase times [22, 23], we have shown that the
Peres’ times (6), when weighted by the transmission and
reflection probabilities, averages exactly to the dwell time
(incidentally, for symmetric potentials any of the two ex-
pressions (6) provides an operationally simpler way to

calculate the dwell time). On the other hand, we did not
address questions regarding the SWP clock’s resolution
in the presence of a localized potential (see [17, 20]) be-
cause this issue can be addressed in the framework of the
weak measurement theory [29], as suggested in [30, 31].
Besides that, in this paper each of the time readings as-
sociated to the clock is equivalent to a dwell time, which
is a well established time scale [1, 2, 3, 4].

We then applied the SWP formalism to the symmet-
ric double barrier potential, aiming to analyze the so-
called generalized Hartman effect. We calculated explic-
itly the dwell time and verified that in the opaque limit
it does not depend on the barrier separation, confirming
the emergence of the generalized Hartmann effect also
in this case (see also [12]). However, we added a new
insight into this debated question by allowing the clock
to run only inside the region between the barriers, and
taking into consideration the leading terms when the bar-
rier width is large, but finite, we unambiguously showed
that the dwell time increases “almost linearly” with the
barrier spacing d (apart from terms arising from the mul-
tiple reflections/interference inside this region). The fact
that such a behavior is modulated by an exponential de-
cay exp(−2qa) can be understood by noticing that the
dwell time is an average over the probability of finding
the particle in the interest region (and since this probabil-
ity decays exponentially with qa, so will tD). Therefore,
whenever the probability to find the particle in the region
between the barriers is non negligible, the corresponding
dwell time depends on the barrier spacing.

All the above considerations reinforce the conclusions
arrived in [12], in the context of a Fabry-Pérot cavity,
and in [13], for the relativistic tunneling through dou-
ble barriers, that the generalized Hartman effect is just
a mathematical artifact of the opaque limit: although
in that limit the transmission phase is well defined and
finite, it is meaningless since T itself goes to zero. There-
fore, any time scale defined in terms of such phase (such
as phase times and, as seen in section II, dwell times)
also becomes meaningless in this limit: it corresponds to
the trivial fact that the particle does not penetrate past
the first barrier, and therefore it makes no sense to as-
sociate any time duration to its passage (or dwelling) in
the region between the two barriers.

APPENDIX

In this Appendix we present the explicit expressions
for α0, β0, h1, and h2, which appear in the expressions
for the Peres’ clock times (14), (15), and (17):

α0≡ 2kq[2kq cos(kd) cosh(2qa)

+(q2−k2) sin(kd) sinh(2qa)
]

,

β0≡ −(k2+q2)2 sin(kd)+2kq(q2−k2) cos(kd) sinh(2qa)

+(q2 − k2)2 sin(kd) cosh(2qa),
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while h1 ≡ α0γ1 − β0γ2 and h2 ≡ α0γ3 − β0γ4, with

γ1 ≡ −2k(q2 + k2) sin(kd) − d(q2 + k2)2 cos(kd) + 2q(q2 − k2) cos(kd) sinh(2qa)

− 2qkd(q2 − k2) sin(kd) sinh(2qa) − 2k(q2 − k2) sin(kd) cosh(2qa) + d(q2 − k2)2 cos(kd) cosh(2qa); (A.1)

γ2 ≡ 2kq {2q cos(kd) cosh(2qa) − 2qkd sin(kd) cosh(2qa)

− 2k sin(kd) sinh(2qa) + d(q2 − k2) cos(kd) sinh(2qa)
}

(A.2)

γ3 ≡ −4q(q2 + k2) sin(kd) + 2k(3q2 − k2) cos(kd) sinh(2qa) + 4kqa(q2 − k2) cos(kd) cosh(2qa);

+ 4q(q2 − k2) sin(kd) cosh(2qa) + 2a(q2 − k2)2 sin(kd) sinh(2qa) (A.3)

γ4 ≡ 2k
{

4kq cos(kd) cosh(2qa) + (3q2 − k2) sin(kd) sinh(2qa)

+ 4kq2a cos(kd) sinh(2qa) + 2qa(q2 − k2) sin(kd) cosh(2qa)
}

. (A.4)
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