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Stochastic webs were discovered, first by Arnold for multi-dimensional Hamiltonian systems, and later by
Chernikov et al. for the low-dimensional case. Generated by weak perturbations, they consist of thread-like
regions of chaotic dynamics in phase space. Their importance is that, in principle, they enable transport from
small energies to high energies. In this introductory review, we concentrate on low-dimensional stochastic webs
and on their applications to quantum transport in semiconductor superlattices subject to electric and magnetic
fields. We also describe a recently-suggested modification of the stochastic web to enhance chaotic transport
through it and we discuss its possible applications to superlattices.
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1 Introduction

Stochastic webs exist in the phase spaces of Hamiltonian systems, that is, in the space formed
by the coordinates and momenta of a dynamical system evolving in the absence of dissipation.
They consist of a network of very thin thread-like regions within which the dynamics is chaotic,
whereas the dynamics remains regular everywhere else. Although the concept seems abstract
and mathematical at first sight, stochastic webs are now known to arise in a number of practical
contexts, including for example plasma physics [1], ultra-cold atoms in optical lattices [2, 3, 4]
and electrons in semiconductor superlattices (SLs) [5, 6, 7, 8, 9, 10, 11]; they have also been
considered in connection with celestial mechanics [12]. The importance of the chaotic threads
is that they can transport matter and energy effectively over long distances [13, 14]. In this
brief and rather informal review we aim to introduce the general reader to stochastic webs,
explaining what they are and discussing their recent developments and applications, taking
electron transport in semiconductor SLs as our example.

We start (Section 1.1) from the definition of a Hamiltonian system, its dimensionality and
integrability. Then (Section 1.2) we consider the effect of perturbations of the integrable system,
which brings us to the concept of a chaotic (stochastic) layer, in particular related to resonances.
The latter allows us to explain in the beginning of Section 2 the onset of the Arnold stochastic
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web in multi-dimensional systems. The main purpose of this section is to discuss the more
sophisticated nature of low-dimensional stochastic webs which are, however, still related to the
concept of resonance. In Section 3, we explain the limitations of the transport though the low-
dimensional web and suggest a subtle way of overcoming these limitations. Finally, in Section 4,
we discuss a rather unexpected application of the stochastic web concept to quantum electron
transport in nanometer-scale semiconductor SLs in the presence of electric and magnetic fields.
Section 5 draws conclusions.

1.1 Hamiltonian systems

Hamiltonian systems play an important role in physics, chemistry, biology and engineering, and
form a fundamental class of dynamical systems [15, 16, 17]. They are defined by the following
dynamical equations:

dpi

dt
= −∂H

∂qi
,

dqi

dt
=

∂H

∂pi
. (1)

If the Hamiltonian H does not depend on time t, while depending only on the momenta ~p ≡
(p1, . . . , pN ) and coordinates ~q ≡ (q1, . . . , qN ), then it is called N -dimensional. If it also depends
on time t, then it has the dimension N + 1

2 . A remarkable property of any Hamiltonian system
is the equality of its full and partial derivatives with respect to time:

dH

dt
=

∂H

∂t
. (2)

In particular, for time-independent Hamiltonians, H(~p, ~q) is conserved along the trajectory.
In general, the equations of motion (1) may not be integrable in quadratures1 [15, 16, 17],

whence the importance of integrable systems, i.e. those time-independent Hamiltonian systems
for which a transformation {~p, ~q} ↔ {~I, ~θ} exists such that

H(~p, ~q) = H̃(~I). (3)

Ii are called actions while θi are called angles. It follows from (3) that ~I is conserved:

dIi

dt
= −∂H̃

∂θi
= 0, (4)

while the angles θi change with constant speeds (for a given ~I),

dθi

dt
=

∂H̃(~I)

∂Ii
≡ ωi(~I), (5)

which are called frequencies.
Note that angles θi are cyclic variables i.e. ~p and ~q are periodic functions of θi with a period

2π for any θi [1, 15, 16, 17]. Thus, Eqs. (4) and (5) correspond to periodic or quasi-periodic
motion. The simplest and most often used example of an integrable system is a one-dimensional
one, which will be described in more detail below.

1When the solution of a differential equation expressible in terms of a formula involving integrations, it is said to be solvable
by quadrature.
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Figure 1. Schematic diagram to show a weak distortion of the majority of trajectories by a weak time-periodic perturbation:
the blue line shows the trajectory of the unperturbed system, while the red line shows the stroboscopic Poincaré section of
the trajectory of the perturbed one.
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Figure 2. (a). The separatrix of the pendulum H = H0 ≡ p2/2 − cos(q): the separatrix corresponds to H = Hs ≡ 1. (b).
The chaotic layer (replacing the separatrix) in Poincaré section of the ac-driven pendulum: H = H0 − 0.01q cos(t).

1.2 Perturbed Hamiltonian systems

It is natural to pose the question: what is the effect of a weak perturbation on an integrable
system? For the majority of cases, the answer is given by the Kolmogorov-Arnold-Moser (KAM)
theory [15]: most of the trajectories are just weakly distorted by a weak perturbation while
remaining regular. Let us illustrate this by an example of a one-dimensional system weakly
perturbed time-periodically. In this case, it is convenient to present the trajectory in the stro-
boscopic Poincaré section [1, 15, 16, 17], i.e. presenting states of the system {p(t), q(t)} only
at the discrete sequence of instants t = tn ≡ t0 + nT where t0 is some initial instant, T is the
perturbation period and n = 0, 1, 2, .... If the trajectory is “just weakly distorted while remain-
ing regular”, then, in particular, the unperturbed trajectory and the Poincaré section of the
perturbed one have the same dimension of 1 (i.e. they are just lines), and the same topology,
while just slightly deviating from each other (Fig. 1).

There are, however, two kinds of situation for which KAM-theory is not valid. The first of
these relates to the separatrices of the unperturbed systems. Let an integrable system possess a
separatrix i.e. the line (or surface, or hyper-surface in the general multi-dimensional case) that
separates trajectories of a different topology in the phase space1: e.g. in the example shown
in Fig. 2(a), the separatrix separates closed trajectories (corresponding to oscillations inside
the separatrix loops) from open trajectories (corresponding to the running coordinate below or
above the separatrix loops). If the system is perturbed time-periodically2, then the separatrix is
replaced by a chaotic trajectory. In Poincaré section, the chaotic trajectory lies within a chaotic

layer (Fig. 2(b)): the latter has a complicated (fractal) structure but its outer boundaries are
well defined and the region delineated by these boundaries has the dimension 2, unlike the

1More rigorously, the separatrices may be defined as follows [18]. Let the integrable system possess a saddle i.e. a hyperbolic
point in the one-dimensional case (i.e. an unstable stationary point with an exponential dynamics of trajectories approaching
it), or a hyperbolic invariant torus in higher-dimensional cases. The stable (incoming) and unstable (outgoing) manifolds
are called separatrices.
2In multi-dimensional cases, a time-independent perturbation also may give rise to the invalidity of the KAM-theory near
the separatrix.
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Figure 3. A schematic diagram showing the dependence of eigenfrequency ω on the energy E of an eigenoscillation, and
the meaning of the resonance energy Er .

dimension 1 of regular trajectories. Thus, even the appearance of the Poincaré section allows us
to distinguish immediately between regular and chaotic trajectories, unless of course the width of
the chaotic layer is less than the accuracy provided by the numerical integration of equations of
motion. The theoretical prediction of the width in energy of the chaotic layer has a long and rich
history. Its description on a physics level of rigour may be found in the book by Zaslavsky [17].
Studies that are more mathematically rigorous have recently been reviewed [19]. The maximum
width of the layer and other significant features (high peaks) of the width as function of the
perturbation frequency have recently been described [20, 21].

Another characteristic situation where the KAM-theory is invalid relates to resonances, i.e. to
areas of the phase space where at least one of the following conditions holds

nωi(~Ir) = mωj(~Ir), (6)

n,m = ±1,±2,±3, . . . ,

i, j = 1, 2, 3, . . . , N, i 6= j,

N = 2, 3, 4, . . . ,

or

nωi(~Ir) = lωf , (7)

n = ±1,±2,±3, . . . ,

i = 1, 2, 3, . . . , N − 1

2
,

N =
3

2
,
5

2
,
7

2
, . . . ,

where ωf is the frequency of the corresponding time-periodic perturbation while l is the number
of the Fourier harmonic that may exist for the time-periodic perturbation (e.g. for a monochro-
matic perturbation, only l = 1 is relevant).

The rigorous treatment of motion in the resonance range is rather complicated, being related
to the Poincaré-Birkhoff theorem and homoclinic and heteroclinic trajectories and tangencies
[22, 23]. We do not consider it here. Rather, we give a brief interpretation of the resonance-related
chaos in physical terms1. For the sake of clarity, consider an ac-driven 1D Hamiltonian system
whose frequency of eigenoscillation ω increases monotonically with the energy of eigenoscillation
E ≡ H0(p, q), while the perturbation frequency ωf exceeds the minimum of ω(E), as shown in
Fig. 3:

1This was given for the first time by Chirikov [24] (a clear presentation of the issues in question can be found e.g. in [17]).
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H = H0(p, q) − hq cos(ωf t), (8)

h ≪ 1,

ωf > ω0 ≡ min{ω(E)}.

Then there necessarily exists an energy Er such that the resonance condition (7) with n = l = 1
holds true:

ω(Er) = ωf . (9)

Consider motion for energies close to Er. Let us transform from variables {p, q} to action-angle
variables {I, θ}, so that the Hamiltonian becomes

H(p, q) ≡ H̃(I, θ) =

∫ I

Imin

dĨω(Ĩ) − h
∑

n

qn(I) cos(nθ) cos(ωf t)

≡
∫ I

Imin

dĨω(Ĩ) − 1

2
hq1 cos(θ − ωf t) + ...

≡ H̃0(I, θ̃ ≡ θ − ωf t) + Vf (I, θ̃, t), (10)

I(p, q) ≡ I(E) =
1

2π

∮

p(q,E) dq, E ≡ H0(p, q),

θ(p, q) = ω(E)

∫ q 1

p(q̃, E)
dq̃,

qn ≡ qn(I) =
1

2π

∫ 2π

0
dθq cos(nθ).

Here, the dots “. . . ”denote terms that vary with time much faster than the preceding term:
they are denoted in the next equality as Vf . Thus, allowing for the resonance condition (9), we

may introduce the slow angle θ̃ ≡ θ − ωf t and present the original Hamiltonian as a sum of an

“autonomous”part H̃0(I, θ̃) and the time-dependent (fast-oscillating) part Vf (I, θ̃, t). It is easy
to check by direct substitution into the corresponding Hamiltonian equations of motion that the
dynamics of the variables I and θ̃ is governed by the Hamiltonian

˜̃H = H̃ − ωfI. (11)

Taking into account that the perturbation is small (h ≪ 1) and, therefore, that the variation of
I around the resonance value Ir ≡ I(Er) is also small, we may approximate the function ω(I)
near the resonance value as

ω(I) ≈ ωf + ω′
r(I − Ir), (12)

ω′
r ≡ dω

dI
|I=Ir

.

From (10)-(12), we ultimately obtain the approximate auxiliary Hamiltonian governing the dy-
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namics of {I, θ̃}:

˜̃H(I, θ̃, t) =
1

2
ω′

r(I − Ir)
2 − 1

2
hq1 cos(θ̃) + Vf (I, θ̃, t)

≡ ˜̃H0(Ĩ ≡ I − Ir, θ̃) + Vf . (13)

It represents the sum of a pendulum-like1 autonomous Hamiltonian ˜̃H0(Ĩ , θ̃) and a time-periodic

(fast-oscillating) part Vf that plays the role of a perturbation. The pendulum-like part ˜̃H0

possesses a separatrix (cf. Fig. 2(a)) while the perturbation-like part Vf tends to destroy the
separatrix, replacing it with an exponentially narrow chaotic layer.

Thus we have shown that a resonance is necessarily associated with a narrow chaotic layer.

2 Stochastic webs

In the example considered above, the chaotic layer associated with the resonance provides only
a narrow (∝

√
h) variation of energy (or, equivalently, of action). Thus, there is no significant

transport in energy. Let us pose a question: could there be situations when a perturbation provides

for chaotic transport through a large range of energies? We now describe the three stages of
conceptual evolution that led to a positive answer to this question.

2.1 Multi-dimensional web

First, Arnold showed in 1964 [25] through rather simple topological arguments (also presented
clearly in [17]) that, if the system is multi-dimensional (namely, if N ≥ 5/2), and if the so called
non-degeneracy condition det(∂2H/∂Ii∂Ij) 6= 0 is fulfilled (in other words, if the system is
sufficiently nonlinear), then resonances necessarily intersect with each other, forming an infinite
web in the phase space along which an exponentially slow chaotic diffusion occurs.

2.2 Low-dimensional webs

Secondly, Chernikov et al. published an important series of papers in the late 1980s. We shall
review just three of the more important of them, concentrating on the model of a harmonic
oscillator subject to a plane wave, which will be relevant to our discussion of semiconductor SLs
below. A good review of a broad range of the early work on low-dimensional stochastic webs
may be found in [1]; more recent work is reviewed in [26] (see also [17]).

The main idea of Chernikov et al. is that a stochastic web may arise even in low-dimensional
systems (N = 3

2 ; 2) provided that the non-degeneracy condition is lifted, in other words, in this
case, if

dω

dI
= 0, (14)

while the perturbation in the equation of motion is resonant and coordinate-dependent.

2.2.1 Cobweb

We now consider the best known example of a low-dimensional stochastic web, the skeleton of
which in p − q Poincaré section has a form resembling that of a cobweb (Figs. 4(a), 5(b)). We

1Ĩ plays the role of a generalized velocity while θ̃ plays the role of the generalized coordinate. Note that the generalized

potential contains the small multiplier h, so that the maximal absolute value of the “velocity”Ĩ is proportional to
√

h and,
therefore, is small too.
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Figure 4. Stochastic web for the system (15), as obtained numerically with ω0 = 1, ν = 4, k = 15, ǫω2

0
/k = 0.1 [27]. The

integration time is 2×104 periods of oscillation 2π/ω0. (a). Poincaré section. (b). The corresponding probability distribution.

suppose that a harmonic oscillator is perturbed2 by a resonant plane wave [27]:

q̈ + ω2
0q = ǫ

ω2
0

k
sin(kq − νt), (15)

ν = nω0, n = 1, 2, 3, ...

This particular model has a number of applications, especially to plasma physics [1] and to
semiconductor SLs, as shown below in Sec. 4. In order to understand the origin of the stochastic
web shown in Fig. 4, we

(i) transform to polar coordinates {ρ, θ} or, equivalently, to action-angle variables {I, θ}:

q = ρ sin(θ), p ≡ q̇ = ω0ρ cos(θ), (16)

ρ ≡
√

2I

ω0
,

(ii) make use of the formula [28]

cos(x sin(θ) − y) =
∞
∑

m=0

Jm(x) cos(mθ − y) (17)

where Jm(x) is a Bessel function of the mth order1.

Using (16) and (17), it is not difficult to show that the Hamiltonian of a harmonic oscillator
perturbed by a plane wave can be represented in action-angle variables as

H(I, θ, t) = ω0I + ǫ
ω2

0

k2

∑

m

Jm(kρ(I)) cos(mθ − νt). (18)

Note that, due to the resonance condition ν = nω0 in (15), the term in the sum in (18) cor-
responding to m = n is nearly constant compared to other terms in the sum. So, similarly to

2For parameters, we use the same notation as Zaslavsky [1] and Chernikov et al. [27] while the coordinate is denoted as q
(instead of x in [1, 27]: cf. Fig. 4(a)) in order to match the notation in other sections and in some figures from other works
reproduced below.
1Note that Jm(x) is an oscillatory function of x with gradually decreasing amplitude as x increases. At x ∼ 1, the period
of oscillation is ∼ 2π while the amplitude is ∼ 1. For large x, the Bessel function asymptotically approaches the function
p

2/(πx) cos(x − (2m + 1)π/4).
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Figure 5. Left panel: schematic representation of the grid-like separatrix of the Hamiltonian H̃s, as defined in Eqs. (20);
saddles are shown by dots. Right panel: schematic representation of the same separatrix in Poincaré section p − q.

the case of nonlinear resonance considered in Section 1.2 above, it is this term that provides the
major contribution to the dynamics. The other terms in the sum play the role of fast-oscillating
perturbations. So we again introduce a slow variable, the angle θ̃ ≡ nθ− νt. It is also convenient
to introduce the normalized action Ĩ ≡ I/n. The dynamics of the slow variables {Ĩ , θ̃} is then
governed by the auxiliary Hamiltonian H̃ ≡ nH − νĨ (as may readily be checked by direct
substitution into the Hamiltonian equations of motion). Hence

˙̃I = −∂H̃

∂θ̃
, ˙̃θ =

∂H̃

∂Ĩ
, (19)

θ̃ ≡ nθ − νt, Ĩ ≡ I/n,

H̃ = H̃s + Ṽf ,

H̃s ≡ H̃s(Ĩ , θ̃) =
ǫn

k2
ω2

0Jn(kρ(Ĩ)) cos(θ̃),

Ṽf ≡ Ṽf (Ĩ , θ̃, t) =
ǫn

k2
ω2

0

∑

m6=n

Jm(kρ(I)) cos
(m

n
θ̃ −

(

1 − m

n

)

νt
)

.

Thus, H̃s is an autonomous Hamiltonian that determines the main features of the motion of
{Ĩ , θ̃}, while Ṽf plays the role of a fast-oscillating perturbation.

It is straightforward to show that the autonomous Hamiltonian H̃s possesses a single infinite
grid-like separatrix corresponding to the zero value of H̃s (Fig. 5, left panel). The vertical fil-
aments of the grid correspond to θ̃ being equal to odd multiples of π/2 while the horizontal
filaments correspond to zeros of the relevant Bessel function,

separatrix : H̃s = 0 : (20)

θ̃ = (2j + 1)
π

2
, j = 0,±1,±2, . . . ,

Ĩ = Ĩi, i = 0, 1, 2, . . . ,

Jn(kρ(Ĩi)) = 0.

Note that the grid-like separatrix does not depend on the amplitude of the original perturbation.
Rather its form is an inherent property of the harmonic oscillator driven by the resonant plane
wave.

The fast-oscillating term Ṽf replaces this grid-like separatrix by the narrow chaotic layer. If
the separatrix (20) is represented in the Poincaré section p − q, it takes precisely the cobweb
form shown schematically in the right-hand panel of Fig. 5. Thus we have achieved the primary
goal of this subsection, to explain the onset of the cobweb-like stochastic web.
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Figure 6. Schematic diagram showing the width of the chaotic layer of the web.
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Figure 7. Typical dependence (schematic) of the width of a separatrix chaotic layer on the ratio between the frequency of
perturbation and the frequency of the small-amplitude oscillation of the unperturbed system.

2.2.2 Width of the cobweb

Transport through the web is affected, not only by the shape of the web’s skeleton, but also
by its width, i.e. the width of the chaotic layer (Fig. 6). An exact calculation of the width is
a complicated task that we will not undertake here. Rather, we will make a rough estimate
sufficient to lead us to definite qualitative conclusions.

Before doing so, we make a general comment about the width in the case of a 1D system with a
separatrix that is being perturbed by a time-periodic perturbation. The width depends strongly
on the ratio ωf between the frequency of the perturbation ωperturbation and the frequency of small-
amplitude eigenoscillations ωunperturbed. A schematic representation of the typical dependence is
shown in Fig. 7. This figure will be discussed in more detail in Section 3. In the present context it
is sufficient to emphasize that, if ωf is large, then the width of the chaotic layer is exponentially

narrow.
Let us now turn to the case of the web. As seen from (19), the characteristic frequency of the

perturbation Ṽf is ∼ ω0. On the other hand, the unperturbed Hamiltonian H̃s is proportional
to the small parameter ǫ. Therefore, even without a careful analysis of its oscillations, it is clear
that the frequency of oscillation in any cell of its grid-like separatrix is also small. Thus, we
conclude that the ratio ωf between the perturbation frequency and the eigenfrequency is large,
so that the width of the layer should be exponentially small. This conclusion is confirmed both
by careful theoretical analysis and by numerical simulations [1, 27].

Moreover, the analysis of oscillations near the elliptic points inside the cells of the separatrix
of H̃s shows that, for cells far from the centre, the frequency of oscillation possesses the following
property[1, 27]

ωunperturbed ∝ ǫ

I3/4
, (21)

i.e. it decreases as the distance from the centre increases. Conversely, the ratio ωf increases.
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Figure 8. The separatrix for inexact resonance: the single grid-like separatrix of Fig. 5 is replaced by a set of separatrices
that are distinctly separated from each other. The parameters used to compute the separatrix were: ∆ω = −0.001 6= 0 (see
Eq. (22)), ǫ = 0.573 and n = k = 1.

This means that the width of the layer decreases exponentially quickly as the distance from the
centre of the web increases. This conclusion is confirmed by Fig. 4 above: even for the moderate
ǫ used in this case, the width of the layer markedly decreases as the distance from the centre
grows.

2.2.3 Inexact resonance

Natural questions to ask in relation to the cobweb are: what happens if the oscillator differs
slightly from an ideal harmonic oscillator; and what happens if the resonance is inexact? The
answers were given by Chernikov et al. [29] (see also [1]). They found that the effects of anhar-
monicity and inexact resonance are in fact similar. So in what follows we shall, for the sake of
brevity, consider only the inexactness of the resonance:

ν = nω0 + ∆ω, ∆ω ≪ ω0. (22)

In this case, the autonomous resonance Hamiltonian reads as (cf. (19))

H̃s = ∆ωĨ +
ǫn

k2
ω2

0Jn(kρ(Ĩ)) cos(θ̃) (23)

As before, there are saddle points corresponding to different values of Ĩ, namely different roots
of the equation Jn(kρ(Ĩ)) = 0. But this means that, unlike the resonance case (∆ω = 0), the
values of H̃s at the saddles corresponding to different Ĩ are themselves different. This means
that the single grid-like separatrix splits into infinitely many different separatrices (Fig. 8).

In order for at least two lowest separatrices to be connected, allowing chaotic transport within
a unified structure (a web of a finite size, in the p − q plane), the width of the chaotic layer
should be more than, or of the order of, the difference in H̃s between the two lowest separatrices:

∆H̃
∼
> |H̃s(Ĩ2) − H̃s(Ĩ1)| ∼ 2π|∆ω|. (24)

Because ∆H̃ is exponentially narrow, as discussed in Section 2.2.2 above, the inequality (24)
means that the stochastic web may be formed only if the perturbation frequency lies in an
exponentially small vicinity of the resonance.

2.2.4 Uniform web

As already demonstrated above, the cobweb cannot in practice provide transport to arbitrarily
large energies because of the exponentially fast decrease in the width of the chaotic layer with
distance from the centre of the web. This limitation is overcome in another type of the stochastic
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Figure 9. Example of a uniform web in p − q Poincaré section [1].

web, called the uniform web [30] (see also [1]). Here, instead of being perturbed by a plane wave,
the harmonic oscillator is perturbed by short kicks that are periodic in space and time such that
the kick frequency is equal to the eigenfrequency of the oscillator or to one of its multiples:

q̈ + q = −ǫ sin(kq)

∞
∑

n=−∞
δ(t − nT ), (25)

T =
2π

ν
, ν = 1, 2, 3, . . .

The web then covers the whole phase space uniformly, as shown in Fig. 9.
We note however that the width of the chaotic layer is still exponentially small if the amplitude

of the perturbation is small [1, 29].

3 Modified stochastic webs

It is clear from the above discussion that a serious limitation affecting transport through any
chaotic web is the exponential narrowness of the web’s chaotic layer, which leads to exponentially
slow transport. Soskin et al. [21, 31, 32] recently suggested a way of overcoming this problem by
making a subtle modification of the webs leading, in turn, to exponential growth in the width of
the chaotic layer. We shall demonstrate this idea on our example of the cobweb, both because
it is relevant to the application to the semiconductor SLs and because, in this case, it also leads
to a dramatic increase in the size of the web.

3.1 Exact resonance case

We have found that there is an inherent limitation in the size of the cobweb. It does not relate
to the inevitably finite time of numerical simulations, which places a practical limit on the
distance over which the transport can be followed, but is characteristic of the cobweb itself. Our
numerical simulations show (Fig. 10) that, for the given parameters, the inner two-and-a-half
loops of the web are distinctly separated from the adjacent outer one-and-a-half loops by regular
trajectories. This might possibly be accounted for theoretically by consideration of higher-order
approximations of the averaging method [33]. We may speculate that such an approach could
show that, instead of a single infinite cobweb skeleton, there are many separate separatrices (of
the one-and-a-half loop shape) lying closely together, but that they might then coalesce due
to the chaotic layers dressing them as a result of the perturbation. Because the width of the
layer decreases exponentially fast with increasing distance from the centre, this would mean
that coalescence would occur only within a few inner loops. Just this is observed in Fig. 10, even
despite that ǫ is moderate rather than small.
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Figure 10. Left figure. Poincaré section for the system q̈ + q = cos(q − t). The saddles (marked by green circles) have
been found numerically. Four inner saddles belong to one and the same chaotic trajectory (shown in black) which forms
two-and-a-half inner loops of the stochastic web. Two remaining (outer) saddles generate another (shown in red) chaotic
trajectory which covers a very thin chaotic layer and is distinctly separated from the black chaotic trajectory. Right figure.
The area within the dashed magenta rectangle of the left figure is shown on a larger scale. Apart from the black and red
chaotic trajectories, we show (in magenta and blue) examples of regular trajectories (corresponding to invariant tori) lying
in between the chaotic trajectories.

One may reasonably ask: Is there any subtle way to substantially increase the size of the web

and to enhance transport through it?

In order to answer this question, let us recall the reason for the exponential narrowness of the
chaotic layer. It follows from Fig. 7 that it is attributable to the frequency of the perturbation Ṽf

being much higher than the eigenfrequency of the unperturbed resonant Hamiltonian H̃s. It is
clear from Fig. 7 that the width of the layer would be much larger if we could manage to modify
the original system in such a way that a new perturbation of the resonance Hamiltonian had a
component whose frequency was of the order of, or less than, the eigenfrequency of the resonance
Hamiltonian H̃s. In fact, this may readily be accomplished in at least two different ways: (i) one
can add to the original plane wave a small perturbation of the slightly shifted frequency (it can
itself be e.g. a plane wave); (ii) one can modulate weakly the angle of the original plane wave at
a low frequency. We demonstrate below only the second option (it will be especially convenient
for realization of the phenomena in SLs, as shown in Section 4 below).

We therefore consider the modified system (cf. the original Eq. (15)):

q̈ + ω2
0q = ǫ

ω2
0

k
sin(kq − νt − h sin(Ωt)), (26)

ν = nω0, n = 1, 2, 3, ...,

h ≪ 1, Ω
∼
< ωunperturbed ∼ ǫω0

I3/4
.

Of course, the latter inequality cannot be satisfied for an arbitrarily large I, but it can be true
for a sufficiently high value of I which greatly exceeds the original cobweb size in terms of I.

Repeating the same procedure used above in the derivation of Eq. (19), i.e. transforming to
action-angle variables, introducing the slow angle θ̃ and the auxiliary Hamiltonian H̃ ≡ nH−νĨ
which governs the dynamics of {Ĩ − θ̃}, we can derive:

H̃ = H̃(modified)
s + Ṽf , (27)

H̃(modified)
s ≈ H̃s + h

ǫn

k2
ω2

0Jn(kρ(Ĩ)) sin(θ̃) sin(Ωt)
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Figure 11. Poincaré section for a trajectory of the system (28) with initial state q = 0.1, q̇ = 0 (at instants tn = nT where
T ≡ 2π/0.02 is the period of the modulation and n = 1, 2, 3, ...600000) for h = 0 (left panel) and h = 0.1 (right panel). A

symplectic integration scheme of the fourth order is used, with an integration step tint = 2π
40000

≈ 1.57 × 10−4, so that the

inaccuracy at each step is of the order of t5int ≈ ×10−19. The left panel corresponds to the conventional case considered
in [1, 17, 27]. The right panel demonstrates that the modulation, although weak, greatly enlarges the web size (note the
different axes scales), thereby greatly enhancing the chaotic transport. The inset in the top right hand-corner plots the
left-hand panel on the same scale, thereby illustrating the dramatic extent of this enlargement.

Figure 12. Dynamics of the energy for the same systems as in Fig. 11.

(in the derivation, we took into account in particular the smallness of h).
Unlike the original autonomous slow resonance Hamiltonian H̃s ≡ H̃s(Ĩ , θ̃), the modified slow

part of the Hamiltonian, i.e. H̃
(modified)
s , depends on time: it contains a term ∝ h which oscillates

at a low frequency Ω. It is this slowly oscillating additional term (rather than the former fast-
oscillating perturbation term Ṽf ) that now determines the width of the layer: the width is
moderately small (due to the smallness of h and ǫ), rather than exponentially small as in the
original setup. This exponential growth in the width of the layer gives rise to substantial growth
in the size of the cobweb.

To illustrate the above ideas, we use the following example:

q̈ + q = 0.1 sin[15q − 4t − h sin(0.02 t)]. (28)

For h = 0, this coincides with the conventional cobweb example developed in [1, 17, 27].
Comparison of the left and right panels of Fig. 11, corresponding to h = 0 and h = 0.1

respectively, reveals a 6-fold increase in the size of the web in terms of q and p ≡ dq/dt:

nq,p ≈ 6. (29)
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Figure 13. (a) The potential U(q) = (0.2 − sin(q))2/2, (b) the separatrices in the phase space, and (c) the frequency of
oscillation as a function of energy ω(E) for the autonomous potential system H0(p, q, ) = p2/2 + U(q).

Figure 14. The bifurcation diagram in the plane of amplitude and frequency of perturbation for the system H = H0 +
hq cos(ωf t) with H0 as in Fig. 13. The area of {h, ωf} for which there is a global chaos between the separatrices is shaded.
The lower boundary of the shaded area therefore corresponds to the onset of global chaos, representing the function hcr(ωf ).

We emphasize that the modulation giving rise to this substantial increase is actually very small:
its amplitude of 0.1 is about 60 times smaller than 2π which is the relevant scale for the angle.

The corresponding increase of the size in terms of energy is proportional to the square of nq,p:

nE = n2
q,p ≈ 36. (30)

Fig. 12 shows this explicitly and, in addition, demonstrates that the mode of transport is signif-
icantly changed.

3.2 Inexact resonance

Our idea of an additional small modulation of the angle of the plane wave is equally fruitful
in the case of an inexact resonance. The frequency band (around the resonance) in which the
web-like structure is formed may grow exponentially: instead of the exponentially narrow band
found in the absence of modulation, we may have a moderately narrow band.

Moreover, there is a nontrivial spectral dependence of this growth: it reflects a universal
mechanism for facilitation of the onset of chaos between adjacent separatrices, discovered recently
by Soskin, Mannella and Yevtushenko [34]. To explain this mechanism, we use their example:
it is a potential system with a spatially periodic potential possessing two barriers of different
height within one period (Fig. 13(a)). Naturally, there are two kinds of separatrices (Fig. 13(b)).
It was shown [34] that the frequency of oscillation ω as a function of energy E possesses a local
maximum ωm between the separatrices and, moreover, ω is close to ωm over most of the inter-
separatrix energy range (Fig. 13(c)). The latter property is valid for any system with two or
more separatrices and is particularly important in the present context.

If we perturb the system with a time-periodic perturbation of frequency slightly lower than
ωm then, due to the flatness of ω(E) over most of the inter-separatrix range of E, two nonlinear
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Figure 16. The spectral dependence (i.e. dependence on Ω) of the critical amplitude h of the modulation required for initial

web formation i.e. for chaotic connection of the first two separatrices of H̃s (23) to occur. Note the logarithmic vertical
scale.

resonances arise that are very wide in terms of energy. Even a rather small amplitude of per-
turbation may be sufficient for these nonlinear resonances to overlap with each other and with
the separatrix chaotic layers, thus connecting the latter by the chaotic transport. This has been
confirmed both theoretically and in numerical simulations. Consequently, a critical perturbation
amplitude hcr is required for chaotic transport between the separatrix chaotic layers (which may
be considered as the onset of global chaos between them). As a function of the perturbation
frequency ωf , it possesses a deep minimum1 at a frequency approximately equal to ωm. This is
not only seen in the simulations (Fig. 14) but is also well described by the theory [34].

The situation is similar for modulation-assisted formation of the web in the case of inexact
resonance between the plane wave frequency and that of the oscillator. To demonstrate this, we
use the following example (the parameters correspond to those used in experiments on semicon-
ductor SLs):

q̈ + q = ǫ sin[q − νt − h sin(Ωt)], (31)

ν = 1.02292, ǫ = 0.573.

For h = 0, a stochastic web is not formed because the ∆ω ≡ ν − 1 ≈ 0.023 is too large for the

1If the perturbation is parametric rather than additive, then the deepest minimum may occur at some multiple of ωm rather
than at ωm itself [34].



November 11, 2009 16:31 Contemporary Physics CPstochasticwebs˙resub

16 Soskin, McClintock, Fromhold, Khovanov & Mannella

chaotic connection of any separatrices of H̃s (23) to occur. We have calculated numerically the
two lowest separatrices in the plane Ĩ − θ̃ (cf. Fig. 8), and then obtained the frequency ω of
oscillation of Ĩ (or, equivalently, of the shift by 2π of θ̃) as a function of the auxiliary energy
Ẽ ≡ H̃s: see Fig. 15. There is a local maximum that is clearly similar to that in Fig. 13(c).

Then we switch on the modulation of the wave angle and, for each given Ω, increase h gradu-
ally, until the web is formed i.e. until chaotic connection occurs between the first two separatrices
H̃s. This may be considered as the formation of the web. The spectral dependence of the corre-
sponding critical amplitude is shown in Fig. 16. Similar to Fig. 14, it exhibits a deep minimum
(note the logarithmic scale) at a frequency which is a little smaller than the local maximum of
the dependence ω(Ẽ): cf. Fig. 16.

4 Semiconductor superlattices in electric and magnetic fields

An application of the stochastic cobweb in nanoscience was recently identified and discussed in
a series of publications by researchers from the University of Nottingham [5, 6, 7, 8, 10]. They
considered quantum electron transport in nanometre-scale 1D semiconductor SLs subject to a
constant electric field along the SL axis and to a constant magnetic field (Fig. 17(a,b)). The
spatial periodicity of the SL layers gives rise to minibands for the electrons (Fig. 17(c)). In the
tight-binding approximation, the electron’s energy E as a function of its momentum ~p in the
lowest miniband is given by [5, 8]

E(~p) =
∆[1 − cos(pxd/~)]

2
+

p2
y + p2

z

2m∗ , (32)

where x is oriented along the SL axis, ∆ is the miniband width, d is the SL period, and m∗ is
the electron effective mass for motion in the transverse (i.e. y-z) direction.

Thus, the quasi-classical motion of an electron of charge e in an electric field ~F and a magnetic
field ~B can be described by:

d~p

dt
= −e{~F + [∇~pE(~p) × ~B]}. (33)

It was shown in [5] that, for a constant electric field along the SL axis ~F = (−F, 0, 0) and constant

magnetic field with a given angle θ to the axis ~B = (B cos(θ), 0, B sin(θ)), the dynamics of the z-
component of momentum pz reduces to the equation of motion of an auxiliary harmonic oscillator
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subject to a plane wave i.e. to the equation considered in the previous sections1,2:

p̈z + ω2
0pz = ǫ

ω2
0

k
sin(kpz − νt + φ), (34)

ω0 = ωc cos(θ), ωc ≡
Be

m∗ ,

ν = ωB, ωB ≡ eFd

~
,

ǫ =
∆m∗d2 tan2(θ)

~2
,

k =
d tan(θ)

~
,

φ = π +
d

~
[px(t = 0) + pz(t = 0) tan(θ)].

We emphasize that, despite its classical appearance, Eq. (34) has an inherently quantum origin:
most of the parameters contain Planck’s constant ~.

The dynamics of the system is fully determined by the dynamics of pz. Fig. 18 shows how the
trajectory of an electron in the x-z plane changes with the angle of the magnetic field.

At θ = 0, the plane wave has zero amplitude and the motion along the x- and z-directions
is separable. Electrons undergo Bloch oscillations along x (due to the presence of the constant

electric field) and cyclotron motion about ~B (Fig. 18(a)). The motion is localized.

Tilting ~B produces nonlinear coupling of the Bloch and cyclotron motion: as θ 6= 0, the
plane wave in (34) acquires a non-zero amplitude. This causes some moderate delocalization of
trajectories (Fig. 18(b)). The delocalization grows very fast (Fig. 18(c)) when θ reaches values
corresponding to the integer values r ≡ ωB/(ωc cos(θ)), in other words to the resonance ν = nω0.
This strong delocalization in x is a consequence of the onset of the stochastic web for the motion
of pz (34).

It is remarkable that the quantum probability density |Ψ(x, z)|2, calculated by solution of the
Schrödinger equation in the SL model potential subjected to electric and magnetic fields should
so nicely follow quasi-classical trajectories based on the dynamics of pz (34): see Fig. 18.

As shown in [5, 6], the delocalization of the electrons1 strongly affects their drift velocity vd

and, as a consequence, the current I and the current-voltage dependence I(V ). There are clear
manifestations of the resonances, both in the theoretical curves vd(F ), I(V ), dI/dV (see Fig.
17(d), Fig. 19(c) and Fig. 19(d) respectively), and in the experimental curves I(V ) and dI/dV
(Figs. 19(a) and (b) respectively). Thus there is clear evidence for stochastic web formation in
quantum electron transport, providing the basis for a conceptually new method for its control.
When scattering is included a priori in the semiclassical equations of motion, the stochastic
web, and stable islands that it enmeshes, evolve into limit cycles. These limit cycles also exhibit
sharp resonant delocalization and their locations in phase space closely reflect the underlying
web topology [8].

Finally, we pose a question: could the modification of the stochastic web discussed in the
previous section be of use for the SLs? Its seems [21, 31, 32] that this is indeed the case. As
shown in Section 3 above, modulation of the wave angle results in a large increase of the web
size. It was noted in [5] that the delocalization in x is proportional to the web size in terms of
the energy of the oscillator in pz, i.e. to E = ṗz

2/2 + ω2
0p

2
z/2 (cf. Fig. 18). The only question is

1The only small difference is the presence of a constant shift φ in the wave angle, but it is inessential.
2The motion of electrons in a biased SL with a tilted magnetic field can also be linked to the ultra-fast Fiske effect observed
for a Josephson junction coupled to an electromagnetic resonator [35].
1Seemingly paradoxically, one must take account of scattering in the calculation: if the motion were purely Hamiltonian,
the position of the electron averaged over time would be constant.
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Figure 17. (a). Schematic diagram of the SL. Its unit cell comprises two 3.5-nm-thick Ga-As layers (light blue), a 0.3-nm-
thick InAs layer (dark blue), and a 1-nm-thick AlAs barrier layer (mid blue). The structure contains 14 unit cells, enclosed
by 50-nm-thick GaAs ohmic contacts (green). (b). Schematic variation of the electronic potential energy with position x
normal to the layers, for V 6= 0. The quantum wells produce a periodic potential (only two complete unit cells are shown for
clarity supporting two minibands (blue)). Green areas represent electron gases in the contacts. (c). Energy versus crystal
momentum dispersion curves for the two minibands. (d). Plots of the drift velocity vd versus F calculated for B = 11T with
θ = 0 (black curve: arrow marks peak) and θ = 45◦ (green curve: arrows mark additional peaks). Reprinted by permission
from Macmillan Publishers Ltd: [Nature] [6], copyright (2004).

how the SL should be perturbed in order for the modulation term to appear in the dynamical
equation for pz. One suggestion [21, 31, 32] is that, in a manner similar to the derivation of Eq.
(34), one can show that the modulation term in the equation for pz appears if an ac-component
is added to the constant electric field:

F → F + Fac cos(ωact). (35)

Then, the following modulation term is added in the wave angle in Eq. (34):

h sin(ωact), h =
Fac

F

ωB

ωac
. (36)

To compare the resulting equation with the example (28) that we studied numerically, we trans-
form to normalized time

t → t̃ ≡ ω0t. (37)
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Figure 18. Electron trajectories and wavefunctions. Grey translucent curves: classical electron trajectories in the x-z plane
(axes inset) overlaid on corresponding plots of |Ψ(x, z)|2 (black zero, yellow high) at B = 11T. (a). When θ = 0, the
probability distribution is concentrated within the turning points of the classical trajectory. (b). Off resonance, here for

r = (1 +
√

5)/4) and θ = 50◦, the trajectories and wave functions extend a little but are still quite localized. (c). On
resonance, here for r = 1 and θ = 50◦, the wave functions extend across many SL periods, in correspondence with the
extended classical trajectories. A region of high probability density (yellow peaks) associated with a concentration of orbital
loops, occurs when the electron is trapped on the first (inner) ring-shaped filament of the web (lower left-hand arrow marks
the x value corresponding to this ring) and is therefore unable to progress through the SL. But when the electron transfers
onto the quasi-linear filaments, it shifts rapidly along x, following widely spaced orbital loops (within bracket), which
correspond to low probability density. The wavefunction is bounded from the right by the second ring-shaped web filament
(right-hand arrow marks x position corresponding to this ring), which impedes electron flow. Reprinted by permission from
Macmillan Publishers Ltd: [Nature] [6], copyright (2004).

Then the equation of motion for pz is:

d2pz

dt̃2
+ pz =

ǫ

k
sin(kpz − νt̃ + φ + h sin(Ωt̃)), (38)

Ω =
ωac

ω0
, h =

Fac

F

ν/ω0

Ω
,

where all other parameters are as in Eq. (34).
Thus, if the parameters are similar to those in (28), in particular: h = 0.1, Ω = 0.02, ν/ω0 = 4,

then we will have an enlargement in E as found for Eq. (28): nE ≈ 36. In order to achieve this,
we need Fac/F = hΩ/(ν/ω0) = 1/2000. This means that in order to achieve delocalization of the
electron by a factor of about 40, we need to add to the constant electric field an ac-component of
amplitude that is smaller than the constant component by a factor of 2000! We remind the reader
that the reason for such a dramatic change when an ac-component is added is the exponentially
strong enhancement of chaotic transport through the stochastic web due to the modulation of
the wave angle.

Recently, the effects of stochastic web formation on the high-frequency (GHz-THz) perfor-
mance of the SLs has been considered [10, 11]. Modulation of the vd(F ) curves, induced by
stochastic web formation, leads to the formation of multiple propagating electron accumulation
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Figure 19. Resonant enhancement of current. (a). Experimental I(V ) curves measured for B = 11T and θ = 0 (bottom
curve) to 90◦ (top curve) at 5◦ intervals at a lattice temperature of 4.2K. For 10◦ ≤ θ ≤ 55◦, each curve contains a region
of enhanced I beyond V ≈ 250mV. (b) Differential conductance plots of the data in (a) reveal strong resonant peaks (red).
(c). Theoretical I(V ) characteristics (for same parameters as in (a)). (d). Differential conductance plots of the traces in (c).
Curves in (a)-(d) are offset vertically for clarity and those for θ = 45◦ are green. In theory and experiment, the resonant
peaks in G(V ) initially shift slightly to higher V as θ increases, because the enhanced conductance leads to higher electron
charge density in the SL, which increases F and V . Reprinted by permission from Macmillan Publishers Ltd: [Nature] [6],
copyright (2004).

and depletion regions (charge domains), which greatly increase both the strength and frequency
of the associated temporal current oscillations. Chaos-assisted motion through stochastic webs
may, therefore, provide a mechanism for controlling the collective dynamics of electrons in SLs
and, hence, for enhancing their THz performance by using single-particle miniband transport to
tailor the shape of the vd(F ) curves.

5 Conclusions

We have shown that, in general, there is a possibility for energy in a Hamiltonian system to be
increased from small to rather large values as a result of transport through a stochastic web.

In a multi-dimensional system, the onset of a stochastic web is a common phenomenon, pre-
dicted by Arnold in 1964. In the present review, we have been more interested in the low-
dimensional stochastic webs discovered by Chernikov et al. in the late 1980s. They occur in
special situations: in a harmonic, or nearly harmonic, oscillator driven by perturbations periodic
in time and space that are resonant, or nearly resonant, with the oscillator.

We emphasized that the stochastic cobweb can arise when the oscillator is driven by a weak
resonant, or nearly resonant, plane wave. The exponentially small width of a strand of the web is
a characteristic feature of all stochastic webs and it decreases exponentially fast as the distance
from the centre of the cobweb increases. Moreover there is an inherent limitation on the size of
the cobweb. Soskin et al. have suggested how to overcome the restriction in size of the cobweb
and the exponential narrowness of its chaotic layer, just by slightly modifying the system by
means of a small slow modulation of the angle of the plane wave.

The model of the stochastic web turned out to be directly relevant to the quantum transport
of electrons in semiconductor SLs in constant electric and magnetic fields, as demonstrated by
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Fromhold et al.: the quantum transport dynamics reduces to the model of the harmonic oscillator
perturbed by a plane wave, where parameters are determined by the values of the electric and
magnetic fields, by the angle between them, by the period of the SL, by the charge and the
effective mass of the electron, and by Planck’s constant. At certain values of the parameters,
in particular of the electric field, resonance occurs between the oscillator and the plane wave,
resulting in the onset of the stochastic cobweb and, consequently, in a strong delocalization of
the electron which, in turn, increases the current and gives rise to a peak in the dependence of
the differential conductivity on voltage.

An addition to the constant electric field of a small slow ac-component results in the slow
modulation of the plane angle and, therefore, promises to strongly increase the delocalization of
the electron and to enhance a range of related phenomena.
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