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Abstract

We present a new approximation scheme for the centrifugal term to obtain a quasi-exact ana-

lytical bound state solutions within the framework of the position-dependent effective mass radial

Klein-Gordon equation with the scalar and vector Hulthén potentials in any arbitrary D dimension

and orbital angular momentum quantum numbers l. The Nikiforov-Uvarov (NU) method is used in

the calculations. The relativistic real energy levels and corresponding eigenfunctions for the bound

states with different screening parameters have been given in a closed form. It is found that the
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obtained in literature.
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I. INTRODUCTION

The bound and scattering states of the s- and l-waves for any interaction system have

raised a great interest in non-relativistic as well as in relativistic quantum mechanics [1-3].

The exact solution of the wave equation is very important since the wavefunction contains

all the necessary information regarding the quantum system under consideration. A number

of methods have been used to solve the wave equations exactly or quasi-exactly for non-zero

angular momentum quantum number (l 6= 0) by means of a given potential. The bound

state eigenvalues were solved numerically [4,5] and quasi-analytically using variational [4,6],

perturbation [7], shifted 1/N expansion [8,9], NU [10,11], SUSYQM [12-14] and AIM [15]

methods.

The Hulthén potential [10,12,13,15,16] is one of the important short–range potentials in

physics and it has been applied to a number of areas such as nuclear and particle physics

[17], atomic physics [18,19], molecular physics [20,21] and chemical physics [22]. Therefore,

it would be interesting and important to solve the relativistic equation for this potential for

l 6= 0 case since it has been extensively used to describe the bound and continuum states of

the interaction systems. Recently, the exact solutions for the bound and scattering states

of the s-wave Schrödinger [16,23], Klein-Gordon [1-3] and Dirac equation [24,25] with the

scalar and vector Hulthén potentials are investigated.

Relativistic effects with the scalar plus vector Hulthén-type potential [1,2] in three- and

D dimensions and harmonic oscillator-type potential [26,27] have been also discussed in the

literature. The bound-states of the Dirac and Klein-Gordon equations with the Coulomb-like

scalar plus vector potentials have been studied in arbitrary dimension [28-32]. Furthermore,

the exact results for the scattering states of the Klein-Gordon equation with Coulomb-like

scalar plus vector potentials have been investigated in an arbitrary dimension [33]. This

equation has been exactly solved for a larger class of linear, exponential and linear plus

Coulomb potentials to determine the bound state energy spectrum using two semiclassical

methods with the following relationship between the scalar and vector potentials: V (r) =

V0 + βS(r), S(r) > V (r) where V0 and β being arbitrary constants [34]. In particular,

inserting the constants V0 = 0 and β = ±1 provides the equal scalar and vector potential

case V (r) = ±S(r).

Also, the position-dependent mass solutions of the nonrelativistic and relativistic systems
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have received much attention recently. Many authors have used different methods to study

the partially exactly solvable and exactly solvable Schrödinger, Klein-Gordon and Dirac

equations in the presence of variable mass having a suitable mass distributions function

in 1D, 3D and/or any dimension D cases for different potentials, such as the exponential-

type potentials [35], the Coulomb potential [36], the Lorentz scalar interactions [37], the

hyperbolic-type potentials [38], the Morse potential [39], the Pöschl-Teller potential [40], the

Coulomb and harmonic potentials [41], the modified Kratzer-type, rotationally corrected

Morse potentials [42], Mie-type and pseudoharmonic potentials [43]. Recently, the point

canonical transformation (PCT) has also been employed to solve theD-dimensional position-

dependent effective mass Schrödinger equation for some molecular potentials to get the exact

bound state solutions including the energy spectrum and corresponding wave functions [41-

43].

A new method to obtain the exactly solvable PT-symmetric potential potentials within

the framework of the variable mass Dirac equation with the vector potential coupling scheme

in (1 + 1) dimensions [38]. Three PT-symmetric potentials are produced which are PT-

symmetric harmonic oscillator-like potential, PT-symmetric of linear plus inversely linear

potential and PT-symmetric kink-like potential. The SUSYQM formalism and function

analysis method are use to obtain the real energy levels and corresponding spinor components

for the bound states. Further, the position-dependent effective mass Dirac equation with

the PT-symmetric hyperbolic cosecant potential can be mapped into the Schrödinger-like

equation with the exactly solvable modified Pöschl-Teller potential [38]. The real relativistic

energy levels and corresponding spinor wavefunctions for the bound states have been given

in a closed form.

The Nikiforov-Uvarov (NU) method [44] and other methods have also been used to solve

the D-dimensional Schrödinger equation [45] and relativistic D-dimensional Klein-Gordon

[46], Dirac [47] and spinless Salpeter equations [48].

In strong coupling cases, it is crucial to understand relativistic effects on a moving par-

ticle in a potential field. In a non-relativistic case, Schrödinger equation with the Hulthén

potential [10,12,13,15] was solved using the usual existing approximation, 1
r2 ≈ α2 eαr

(eαr−1)2

for the centrifugal potential which was found to be consistent with the results of other

methods [4,8,13,15]. Unfortunately, this approximation is valid only for small values of the

screening parameter α, but the agreement becomes poor in the high-screening region [10, 15].
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Hence, it is of sufficient need to improve the analytical results for the Schrödinger equation

with the Hulthén potential by means of a new approximation scheme. Recently, Haouat

and Chetouani [49] have solved the Klein-Gordon and Dirac equations in the presence of the

Hulthén potential, where the energy spectrum and the scattering wavefunctions are obtained

for spin-0 and spin-1
2

particles, using a more general approximation scheme, 1
r2 ≈ α2 e−γαr

(1−e−αr)2

where γ is a dimensionless parameter (γ = 0, 1 and 2) for the centrifugal potential. They

found that the good approximation, however, when the screening parameter α and the di-

mensionless parameter γ are taken as α = 0.1 and γ =1, respectively, which is simply the

case of the usual approximation [10,12,13,15]. Also, Jia and collaborators [50] have recently

proposed an alternative approximation scheme, 1
r2 ≈ α2

(
ω

eαr−1
+ 1

(eαr−1)2

)
where ω is a di-

mensionless parameter (ω = 1.030), for the centrifugal potential to solve the Schrödinger

equation with the Hulthén potential. Taking ω = 1, their approximation can be reduced

into the usual approximation [10,12,13,15]. However, the accuracy of their numerical results

[50] is found to be in poor agreement with the other numerical methods like integration

and variational methods [4,5]. In order to improve the accuracy of the used approxima-

tion, we propose and apply an alternative shifted approximation scheme to approximate the

centrifugal term given by [51,52]

1

r2
= lim

α→0
α2

[
c0 +

eαr

(eαr − 1)2

]
, (1)

where c0 is a shifting dimensionless parameter. The approximation scheme (1) emerged as

a quite successful formalism to study the Schrödinger equation with the Manning-Rosen,

hyperbolic and Hulthén potentials in calculating the energy eigenvalues within the frame-

work of the NU method [51-53]. The accuracy of the results are significantly improved

over all other existing literature approximation schemes and analytical methods [13,15,50].

With extremely high accuracy, we have obtained the numerical energy eigenvalues as with

those obtained by the numerical integration [4,5,53], variational [4] methods and also by a

MATHEMATICA package programmed by Lucha and Schöberl [54].

The purpose of this work is to employ the approximation scheme given in (1) to solve

the position-dependent mass radial Klein-Gordon equation with any orbital angular quan-

tum number l for the scalar and vector Hulthén potentials in D-dimensions. This offers a

simple, accurate and efficient scheme for the exponential-type potential models in quantum
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mechanics.

Our paper is organized as follows. In section 2, we review the NU method. In section 3,

we present a brief a derivation to find the shifting parameter c0. Then, the analytical solution

of the position-dependent mass Klein-Gordon equation with the scalar and vector Hulthén

potentials is obtained for any l-state by means of the N-U method. Section 4 contains the

summary and conclusions.

II. NU

The NU method is breifly outlined here and the details can be found in [44]. This method

is proposed to solve the second-order differential equation of the hypergeometric type:

ψ′′
n(z) +

τ̃(z)

σ(z)
ψ′

n(z) +
σ̃(z)

σ2(z)
ψn(z) = 0, (2)

where σ(z) and σ̃(z) are polynomials, at most, of second-degree, and τ̃(s) is a first-degree

polynomial. In order to find a particular solution for Eq. (2), let us decompose the wave-

function ψn(z) as follows:

ψn(z) = φn(z)yn(z). (3)

We can reduce Eq. (2) into the form

σ(z)y′′n(z) + τ(z)y′n(z) + λyn(z) = 0, (4)

with

τ(z) = τ̃(z) + 2π(z), τ ′(z) < 0, (5)

where τ ′(z) = dτ(z)
dz

is the derivative. Also, λ is a constant given in the form

λ = λn = −nτ ′(z) − 1

2
n (n− 1) σ′′(z), n = 0, 1, 2, · · · , (6)

where

λ = k + π′(z). (7)

The yn(z) can be written in terms of the Rodrigues relation

yn(z) =
Bn

ρ(z)

dn

dzn
[σn(z)ρ(z)] , (8)

where Bn is the normalization constant and the weight function ρ(z) satisfies

σ(z)ρ′(z) + (σ′(z) − τ(z)) ρ(z) = 0. (9)
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The other wavefunction in the solution is defined by

σ(z)φ′(z) − π(z)φ(z) = 0. (10)

Further, to find the weight function in Eq. (8) we need to obtain the following polynomial:

π(z) =
1

2
[σ′(z) − τ̃(z)] ±

{
1

4
[σ′(z) − τ̃(z)]

2 − σ̃(z) + kσ(z)

}2

. (11)

The expression under the square root sign in Eq. (11) can be arranged as the square of a

polynomial. This is possible only if its discriminant is zero. In this regard, an equation for

k is being obtained. After solving such an equation, the determined values of k are included

in the NU method.

III. BOUND-STATE SOLUTIONS

A. An Impoved Shifted Approximation Scheme

The approximation is based on the expansion of the centrifugal term in a series of expo-

nentials depending on the intermolecular distance r. Therefore, instead of using the usual

existing approximation in literature, let us, instead, take the following exponential-type

potential to approximate the centrifugal potential,

1

r2
≈ α2

[
c0 + v(r) + v2(r)

]
, v(r) =

eαr

eαr − 1
,

1

r2
≈ α2

[
c0 +

1

eαr − 1
+

1

(eαr − 1)2

]
. (12)

In the low-screening region, 0.4 ≤ αr ≤ 1.2 [15] (i.e., small screening parameter α), Eq. (12)

is a very well approximation to the centrifugal potential and the Schrödinger equation for

such an approximation can be easily solved analytically. In Fig. 1, we give a plot of the

variation of the centrifugal potential and its approximation given in Eq. (12) versus αr. It

shows that the approximation (12) and 1/r2 are similar and coincide in both high-screening

as well as in the low-screening regions.

Changing the r coordinate to x by shifting the parameters as x = (r − r0)/r0 to avoid

singularities [55], we obtains

1

r2
0

(1 + x)−2 = α2

[
c0 +

1

eγ(1+x) − 1
+

1

(eγ(1+x) − 1)
2

]
, γ = αr0, (13)
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and expanding Eq. (13) around r = r0 (x = 0), we obtain the following expansion:

1 − 2x+O(x2) = γ2

(
c0 +

1

eγ − 1
+

1

(eγ − 1)2

)

− γ3

(
1

eγ − 1
+

3

(eγ − 1)2 +
2

(eγ − 1)3

)
x+O(x2), (14)

and consequently

γ2

[
c0 +

1

eγ − 1
+

1

(eγ − 1)2

]
= 1,

γ3

(
1

eγ − 1
+

3

(eγ − 1)2 +
2

(eγ − 1)3

)
= 2. (15)

By solving Eqs. (14) and (15) for the dimensionless parameter c0, we obtain

c0 =
1

γ2
− 1

eγ − 1
− 1

(eγ − 1)2
= 0.0823058167837972, (16)

where e = 2.718281828459045 is the base of the natural logarithms and the parameter

γ = 0.4990429999.

Therefore, the centrifugal potential takes the form

lim
α→0

α2

[
1

γ2
− 1

eγ − 1
− 1

(eγ − 1)2
+

e−αr

1 − e−αr
+

(
e−αr

1 − e−αr

)2
]

=
1

r2
. (17)

Let us remark at the end of this analysis that the approximation used in many papers in

literature [10,12,13,15] is a special case of Eq. (12) if c0 is set to zero.

B. A Quasi-Exactly Energy Eigenvalues and Eigenfunctions

TheD-dimensional time-independent radial position-dependent mass Klein-Gordon equa-

tion with scalar and vector potentials S(r) and V (r), respectively, r = |r| , and position-

dependent mass m(r) describing a spin-zero particle takes the general form [3,46]

∇2
Dψ

(lD−1=l)
l1···lD−2

(x) +
1

~2c2

{
[Enl − V (r)]2 −

[
m(r)c2 + S(r)

]2
}
ψ

(lD−1=l)
l1···lD−2

(x) = 0,

∇2
D =

D∑

j=1

∂2

∂x2
j

, ψ
(lD−1=l)
l1···lD−2

(x) = Rl(r)Y
(l)
l1···lD−2

(θ1, θ2, · · · , θD−1), (18)

where Enl denotes the Klein-Gordon energy and ∇2
D denotes the D-dimensional Laplacian.

Further, x is a D-dimensional position vector. Let us decompose the radial wavefunction

Rl(r) as follows:

Rl(r) = r−(D−1)/2g(r), (19)
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we, then, reduce Eq. (18) into the following D-dimensional radial position-dependent effec-

tive mass Schrödinger-like equation

d2g(r)

dr2
+

1

~2c2

{
[Enl − V (r)]2 −

[
m(r)c2 + S(r)

]2 − (D + 2l − 1)(D + 2l − 3)~2c2

4r2

}
g(r) = 0.

(20)

Further, taking the vector and scalar potentials as the Hulthén potentials

V (r) = − V0e
−αr

1 − e−αr
, S(r) = − S0e

−αr

1 − e−αr
, α = r−1

0 , (21)

and choosing the following mass function

m(r) = m0 +
m1e

−αr

1 − e−αr
, (22)

we can rewrite Eq. (20) as

g′′(r) +
1

~2c2

{
2 [m0c

2 (S0 −m1c
2) + EnlV0] e

−αr

1 − e−αr

+

[
V 2

0 − (S0 −m1c
2)

2
]
e−2αr − ~2c2α2

4
(D + 2l − 1)(D + 2l − 3)e−αr

(1 − e−αr)2




 g(r)

=
1

~2c2

[(
m0c

2
)2 − E2

nl + ∆El

]
g(r), g(0) = 0, (23)

with the shift energy ∆El = ~
2c2α2(D + 2l − 1)(D + 2l − 3)c0/4. On account of the wave

function g(r) satisfying the standard bound-state condition (real values), i.e., g(r → ∞) →
0. If we rewrite Eq. (23) by using a new variable of the form z = e−αr (r ∈ [0,∞), z ∈ [1, 0]),

we get
d2g(z)

dz2
+

1 − z

z(1 − z)

dg(z)

dz
+

1

[z(1 − z)]2

×
{
−ε2

nl + (β1 − β4 − γ + 2ε2
nl)s− (β1 + β2 + β3 − β4 + ε2

nl)s
2
}
g(z) = 0, (24)

where the following definitions of parameters

εnl =

√
(m0c2)

2 −E2
nl + ∆El

Q
, β1 =

2 (m0c
2S0 + EnlV0)

Q2
, β2 =

S2
0 − V 2

0

Q2
,

β3 =
m1c

2 (m1c
2 − 2S0)

Q2
, β4 =

2m0m1c
4

Q2
, γ =

(D + 2l − 1)(D + 2l − 3)

4
, Q = ~cα, (25)
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are used. For bound-state solutions, we require that V0 ≤ (S0 − m1c
2) and Enl ≤

√
(m0c2)2 + ∆El. In order to solve Eq. (24) by means of the N-U method, we should

compare it with Eq. (2). The following values for parameters are found

τ̃(z) = 1−z, σ(z) = z−z2, σ̃(z) = −ε2
nl+(β1−β4−γ+2ε2

nl)s−(β1+β2+β3−β4+ε
2
nl)s

2. (26)

If we insert these values of parameters into Eq. (11), with σ′(z) = 1 − 2z, the following

linear function is obtained

π(z) = −z
2
±1

2

√
[1 + 4(β1 + β2 + β3 − β4 + ε2

nl − k)] z2 + [4(k − β1 + β4 + γ − 2ε2
nl)] z + 4ε2

nl.

(27)

The determinant of the square root must be set equal to zero, that is, ∆ = (k − β1 + β4 +

γ − 2ε2
nl)

2 − ε2
nl [1 + 4(β1 + β2 + β3 − β4 + ε2

nl − k)] = 0. Thus, the constant k found to be

k = β1 − β4 − γ ± εnl

√
1 + 4(β2 + β3 + γ). (28)

In this regard, we can find four possible functions for π(z) as

π(s) = −z
2
±




εnl ∓

[
εnl − 1

2

√
1 + 4b

]
z for k1 = d+ εnl

√
1 + 4b,

εnl ∓
[
εnl + 1

2

√
1 + 4b

]
z for k2 = d− εnl

√
1 + 4b.

(29)

where b = β2 + β3 + γ and d = β1 − β4 − γ. Thus, taking the following values

k = β1 − β4 − γ − εnl

√
1 + 4(β2 + β3 + γ), (30)

and

π(z) = −z
2

+ εnl −
[
εnl +

1

2

√
1 + 4(β2 + β3 + γ)

]
z, (31)

they give

τ(z) = 1 + 2εnl − 2

[
1 + εnl +

1

2

√
1 + 4(β2 + β3 + γ)

]
z,

τ ′(s) = −2

[
1 + εnl +

1

2

√
1 + 4(β2 + β3 + γ)

]
< 0. (32)

Eqs. (30)-(32) together with the assignments given in Eq. (26), the following expressions

for λ are obtained

λn = λ = n2 +
[
1 + 2εnl +

√
1 + 4(β2 + β3 + γ)

]
n, (n = 0, 1, 2, · · · ), (33)

λ = β1 − β4 − γ − 1

2
(1 + 2εnl)

[
1 +

√
1 + 4(β2 + β3 + γ)

]
, (34)
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where n is the radial quantum number. By defining

δ =
1

2

(
1 +

√
1 + 4(β2 + β3 + γ)

)
, (35)

where β2 + β3 = δ2 − δ − γ. With the aid of Eq. (35), we can easily obtain the energy

eigenvalue equation of the Hulthén potential by solving Eqs. (33) and (34):

ε
(D)
nl =

(β1 − β4 − γ − n2) − (2n+ 1)δ

2(n+ δ)

=
4 [β1 − β4 − n2 − (2n+ 1)δ] − (D + 2l − 1)(D + 2l − 3)

8(n+ δ)

=
2
[
m0c

2S̃0 + E±
nlV0

]
+ S̃2

0 − V 2
0

2Q2(n+ δ)
− n+ δ

2
, (n = 0, 1, 2, · · · ), (36)

where S̃0 = S0 − m1c
2 is the modified scalar potential. Solving the last equation for the

energy eigenvalues E±
nl, we obtain

E±
nl =

V0

2



1 −
4S̃0

(
S̃0 + 2m0c

2
)

4V 2
0 + κ2

nl



 ± κnl

2

√√√√√ ξ − 1

4



1 −
4S̃0

(
S̃0 + 2m0c2

)

4V 2
0 + κ2

nl




2

,

ξ =
(2m0c

2)2 + ~
2c2α2(D + 2l − 1)(D + 2l − 3)c0

4V 2
0 + κ2

nl

,

κnl = ~cα (2n+ 1) +

√
4
(
S̃2

0 − V 2
0

)
+ (~cα)2 (D + 2l − 2)2, (37)

where n = 0, 1, 2, · · · and l = 0, 1, 2, · · · signify the usual radial and angular momentum

quantum numbers, respectively, and

(~cα)2(D + 2l − 2)2 + 4S̃2
0 ≥ 4V 2

0 , 4ξ ≥


1 −

4S̃0

(
S̃0 + 2m0c

2
)

4V 2
0 + κ2

nl




2

, (38)

are constraints over the strength of the potential coupling parameters. In the above equation,

let us remark that it is not difficult to conclude that all bound-states appear in pairs, two

energy solutions are valid for the particle Ep = E+
nl and the second one corresponds to the

anti-particle energy Ea = E−
nl in the Hulthén field. When we take the scalar and vector

potentials as S̃0 = 0 (i.e., S0 = m1c
2) and V0 6= 0, the energy equation (37) becomes

E±
nl =

V0

2
± κnl

2

√
(2m0c2)2 + ~2c2α2(D + 2l − 1)(D + 2l − 3)c0

4V 2
0 + κ2

nl

− 1

4
,
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(4m0c
2)2 + 4~

2c2α2(D + 2l − 1)(D + 2l − 3)c0 ≥ 4V 2
0 + κ2

nl,

κnl = ~cα(2n+ 1) +

√
(~cα)2 (D + 2l − 2)2 − 4V 2

0 , D ≥ 1, (39)

with the following constraints on the coupling parameter of the vector potential:

(~cα)2 (D + 2l − 2)2 ≥ 4V 2
0 , (40)

must be fulfilled for real eigenvalues.

Therefore, having solved the D-dimensional position-dependent mass Klein-Gordon equa-

tion for scalar and vector usual Hulthén potentials, we should make some useful remarks.

(i) For s-wave (l = 0), the exact energy eigenvalues of the 1D Klein-Gordon equation

becomes

E±
n =

V0

2


1 −

4S̃0

(
S̃0 + 2m0c

2
)

4V 2
0 + κ2

n


 ± κn

√√√√√ m2
0c

4

4V 2
0 + κ2

n

− 1

16


1 −

4S̃0

(
S̃0 + 2m0c2

)

4V 2
0 + κ2

n




2

,

κn = ~cα (2n+ 1) +

√
(~cα)2 + 4(S̃2

0 − V 2
0 ), (41)

In order that at least one level might exist, it is necessary that the inequalities

~
2c2α2 + 4S̃2

0 ≥ 4V 2
0 ,

16m2
0c

4

4V 2
0 + κ2

n

≥


1 −

4S̃0

(
S̃0 + 2m0c

2
)

4V 2
0 + κ2

n




2

, (42)

are fulfilled. In the case S̃0 = 0, V0 6= 0, the energy spectrum (in units where ~ = c = 1):

E±
n =

V0

2
±

[
α (2n+ 1) +

√
α2 − 4V 2

0

]√√√√
m2

0

4V 2
0 +

[
α (2n + 1) +

√
α2 − 4V 2

0

]2 − 1

16
, (43)

with the following constraints on the potential coupling constant:

16m2
0 ≥ 4V 2

0 +

[√
α2 − 4V 2

0 + (2n+ 1)

]2

, α ≥ 2V0, (44)

are fulfilled for bound state solutions. We notice that the result given in Eq. (43) is identical

to Eq. (31) of Ref. [56]. As can be seen from Eq. (43), there are only two lower-lying states

(n = 0, 1) for a Klein-Gordon particle of rest mass m0 = 1 and screening parameter α = 1

with vector coupling strength V0 ≤ 1/2. As an example, one may calculate the ground state

energy for the vector coupling strength V0 = α/2 as

E±
0 =

V0

2

[
1 ±

√
2m2

0

V 2
0

− 1

]
. (45)
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Further, in the case of pure scalar potential (V0 = 0, S0 = m1c
2), the energy spectrum

E±
n = ±

√

m2
0c

4 − (~cα)2 (n+ 1)2

4
, 4m2

0c
4 ≥ (~cα)2 (n+ 1)2 . (46)

Since the Klein-Gordon equation is independent of the sign of En for scalar potentials, the

wavefunctions become the same for both energy values. If the range parameter α is chosen

to be α = 1/λc, where λc = ~/m0c = 1/m0 denotes the Compton wavelength of the Klein-

Gordon particle. It can be seen easily that while S0 → m1c
2 in ground state (n = 0), all

energy eigenvalues tend to the value E0 ≈ 0.866 m0.

(ii) For D = 3, the mixed scalar and vector Hulthén potentials, the energy eigenvalues

for l 6= 0 are given by

E±
nl =

V0

2


1 −

4S̃0

(
S̃0 + 2m0c

2
)

4V 2
0 + κ̃2

nl


 ± κ̃nl

√√√√√ξ̃ − 1

4


1 −

4S̃0

(
S̃0 + 2m0c2

)

4V 2
0 + κ̃2

nl




2

,

ξ̃ =
(m0c

2)2 + ~
2c2α2l(l + 1)c0

4V 2
0 + κ̃2

nl

,

κ̃nl = ~cα (2n+ 1) +

√
(~cα)2 (2l + 1)2 + 4

(
S̃2

0 − V 2
0

)
. (47)

Further, in order that at least one real eigenvalue might exist, it is necessary that the

inequality

(~cα)2(2l + 1)2 + 4S̃2
0 ≥ 4V 2

0 , 4ξ̃ ≥



1 −
4S̃0

(
S̃0 + 2m0c

2
)

4V 2
0 + κ̃2

nl




2

, (48)

must be fulfilled. For the case where S̃0 = 0 in the spatial-dependent mass (S0 = 0, in the

constant mass case) [46], the energy eigenvalues turn out to be

E±
nl =

V0

2
± ηnl

√
(m0c2)2 + ~2c2α2l(l + 1)c0

4V 2
0 + η2

nl

− 1

16
,

ηnl = ~cα (2n+ 1) +

√
(~cα)2 (2l + 1)2 − 4V 2

0 , ~cα(2l + 1) ≥ 2V0, (49)

with the following constraint over the potential parameters:

(4m0c
2)2 + 16~

2c2α2l(l + 1)c0 ≥ 4V 2
0 +

[
~cα(2n+ 1) +

√
(~cα)2 (2l + 1)2 − 4V 2

0

]2

. (50)

12



(iii) When D = 3 and l = 0, the centrifugal term (D+2l−1)(D+2l−3)
4r2 = 0 and consequently the

approximation term (D+2l−1)(D+2l−3)α2

4

[
c0 + e−αr

(1−e−αr)2

]
= 0, too. Thus, the energy eigenval-

ues turn to become

√
(m0c2)2 −E±2

n =
2
[
m0c

2S̃0 + E±
n V0

]
+ S̃2

0 − V 2
0

2~cα(n+ δ)
− ~cα

(
n+ δ

2

)
,

δ =
1

2

[
1 +

1

(~cα)

√
(~cα)2 + 4

(
S̃2

0 − V 2
0

)]
, (n = 0, 1, 2, 3, · · · ) (51)

which gives

E±
n =

V0

2



1 −
4S̃0

(
S̃0 + 2m0c

2
)

4V 2
0 + ξ2

n



 ± ςn

√√√√√ (m0c2)2

4V 2
0 + ς2n

− 1

4



1 −
4S̃0

(
S̃0 + 2m0c2

)

4V 2
0 + ς2n




2

,

ςn = ~cα (2n+ 1) +

√
(~cα)2 + 4

(
S̃2

0 − V 2
0

)
,

(~cα)2 + 4S̃2
0 ≥ 4V 2

0 , (4m0c
2)2 ≥

(
4V 2

0 + ς2n
)

1 −

4S̃0

(
S̃0 + 2m0c

2
)

4V 2
0 + ς2n




2

(52)

(iv) For equal scalar and vector usual Hulthén potential (i.e., S0 = V0), Eq. (36) with the aid

of Eq. (25) can be reduced to the relativistic energy equation (in the conventional atomic

units ~ = c = 1): √
m2

0 +
(D + 2l − 1)(D + 2l − 3)c0

4r2
0

− E2
R

=
2r0V0 [m0 + ER −m1] + r0(m1 − 2m0)m1

2(n+ δ)
− n+ δ

2r0
,

δ =
1

2

[
1 +

√
(D + 2l − 2)2 + (2r0m1c2)

2 − 8r2
0V0m1c2

]
, (n = l = 0, 1, 2, 3, · · · ), (53)

which is Eq. (22) of Ref. [58] if the perturbed mass m1 = 0 and shifting parameter c0 = 0.

(v) We discuss non-relativistic limit of the energy equation (53). When V0 = S0, Eq.

(23) reduces to a Schrödinger-like equation for the potential 2V (r). In other words, the non-

relativistic limit is the Schrödinger equation for the potential −2V0e
−r/r0/

[
1 − e−r/r0

]
, r0 =

α−1. After making the parameter replacements m0 + ER → 2m0 and m0 − ER → −ENR in

Eq. (53)[58], it reduces into the non-relativistic energy equation of Refs. [10,12,13,15,57,59]:

ENR =
α2(D + 2l − 1)(D + 2l − 3)c0

8m0
− 1

8m0α2

[
(2V0 −m1)(2m0 −m1) − α2 (n+ δ)2

(n+ δ)

]2

,
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δ =
1

2

[
1 +

1

α

√
α2(D + 2l − 2)2 + (2m1c2)

2 − 8V0m1c2
]
, (n = l = 0, 1, 2, 3, · · · ) (54)

which is Eq. (23) of Ref. [57] when c0 and m1are set to zero. It is noted that Eq. (54)

is identical to Eq. (59) of Ref. [56] for s-wave in 1D when the potential is 2V (r), when

α becomes pure imaginary, i.e., α → iα and when we set m0 = 1, m1 = 0 and c0 = 0.

Equation (54) can be reduced to the constant mass (m1 = 0) case in the three-dimensional

Schrödinger equation:

ENR =
α2

2m0

{
l(l + 1)c0 −

[
2V0m0

α2(n + l + 1)
− n + l + 1

2

]2
}
,

which is identical to the expressions given in Refs. [50,52] when the vector potential is

taken as 2V (r), c0 = 0 and ω = 1 in Ref. [50]. The numerical approximation to the energy

eigenvalues in Ref. [50] for the last energy equation was found to be more efficient than the

approximation given in Eq. (19) of Ref. [50]. Taking V0 = Zαe2 as in [50], we obtain

ENR =
α2

2m0

{
l(l + 1)c0 −

[
2m0Ze

2

α(n+ l + 1)
− (n+ l + 1)

2

]2
}
.

For the s-wave (l = 0), the above energy spectrum is identical to the factorization method

[23], SUSYQM [12,13] and NU [46] methods. Expanding the energy equation (53) under

the weak coupling conditions [(n+ δ)/m0r0]
2 ≪ 1 and [V0r0/(n+ δ)]2 ≪ 1, retaining only

the terms containing the power of (1/m0r0)
2 and (r0V0)

4, we obtain the relativistic energy

equation

ER ≈ ENR +m0 + 2(2m0 −m1)

(
(2V0 −m1)

2α(n+ δ)

)4

, (55)

which is simply Eq. (24) of Ref. [57], where δ is given in Eq. (54). The first term is the

non-relativistic energy and third term is the relativistic approximation to energy.

Now, let us find the wave function yn(s), which is the polynomial solution of

hypergeometric-type equation. We multiply Eq. (4) by the weight function ρ(s) so that

it can be rewritten in self-adjoint form [45,46]

[ω(s)y′n(s)]
′
+ λρ(s)yn(s) = 0. (56)

The weight function ρ(s) that satisfies Eqs. (9) takes the following form

ρ(z) = z2εnl(1 − z)β , β = 2δ − 1 (57)

14



which gives the Rodrigues relation:

ynl(z) = Bnlz
−2εnl(1 − z)−β d

n

dzn

[
zn+2εnl(1 − z)n+β

]

= BnlP
(2εnl,β)
n (1 − 2z). (58)

On the other hand, inserting the values of σ(s), π(s) and τ(s) given in Eqs. (26), (31) and

(32) into Eq. (10), we get the other part of the wave function

φ(s) = zεnl(1 − z)δ. (59)

Hence, the wave function gn(z) = φn(z)yn(z) becomes

g(z) = Cnlz
εnl(1 − z)δP (2εnl,β)

n (1 − 2z)

= Cnlz
ε
(D)
nl (1 − z)δP

(2ε
(D)
nl

,β)
n (1 − 2z), z ∈ [1, 0). (60)

Finally, the radial wave functions of the Klein-Gordon equation are obtained as

Rl(r) = Nnlr
−(D−1)/2e−ε

(D)
nl

αr (1 − e−αr)δP
(2ε

(D)
nl

,β)
n (1 − 2e−αr), (61)

with

ε
(D)
nl =

1

~cα

√
(m0c2)2 +

~2c2α2(D + 2l − 1)(D + 2l − 3)c0
4

− E2
nl,

β =
1

~cα

√
4
(
S̃2

0 − V 2
0

)
+ (~cα)2 (D + 2l − 2)2, δ =

1

2
(1 + β), (62)

where Enl is given in Eq. (37) and Nnl is the radial normalization factor. The Jacobi polyno-

mials P
(2ε

(D)
nl

,β)
n (1−2e−αr) [60] in the last result can be written in terms of the hypergeometric

function 2F1(−n, n+ 2ε
(D)
nl + β + 1, 2ε

(D)
nl ; e−αr) which gives the same result obtained in Ref.

[57].

(i) The exact radial wave functions for the s-wave Klein-Gordon equation in 1D reduces

to the following form (in ~ = c = 1) :

Rn(x) = Cne
−
√

m2
0−E2

nx (1 − e−x/r0)(1+a)/2P
(2r0

√
m2

0−E2
n,a)

n (1 − 2e−x/r0),

a =

√
1 + 4r2

0

(
S̃2

0 − V 2
0

)
, (63)

where En is given in Eq. (41). The last formula is identical to Eq. (35) of Ref. [56] when

the modified scalar potential, S̃0, is set to zero.
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(ii) Choosing the atomic units h/2π = ~ = c = 1, the exact radial wave functions for the

s-wave Klein-Gordon equation in 3D reduces to the following form:

Rn(r) = Nne
−
√

m2
0+−E2

nr (1 − e−r/r0)(1+a)/2P
(2r0

√
m2

0−E2
n,a)

n (1 − 2e−r/r0),

P
(2r0

√
m2

0−E2
n,a)

n (1−2e−r/r0) =2 F1(−n, n+2r0

√
m2

0 −E2
n +a+1, 2r0

√
m2

0 − E2
n; e−αr), (64)

where En and a are given in Eq. (52) and Eq. (63), respectively. The last formula is identical

to Eq. (22) of Ref. [57] when the perturbed mass m1 is set to zero.

(iii) The quasi-exact radial wave functions for the l-wave Klein-Gordon equation in 3D

reduces to the following form (in ~ = c = 1) :

Rnl(r) = Nnle
−

r

m2
0+

l(l+1)c0
r2
0

−E2
nl

r
(1 − e−r/r0)(1+al)/2P

(2r0

r

m2
0+

l(l+1)c0
r2
0

−E2
nl

,al)

n (1 − 2e−r/r0),

P
(2r0

r

m2
0+

l(l+1)c0
r2
0

−E2
nl

,al)

n (1 − 2e−r/r0)

=2 F1(−n, n + 2r0

√
m2

0 +
l(l + 1)c0

r2
0

−E2
nl + al + 1, 2r0

√
m2

0 +
l(l + 1)c0

r2
0

−E2
nl; e

−αr),

al =

√
(2l + 1)2 + 4r2

0

(
S̃2

0 − V 2
0

)
, (65)

where Enl is given in Eq. (43) and α = r−1
0 . It is identical to Ref. [57] when m1 = 0. The

eigenfunctions in the constant mass case are written as

Rnl(r) = Nnle
−

r

m2
0+

l(l+1)c0
r2
0

−E2
nl

r
(1 − e−r/r0)(1+al)/2P

(2r0

r

m2
0+

l(l+1)c0
r2
0

−E2
nl

,bl)

n (1 − 2e−r/r0),

bl =

√
(2l + 1)2 + 4r2

0 (S2
0 − V 2

0 ). (66)

At the end of these calculations, the total wave functions of the Klein-Gordon equation with

position-dependent mass for the scalar and vector Hulthén potentials are

ψ
(lD−1=l)
l1···lD−2

(x) = Nnlr
−(D−1)/2e−ε

(D)
nl

αr (1 − e−αr)δP
(2ε

(D)
nl

,β)
n (1 − 2e−αr)

1√
2π

exp(±il1θ1)
D−2∏

j=2

√
(2lj + j − 1)nj !

2Γ (lj + lj−1 + j − 2)
(sin θj)

lj−nj

P (lj−nj+(j−2)/2,lj−nj+(j−2)/2)
nj

(cos θj)

√
(2nD−1 + 2m′ + 1)nD−1!

2Γ (nD−1 + 2m′)
(sin θD−1)

lD−2 P (m′,m′)
nD−1

(cos θD−1), (67)
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where ε
(D)
nl and β are given in Eq. (62) and Enl is given in Eq. (37) [46].

To check the accuracy of the resulting analytical expressions. We give a few numerical

real eigenvalues for some selected values of the mass m0 and m1and potential parameters

S0 and V0. In Tables 1 and 2, taking α = 1 and m0 = 1, we present some numerical values

for the energy spectrum of the constant mass Klein-Gordon equations with the condition

S0 = V0 for all possible real eigenvalues. To get more real energy eigenvalues in the constant

mass case (e.g., m0 = 1, m1 = 0), the vector parameter V0 of the Hulthén potential should

be increased. As shown in Tables 1 and 2, when the parameter V0 = S0 = 1, 2, 3, 6, 8, 20,

we obtain N = 1,3,6,10,15,36 real energy eigenvalues, respectively. The numerical solution

of the position-dependent mass case with vector and scalar Hulthén potential parameters

satisfying the conditions S0 = ±V0 and S0 > V0 are presented in Table 3. For example, in

Table 3, when the Hulthén potential parameter V0 = S0 = 1, m0 = 5 and m1 6= 0, we obtain

N = 46 real energy eigenvalues. Obviously, the number of real eigenvalues increases in the

solution of the position-dependent case than in the constant mass case where the condition

S0 ≥ V0 must be fulfilled.

IV. COCLUSIONS

In summary, we have proposed an alternative approximation scheme for the centrifu-

gal potential similar to the non-relativistic case. This is because the usual approximation

[10,13,15] for the centrifugal term is only valid for low-screening region, however, for the

high screening region where α increases, the agreement between the old approximation and

centrifugal term decreases. Using this approximation scheme, the analytical solutions of the

radial Klein-Gordon equation with position-dependent mass for scalar and vector Hulthén

potentials can be approximately obtained for any dimension D and orbital angular mo-

mentum quantum number l. It is found that the expressions for the eigenvalues and the

corresponding eigenfunctions become complicated and tedious since the eigenvalues are re-

lated to the parameters mo, m1, S0, V0, c0 and α. We have investigated the possibility to

obtain the bound-state (real) energy spectra with some constraints to be imposed on the

parameters and, further, the relationship between the strengths of vector V0 and scalar S0

coupling parameters. In one- and three-dimensions, the special cases for the angular momen-

tum l = 0, 1 are carried out in detail. We find that the analytical expressions of the energy

17



eigenvalues and eigenfunctions are identical with the results obtained by other methods.

The analytical energy equation and the unnormalized radial wavefunctions are expressed in

terms of hypergeometric polynomials. For constant mass case (m1 = 0) and s-wave (l = 0),

the results are reduced to exact solution of bound states of s-wave Klein-Gordon equation

with scalar and vector Hulthén potentials. To test our results, we have also calculated the

energy eigenvalues of a particle and antiparticle for the constant mass limit as well as the

position-dependent mass case. The case of spatial-dependent mass with scalar potential

S0 = m1c
2 is found to be equivalent to the constant mass with scalar potential S0 = 0 in a

pure vector case. Hence, the spectrum is found to be same.

Acknowledgments

Work partially supported by the Scientific and Technological Research Council of Turkey
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FIG. 1: A plot of the variation of the centrifugal potential, 1/r2 and its corresponding propose

approximation form α2
[
c0 + eαr

(eαr−1)2

]
versus αr, where the screening parameter α changes from

α = 0.050 to α = 0.250 in steps of 0.050.
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TABLE I: The energy spectrum of the scalar and vector Hulthén potential for m0 = 1 and m1 = 0.

V0 = S0 n l E+
nl

a E−
nl

a E+
nl [61,62]b E−

nl [61,62]b

1 1 0 1.000000 −0.600000 1.000000 −0.600000

1 1 − − − −

2 1 0 0.707107 −0.707107 0.707107 −0.707107

1 1 0.984171 −0.214941 − −

1 2 − − − −

2 0 0.984171 −0.214941 0.984171 −0.214941

2 1 − − − −

3 1 0 0.302169 −0.763708 0.302169 −0.763708

1 1 0.911438 −0.411438 − −

1 2 0.600000 0.600000 − −

1 3 − − − −

2 0 0.911438 −0.411438 0.911438 −0.411438

2 1 0.600000 0.600000 − −

2 2 − − − −

3 0 0.600000 0.600000 0.600000 0.600000

3 1 − − − −

6 1 0 −0.355051 −0.844949 −0.355051 −0.844949

1 1 0.235890 −0.635890 − −

1 2 0.763708 −0.302169 − −

1 3 0.994273 0.284416 − −

2 0 0.235890 −0.635890 0.235890 −0.635890

2 1 0.763708 −0.302169 − −

2 2 0.994273 −0.284416 − −

2 3 − − − −

3 0 0.763708 −0.302169 0.763708 −0.302169

3 1 0.994273 0.284416 − −

3 2 − − − −

4 0 0.994273 0.284416 0.994273 0.284416

aThe present NU method.
bThe results from AIM and SUSY. 23



TABLE II: The energy spectrum of the scalar and vector Hulthén potential for m0 = 1 and m1 = 0.

V0 = S0 n l E+
nl E−

nl V0 = S0 n l E+
nl E−

nl

8 1 0 −0.539504 −0.872260 20 2 0 −0.662662 −0.853230

1 1 −0.063251 −0.703872 2 1 −0.418342 −0.735504

1 2 0.447214 −0.447214 2 2 −0.127025 −0.578857

1 3 0.870312 −0.061324 2 3 0.194284 −0.377770

1 4 0.800000 0.8000000 2 4 0.523260 −0.122370

1 5 − − 2 5 0.825665 0.208818

2 0 −0.063251 −0.703872 2 6 0.998229 0.706553

2 1 0.447214 −0.447214 3 0 −0.418342 −0.735504

2 2 0.870312 −0.061324 3 1 −0.127025 −0.578857

2 3 0.800000 0.800000 3 2 0.194284 −0.377770

2 4 − − 3 3 0.523260 −0.122370

3 0 0.447214 −0.447214 3 4 0.825665 0.208818

3 1 0.870312 −0.061324 3 5 0.998229 0.706553

3 2 0.800000 0.800000 4 0 −0.127025 −0.578857

3 3 − − 4 1 0.194284 −0.377770

4 0 0.870312 −0.061324 4 2 0.523260 −0.122370

4 1 0.800000 0.800000 4 3 0.825665 0.208818

4 2 − − 4 4 0.998229 0.706553

5 0 0.800000 0.800000 5 0 0.194284 −0.377770

5 1 − − 5 1 0.523260 −0.122370

6 0 − − 5 2 0.825665 0.208818

20 1 0 −0.846811 −0.935368 5 3 0.998229 0.706553

1 1 −0.662662 −0.853230 6 0 0.523260 −0.122370

1 2 −0.418342 −0.735504 6 1 0.825665 0.208818

1 3 −0.127025 −0.578857 6 2 0.998229 0.706553

1 4 0.194284 −0.377770 7 0 0.825665 0.208818

1 5 0.523260 −0.122370 7 1 0.998229 0.706553

1 6 0.825665 0.208818 8 0 0.998229 0.706553

1 7 0.998229 0.706553 9 0 − −
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TABLE III: The energy spectrum of the scalar and vector Hulthén potential for m1 6= 0.

m0 m1 V0 S0 n l E+ E− m0 m1 V0 S0 n l E+ E−

5 0.01 2 2 1 0 0.822925 −4.913410 5 1 −10 20 1 0 4.857570 −1.483450

1 1 3.110670 −4.804170 1 1 4.875450 −1.571890

2 0 3.065630 −4.807820 2 0 4.999480 −2.709050

2 1 4.252020 −4.650830 2 1 4.999990 −2.772530

2 2 4.795730 −4.445800 2 2 4.998750 −2.895220

3 0 4.229630 −4.655840 3 0 4.924130 −3.601650

3 1 4.793910 −4.447040 3 1 4.914310 −3.648140

3 2 4.989330 −4.185200 3 2 4.893220 −3.737900

3 3 4.956220 −3.857960 3 3 4.858140 −3.864780

5 0.01 −2 2 1 0 4.913410 −0.822930 5 0.1 1 1 1 0 3.443410 -4.868720

1 1 4.804170 −3.110670 1 1 4.722690 −4.742880

2 0 4.807820 −3.065630 2 0 4.618770 −4.768190

2 1 4.650830 −4.252020 2 1 4.982510 −4.577550

2 2 4.445800 −4.795730 2 2 4.964780 −4.347700

3 0 4.655840 −4.229630 3 0 4.960360 −4.613290

3 1 4.447040 −4.793910 3 1 4.967570 −4.354450

3 2 4.185200 −4.989330 3 2 4.788530 −4.056980

3 3 3.857960 −4.956220 3 3 4.484330 −3.682040

5 0.1 −2 5 1 0 4.871650 −3.222360 4 0 4.984480 −4.401670

1 1 4.926240 −3.503700 4 1 4.794830 −4.065620

2 0 5.000000 −4.245710 4 2 4.488330 −3.686650

2 1 4.995470 −4.392630 4 3 4.054980 −3.206920

2 2 4.965180 −4.615030 4 4 3.455290 −2.575480

3 0 4.915250 −4.768460 5 0 4.837690 −4.126180

3 1 4.878060 −4.836860 5 1 4.497830 −3.697630

3 2 4.793250 −4.930300 5 2 4.060510 −3.212870

3 3 4.647670 −4.993400 5 3 3.459590 −2.579950

5 4 2.567010 −1.664550

5 5 − −
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