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We investigate exact travelling wave solutions of higher order nonlinear

Schrödinger equation in the absence of third order dispersion. We show that this

system possesses a rich solution space with a nontrivial self phase modulation. It

is found that localized solutions to this system can be identified with separatrix

of a nonlinear ordinary differential equation. Interestingly, hydrodynamic equation

governing the intensity dynamics turn out to be KdV and modified KdV equations,

which are true hydrodynamical equations governing swallow water waves.

I. INTRODUCTION

The higher order nonlinear Schrödinger equation (HNLSE) governs the pulse dynamics

in the femtosecond domain, where third order dispersion, self-steepening of pulse due to de-

pendence of the slowly varying part of the nonlinear polarization on time and self-frequency

shift arising from delayed Raman response become important and can not be neglected

[1]. Third order dispersion, in particular, becomes important for femtosecond pulses, when

group velocity dispersion (GVD) is close to zero. It can be neglected for optical pulses,

whose width is of the order of 100 femtoseconds or more, having power of the order of 1

Watt and GVD far away from zero. In this case, the problem of pulse propagation can be

analytically ascertained to a great extent. In our earlier study, localized wave packets, with

nontrivial chirping, have emerged as exact solutions of this equation [2]. We had shown that,

chirping has a kinematic component, determined through initial conditions and a dynami-

cal component, owing its origin to self-steepening of pulse and to delayed Raman response.
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These two chirpings have inverse characteristics and can be used for chirp control. Further,

periodic solutions, with sinusoidal functions in fractional linear form, have also been identi-

fied. Parameter domain, where superimposed solutions were found to exist in this nonlinear

system, have also been identified.

In this paper, we explore the structure of the solution space of HNLSE, in absence of

third order dispersion, and connect it through a conformal transformation to elliptic function

equation. The earlier obtained solutions emerge as limiting solutions of the general case.

Using a pseudo-potential picture, we show that the localized solitons of this system can be

mapped to separatix solutions of the elliptic function equation. In this picture, both singu-

lar solutions and periodic solutions are identified, with unbounded and bounded solutions,

separated by the separatrix. Very interestingly, it is found that the dynamics of travelling

wave solutions can be identified in its generality, either by modified KdV equation or KdV

equation, which are genuine hydrodynamical equations and appear in dynamics of shallow

water waves.

Nonlinear Schrödinger equation:

iψx + a1ψtt + a2|ψ|
2ψ = 0,

with Kerr nonlinearity is the equation that governs picosecond pulse propagation in optical

fibers [1]. Here the slowly varying envelope of electric field is ψ, a1 is proportional to GVD

and a2 specifies the strength of Kerr nonlinearity, and subscripts x and t denote partial

derivatives, with respect to space and time coordinates, respectively. It was first predicted

by Hasegawa and Tappert [3] and later observed by Mollenauer et al. [4], that this system

supports robust soliton solutions. Such solutions exist due to complete integrability of this

dynamical system [5]. The higher order effects like third order dispersion, self-steepening of

pulse due to dependence of the slowly varying part of nonlinear polarization on time and

self frequency shift arising from delayed Raman response become important, while studying

propagation of the pulses with width of the order of 10 femtoseconds. Inorder to account for

them, Kodama [6] and Kodama & Hasegawa [7] proposed higher order nonlinear Schrödinger

equation (HNLSE) as a generalization of NLSE:

iψx + a1ψtt + a2|ψ|
2ψ

+i
[

a3ψttt + a4(|ψ|
2ψ)t + a5ψ(|ψ|2)t

]

= 0, (1)
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where a third order dispersion term, with coefficient a3, self-steepening term with coefficient

a4 and self-frequency shift effect with coefficient a5 have been added. This model, unlike

NLSE, is not integrable in general. A few integrable cases have been identified; these are

known as (i) Sasa-Satsuma case (a3:a4:(a4 + a5) = 1:6:3) [8], (ii) Hirota case (a3:a4:(a4 + a5)

= 1:6:0) [9] and (iii) derivative NLSE of type I and type II [10]. A few restrictive special

solutions of bright and dark type have been obtained for this system [11, 12, 13]. The effects

of these higher order terms on pulse propagation have been studied numerically extensively

[1, 14], and some special solutions to this system are also known [15]. Third order dispersion

becomes significant only for femtosecond pulses, when GVD is close to zero, but can be

neglected for optical pulses whose width is of the order of 100 femtoseconds or more, having

power of the order of 1 Watt and GVD far away from zero.

The paper is organized as follows. In the following section, we obtain a class of exact

solutions to (1). In Sec. III, we show how these exact solutions can be idenfied with phase

space of a classical system. For certain parameter values, the procedure delineated in Sec.

II is not valid, so in Sec. IV, we address this possibility and show a procedure to find exact

solutions in this regime. Section V deals with conclusion and future directions of work.

II. EXACT SOLUTIONS TO HNLSE

In this case, a travelling wave packet solutions, modulo an overall phase term, can be

generally be written as:

ψ(x, t) = ρ(ξ)eiχ(ξ), (2)

where the travelling coordinate ξ = α(t − ux), and ρ and χ are real functions of ξ. Here,

α is the scale parameter and u = 1/v where v is group velocity of the ansatz solution.

Substituting (2) in (1), and equating real and imaginary parts yields two coupled equations:

− αuρ′ + 2α2a1χ
′ρ′ + α2a1χ

′′ρ

+ 3αa4ρ
2ρ′ + 2αa5ρ

2ρ′ = 0, and (3)

αuχ′ρ+ α2a1ρ
′′ − α2a1χ

′2ρ

+ a2ρ
3 − αa4χ

′ρ3 = 0. (4)



4

Equation (3) can be exactly integrated to yield:

χ′ =
u

2αa1
+

c

αa1ρ2
−

(3a4 + 2a5)

4αa1
ρ2, (5)

where c is to be determined by initial conditions. Notice that the phase has a nontrivial

form and has two intensity dependent chirping terms, apart from kinematic first term which

is of usual ei(kx−wt) type. As is evident, the second term is of kinematic origin and is infact

present in linear Schrödinger equation. The last term is due to higher order nonlinearities,

which has a dynamical origin, and leads to chirping that is exactly inverse to that of the

former. This is a novel form of self-phase modulation.

Using above expression, equation (4) can be written as:

θ1ρ
′′ + θ2ρ+ θ3ρ

3 + θ4ρ
5 =

c2

ρ3
, (6)

with θ1 = α2a1
2, θ2 = (u2+2a4c+4a5c)

4
, θ3 = (2a1a2−ua4)

2
and θ4 = (a4−2a5)(3a4+2a5)

16
.

Note that, in parameter regime, where θ4 = 0, the amplitude dynamics will be like NLSE

case, albeit with dressed parameters. Phase dynamics however will not be same as NLSE,

and will depend whether (a4 − 2a5) = 0 or (3a4 + 2a5) = 0. In latter case only it will be

exactly like NLSE, devoid of dynamical chirping. As shown in Ref. [2], localized solutions

of the above equation, in these parameter domains, show directionality and hence are chiral,

and the propagation direction for these solitons is decided by sign of a4. Because, these

solutions satisfy NLSE with dressed parameters, many of the parameteric restrictions on

solution space are relaxed, for example both dark and bright solitons are present in both

anomalous and normal dispersion regimes.

Defining k = θ1

2
ρ′2 + θ2

2
ρ2 + θ3

4
ρ4 + c2

2ρ2 , equation (6) can be written conveniently in terms

of σ, where σ = ρ2, to yield:

θ1
2
σ′′ + 2θ2σ +

3θ3
2
σ2 +

4θ4
3
σ3 = k, (7)

where, k is to determined via initial conditions. Above equation can be rewritten in a simpler

form by going to y variable, y = σ + 3θ3

8θ4
, given that θ4 6= 0, to read:

y′′ + py + qy3 + r = 0, (8)

where p = 2
θ1

(2θ2 −
9θ3

2

8θ4
− 3θ3

2
), q = 8θ4

3θ1
and r = 2

θ1
( 3θ3

3

16θ4
2 ) −

3θ2θ3

4θ4
− k. In case when r = 0,

above equation coincides with the equation satisfied by Jacobi elliptic functions. Below we
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show that, for some real constants A, B, C and D, the conformal transformation:

y =
A+Bf

C +Df
, (9)

solves equation (8), with f(ξ,m) being one of the twelve Jacobi elliptic functions with

modulus parameter m [16, 17]. These elliptic functions satisfy:

f ′′ = af + bf 3, (10)

with appropriate real constants a and b. For example, for f = cn(ξ,m), a = (2m− 1) and

b = −2m. The claim that expression (9) solves equation (8) can readily be seen, by defining

the first integral E0 = f ′2

2
− af2

2
− bf4

4
, and substituting (9) in equation (8). Use of equation

(10) leads to the following consistency conditions:

− 4BCDE0 + 4AD2E0 + pAC2 + qA3 + rC3 = 0, (11)

aBC2 − aACD + pBC2 + 2pACD + 3qA2B + 3rC2D = 0, (12)

− aBCD + aAD2 + 2pBCD + pAD2 + 3qAB2 + 3rCD2 = 0, (13)

bBC2 − bACD + pBD2 + qB3 + rD3 = 0. (14)

Notice that these coupled algebraic equations are nonlinear in A, B, C and D, but are linear

in p, q, r and E0, and hence can be solved exactly to yield:

E0 = −
bAC3 + aBC2D + aACD2

4BD3
, (15)

p =
−3bAC2 − 2aBCD − aAD2

D(−BC + AD)
, (16)

q =
−bC3 − aCD2

B(BC − AD)
, (17)

r = −
bABC2 + bA2CD + aB2CD + aABD2

D2(BC − AD)
. (18)

Therefore, this shows that, provided above relations hold, equation (8) is indeed solved by

(9). Notice the dependence of E0 on A, B, C and D, which simply shows that the initial

values in equation (10) do play a role in determining A, B, C and D, and hence they can

not be fixed, given p, q and r. Since, original equation parameters ai (i = 1, ..., 5) can

be expressed in terms of p, q and r, one can determine the parameter regime for a given

solution using these relations. The solutions presented in Ref. [2] form a subclass of the

ones found above. For m = 1, one gets localized solutions and are often of experimental

and technological interest. Setting m = 0, singles out periodic solutions, which were also

reported in Ref.[2].
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III. SEPARATRIX CONNECTION

An alternative perspective to appreciate above mapping is as follows. Equation (8) can

be thought of as equation of motion for a classical particle of unit mass, with displacement

given by y, moving under influence of a nonlinear force −(py+qy3 +r). The same also holds

for equation (10), albeit the nonlinear force does not have a constant term. Also notice

that both these dynamical systems are of one degree of freedom and their phase spaces are

two dimensional, only position y and momentum y′ is required to describe the dynamics

completely. Looked in this setting, mapping (9) simply says how the two phase spaces

are related; more precisely it shows how phase space for equation (8) can be generated by

knowledge of phase space for equation (10). Since, the mapping is conformal, the singularity

structure of both the phase spaces are identical, modulo movable poles. Infact, this simply

shows that equation (8) is integrable in the sense of Painlevé, since equation (10) is integrable

[18, 19]. The soliton solutions of the parent equation (1), in this setting, can be identified

with the separatrix solutions of equation (10) via the conformal mapping [20]. Similarly,

singular solutions of equation (10) can be seen to be related to unbounded solutions lying

outside separatrix, and periodic solutions can be seen to be related to bounded solutions

lying inside separatrix.

It is very interesting to note that solutions to equation (8) are actually solutions to

modified KdV equation: vxxx + p1v
2vx + p2vt = 0. This can be simply seen by going to the

travelling variable ζ = x − vt, integrating out the equation once, and identifying p1 = 3q,

p2 = −p

v
and r as the constant of integration. So, at the travelling variable level, which

restricts one to only one soliton solution, one can say that the modified KdV solitons can

be simulated by considering these higher nonlinearities in optical fibres.

IV. SOLUTIONS WHEN θ4 = 0

In case, when θ4 = 0, the above analysis is not valid since the degree of the equation (6)

changes, and can be written as:

σ′′ + p′σ + q′σ2 + r′ = 0, (19)



7

with p′ = 4θ4

θ1

, q′ = 3θ3

θ1

and r′ = −2k
θ1

. The above equation can be mapped to equation (10)

via a transformation:

σ =
A+Bf 2

C +Df 2
, (20)

which is along the same lines as (9). Following the same procedure as the former case, using

the first integral E0 = f ′2

2
− af2

2
− bf4

4
, we find the consistency conditions as:

4BC2E0 − 4ACDE0 + p′AC2 + q′A2C + r′C3 = 0, (21)

4aBC2 − 4aACD − 12BCDE0 + 12AD2E0 + p′BC2

+ 2p′ACD + 2q′ABC + q′A2D + 3r′C2D = 0, (22)

3bBC2 − 3bACD − 4aBCD + 4aAD2 + 2p′BCD + p′AD2

+ q′B2C + 2q′ABD + 3r′CD2 = 0, (23)

− b′BCD + b′AD2 + p′BD2 + q′B2D + r′D3 = 0. (24)

Again we observe that, the above equations are linear in p′, q′, r′ and E0, and hence can be

solved to give:

E0 = −
bC2 − 2aCD

4D2
, (25)

p′ = −
2(−3bBC2 − 3bACD + 4aBCD + 2aAD2)

D(AD − BC)
, (26)

q′ =
6(−bC2 + aCD)

AD − BC
, (27)

r′ = −
−bB2C2 − 4bABCD + 2aB2CD − bA2D2 + 4aABD2

D2(BC −AD)
. (28)

This shows that, the equation (19) is an integrable equation, in the sense of Painlevé, and

the explicit solution can be expressed in terms of Jacobi elliptic functions. By choice, of

appropriate values of A, B, C and D one can find out the parameter regime in which the

given solution is valid. Further, solutions to equation (19) actually satisfy KdV equation:

vxxx + p1vvx + p2vt = 0, in travelling variable ξ = x − vt, with p′ = −vβ, 2q′ = α and

r′ being an integration constant. It is very interesting to note that the condition θ4 = 0,

can be fulfilled if a4 = 2a5 or 3a4 = −2a5. In the case when the former is true then, the

intensity profile of these solutions is exactly like NLSE solutions except with a non-trivial

phase chirping. In the latter case, the solutions do not have this non trivial chirping and

the solutions are indistinguishable from NLSE solutions with appropriate coefficients.
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V. CONCLUSION

We have shown that nonlinear Schrödinger equation in the presence of self-steepening

and self-frequency shift, possesses a rich travelling wave dynamics with a non-trivial chirp-

ing. These exact solutions are found to be connected to elliptic functions via a conformal

mapping. The field intensity is seen to obey modified KdV or KdV equation, which provides

an indication that HNLSE in absence of third order dispersion, may possibily be integrable.

Also, we have shown that the localized solutions can be identified with separatrix of a nonlin-

ear potential problem. This strengthens further the hope that this system may be integrable,

since separatrix is not known to exist in a system with chaotic dynamics.
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