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This paper is an extended version of the talks given by A. V. K. at the 8th International Conference
‘Symmetry in Nonlinear Mathematical Physics’ (June 20–27, 2009), Kiev, Ukraine, and at the 9th
International Workshop SQS’09 ‘Supersymmetry and quantum symmetries’ (July 29 – August 3,

2009), JINR, Dubna, Russia.

Abstract. We prove that P. Mathieu’s Open problem on constructing Gardner’s
deformation for the N=2 supersymmetric a=4–Korteweg–de Vries equation has no
supersymmetry-invariant solutions, whenever it is assumed that they retract to Gard-
ner’s deformation of the scalar KdV equation under the component reduction. At the
same time, we propose a two-step scheme for the recursive production of the integrals
of motion for the N=2, a=4–SKdV. First, we find a new Gardner’s deformation of
the Kaup–Boussinesq equation, which is contained in the bosonic limit of the super-
hierarchy. This yields the recurrence relation between the Hamiltonians of the limit,
whence we determine the bosonic super-Hamiltonians of the full N=2, a=4–SKdV
hierarchy. Our method is applicable towards the solution of Gardner’s deformation
problems for other supersymmetric KdV-type systems.

Introduction. This paper is devoted to the Korteweg–de Vries equation and its gen-
eralizations [23]. We consider completely integrable, multi-Hamiltonian evolutionary
N=2 supersymmetric equations upon a scalar, complex bosonic N=2 superfield

u(x, t; θ1, θ2) = u0(x, t) + θ1 · u1(x, t) + θ2 · u2(x, t) + θ1θ2 · u12(x, t), (1)

where θ1 and θ2 are Grassmann variables satisfying θ2
1 = θ2

2 = θ1θ2 + θ2θ1 = 0. Also,
we investigate one- and two-component reductions of such four-component N=2 super-
systems upon u. In particular, we study the bosonic limits, which are obtained by the
constraint

u1 = u2 ≡ 0. (2)

We analyse the structures that are inherited by the limits from the full super-systems
and, conversely, recover the integrability properties of the entire N=2 hierarchies from
their bosonic counterparts.

We address 2nd Open problem of [22] for the N=2 supersymmetric Korteweg–de Vries
equation with a=4, see [19, 20],

ut = −uxxx + 3
(

uD1D2u
)

x
+
a− 1

2

(

D1D2u
2
)

x
+ 3au2

ux, Di =
∂

∂θi
+ θi ·

d

dx
. (3)
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For a=4, this super-equation possesses an infinite hierarchy of bosonic Hamiltonian su-
per-functionals H

(k) whose densities h
(k) are integrals of motion. The problem amounts

to a recursive production of such densities by using those which are already obtained.
In its authentic formulation, the problem suggests finding a parametric family of super-
equations E(ǫ) upon the generating super-function ũ(ǫ) =

∑+∞

k=0 h
(k) ·ǫk for the integrals

of motion such that the initial super-equation (3) is E(0). It is further supposed that,
at each ǫ, the evolutionary equation E(ǫ) exprimes a (super-)conserved current, and
there is the Gardner–Miura substitution mǫ : E(ǫ) → E(0). Hence, expanding mǫ in ǫ
and using the initial condition ũ(0) = u at ǫ = 0, one obtains the differential recur-

rence relation between the Taylor coefficients h
(k) of the generating function ũ (see [23]

or [7, 11, 17, 20] and references therein for details and examples). The recurrence
relations between the (super-)Hamiltonians of the hierarchy are much more informa-
tive than the usual recursion operators that propagate symmetries. In particular, the
symmetries can be used to produce new explicit solutions from known ones, but the
integrals of motion help to find those primary solutions.

Let us also note that, within the Lax framework of super-pseudodifferential operators,
the calculation of the (n+1)-st residue does not take into account the n residues, which
are already known at smaller indices. This is why the method of Gardner’s deformations
becomes highly preferrable. Indeed, there is no need to multiply any pseudodifferential
operators by applying the Leibnitz rule an increasing number of times, and all the
previously obtained quantities are used at each inductive step. By this argument, we
understand Gardner’s deformations as the transformation in the space of the integrals
of motion that maps the residues to Taylor coefficients of the generating functions ũ(ǫ)
and which, therefore, endows this space with the additional structure (that is, with the
recurrence relations between the integrals).

Still there is a deep intrinsic relation between the Lax (or, more generally, zero-
curvature) representations for integrable systems and Gardner’s deformations for them.
Namely, both approaches manifest the matrix and vector field representations of the
Lie algebras related to such systems [29].

Our main result is the following. Under some natural assumptions, we prove the
non-existence of N=2 supersymmetry-invariant Gardner’s deformations for the bi-
Hamiltonian N=2, a=4–SKdV. Still, we show that the Open problem must be ad-
dressed in a different way, and then we solve it in two steps. First, in section 1 we recall
that the tri-Hamiltonian hierarchy for the bosonic limit of (3) with a=4 contains the
Kaup–Boussinesq equation, see [8, 24] and [3, 18, 26] in the context of this paper. Then
in section 3 we construct new deformations for the Kaup–Boussinesq equation such that
the Miura contraction mǫ now incorporates Gardner’s map for the KdV equation ([23],
c.f. [7, 17]). Second, extending the Hamiltonians H(k) for the Kaup–Boussinesq hierar-

chy to the super-functionals H
(k) in section 4, we reproduce the bosonic conservation

laws for (3) with a=4. Finally, we contribute to the solution of P. Mathieu’s 3rd Open
problem [22] with the description of necessary conditions upon a class of Gardner’s
deformations for (3) that reproduce its fermionic local conserved densities.

The standard reference in geometry of completely integrable Hamiltonian partial
differential equations is [25].
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1. N=2 a=4–SKdV as bi-Hamiltonian super-extension of

Kaup–Boussinesq system

Let us begin with the Korteweg–de Vries equation

u12;t + u12;xxx + 6u12u12;x = 0. (4)

Its second Hamiltonian operator, ÂKdV
2 = d3/dx3 +4u12 d/dx+2u12;x, which relates (4)

to the functional H
(2)
KdV = −1

2

∫

u2
12 dx, can be extended1 in the (2 | 2)-graded field setup

to the parity-preserving Hamiltonian operator [19],

P̂2 =













− d
dx

−u2 u1 2u0
d
dx

+ 2u0;x

−u2

(

d
dx

)2
+ u12 −2u0

d
dx

− u0;x 3u1
d
dx

+ 2u1;x

u1 2u0
d
dx

+ u0;x

(

d
dx

)2
+ u12 3u2

d
dx

+ 2u2;x

2u0
d
dx

−3u1
d
dx

− u1;x −3u2
d
dx

− u2;x

(

d
dx

)3
+ 4u12

d
dx

+ 2u12;x













. (5)

Here the fields u0 and u12 are bosonic, u1 and u2 are fermionic together with their
derivatives w.r.t. x. Likewise, the components ψ0 ≃ δH/δu0 and ψ12 ≃ δH/δu12 of the

arguments ~ψ = t
(

ψ0, ψ1, ψ2, ψ12

)

of (5) are even-graded and ψ1, ψ2 are odd-graded. The
operator (5) is unique in the class of Hamiltonian total differential operators that merge
to scalar N=2 super-operators which are local in Di and whose coefficients depend on
the super-field u and its super-derivatives, see (9) below. The operator (5) determines
the N=2 classical super-conformal algebra [4]. Conversely, the Poisson bracket given
by (5) reduces to the second Poisson bracket for (4), whenever one sets equal to zero
the fields u0, u1, and u2 both in the coefficients of (5) and in all Hamiltonians; the

operator ÂKdV
2 is underlined in (5).

By construction, P. Mathieu’s extensions of the Korteweg–de Vries equation (4) are
determined by the operator (5) and the bosonic Hamiltonian functional

H(2) =

∫

[

u0u0;xx−u
2
12 + u1u1;x + u2u2;x + a ·

(

u2
0u12 − 2u0u1u2

)

]

dx, (6)

which incorporates H
(2)
KdV as the underlined term; similar to (9), the Hamiltonian (6)

will be realized by (8) as the bosonic N=2 super-Hamiltonian. Now we have that

ui;t =
(

P̂2

)

ij

(

δH(2)/δuj

)

, i, j ∈ {0, 1, 2, 12}.

This yields the system

u0;t = −u0;xxx +
(

au3
0 − (a + 2)u0u12 + (a− 1)u1u2

)

x
, (7a)

u1;t = −u1;xxx +
(

(a + 2)u0u2;x + (a− 1)u0;xu2 − 3u1u12 + 3au2
0u1

)

x
, (7b)

u2;t = −u2;xxx +
(

−(a+ 2)u0u1;x − (a− 1)u0;xu1 − 3u2u12 + 3au2
0u2

)

x
, (7c)

u12;t = −u12;xxx − 6u12u12;x + 3au0;xu0;xx + (a+ 2)u0u0;xxx

+ 3u1u1;xx + 3u2u2;xx + 3a
(

u2
0u12 − 2u0u1u2

)

x
. (7d)

1Likewise, we will extend Gardner’s deformation (14) of (4) to the deformation (18) of the two-
component bosonic limit (13) for (3) with a=4. Hence we reproduce the conservation laws for (13)
and, again, extend them to the bosonic super-Hamiltonians of the full system (3).
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Obviously, it retracts to (4), which we underline in (7), under the reduction u0 = 0, u1 =
u2 = 0.

At all a ∈ R, the Hamiltonian (6) equals

H
(2) =

∫

(

uD1D2(u) + a
3
u

3
)

dθdx, where dθ = dθ1dθ2. (8)

Likewise, the structure (5), which is independent of a, produces the N=2 super-operator

P̂ 2 = D1D2
d
dx

+ 2u d
dx

−D1(u)D1 −D2(u)D2 + 2ux. (9)

Thus we recover P. Mathieu’s super-equations (3) [20], which are Hamiltonian with

respect to (9) and the functional (8): ut = P̂ 2

(

δ
δu

(H2)
)

. In component notation,
super-equations (3) are (7).

The assumption that, for a given a, the super-system (3) admits infinitely many
integrals of motion yields the triplet a ∈ {−2, 1, 4}, see [20]. The same values of a are
exhibited by the Painlevé analysis for N=2 super-equations (3), see [2].

The three systems (3) have the common second Poisson structure, which is given

by (9), but the three ‘junior’ first Hamiltonian operators P̂ 1 for them do not coincide [10,
19, 20]. Moreover, system (3) with a=4 is radically different from the other two, both
from the Hamiltonian and Lax viewpoints.

Proposition 1. The N=2 supersymmetric hierarchy of P. Mathieu’s a=4 Korteweg–de
Vries equation is bi-Hamiltonian with respect to the local super-operator (9) and the

junior Hamiltonian operator2
P̂

a=4
1 = d/dx, which is obtained from P̂

a=4
2 by the shift

u 7→ u + λ of the super-field u, see [5, 28]:

P̂
a=4
1 =

d

dx
=

1

2
·

d

dλ

∣

∣

∣

λ=0
P̂

a=4
2

∣

∣

∣

u+λ

.

The two operators are Poisson compatible and generate the tower of nonlocal higher

structures P̂ k+2 =
(

P̂ 2 ◦ P̂
−1

1

)k
◦ P̂ 2, k ≥ 1, for the N=2, a=4–SKdV hierarchy,

see [15, 6]. Although P̂ 3 is nonlocal (c.f. [26]), its bosonic limits under (2) yield the local

third Hamiltonian structure Â2 for the Kaup–Boussinesq equation, which determines
the evolution along the second time t2 ≡ ξ in the bosonic limit of the N=2, a=4–SKdV
hierarchy (see Proposition 2 on p. 10).

Remark 1. The Kaup–Boussinesq system [8] arising here is equivalent to the Kaup–
Broer system (the difference amounts to notation). A bi-Hamiltonian N=2 super-
extension of the latter is known from [18]. A tri-Hamiltonian two-fermion N=1 super-
extension of the Kaup-Broer system was constructed in [3] such that in the bosonic
limit the three known Hamiltonian structures for the initial system are recovered. At
the same time, a boson-fermion N=1 super-extension of the Kaup–Broer equation with
two local and the nonlocal third Hamiltonian structures was derived in [26]; seemingly,

the latter equaled the composition P̂ 2 ◦ P̂
−1

1 ◦ P̂ 2, but it remained to prove that the
suggested nonlocal super-operator is skew-adjoint, that the bracket induced on the space

2The nonzero entries of the (4 × 4)-matrix representation P̂1 for the Hamiltonian super-operator

P̂
a=4

1 are
(

P̂1

)

0,12
=
(

P̂1

)

2,1
=
(

P̂1

)

12,0
= −

(

P̂1

)

1,2
= d/dx.
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of bosonic super-Hamiltonians does satisfy the Jacobi identity, and that the hierarchy
flows produced by the nonlocal operator remain local.

There is a deep reason for the geometry of the a=4–SKdV to be exceptionally rich.
All the three integrable N=2 supersymmetric KdV equations (3) admit the Lax rep-
resentations Lt3 = [A(3), L], see [1, 19, 22, 27]. For a=4, the four roots of the Lax
operator La=4 = −(D1D2 + u)2, which are L1,± = ±i(D1D2 + u), i2 = −1, and the

super-pseudodifferential operators L2,± = ± d
dx

+
∑

i>0(· · · ) ·
(

d
dx

)−i
, generate the odd-

index flows of the SKdV hierarchy via Lt2k+1
= [(L2k+1

2 )≥0, L]. In particular, we have

A
(3)
a=4 =

(

L3/2
)

≥0
mod (D1D2 + u)3. However, the entire a=4 hierarchy is reproduced

in the Lax form via (Lk
1L2)tℓ =

[(

Lℓ
1L2

)

≥0
,Lk

1L2

]

for all k ∈ N, c.f. [16]. Hence the

super-residues3 of the operators Lk
1L2 are conserved.

Consequently, unlike the other two, super-equation (3) with a=4 admits twice as
many constants of motion as there are for the super-equations with a= − 2 or a=1.
For convenience, let us recall that super-equations (3) are homogeneous with respect
to the weights |d/dx| ≡ 1, |u| = 1, |d/dt| = 3. Hence we conclude that, for each
nonnegative integer k, there appears the nontrivial conserved density SresLk

1L2, see
above, of weight k + 1. The even weights also enter the play. Consequently, there are
twice as many commuting super-flows assigned to the twice as many Hamiltonians.

Example 1. The additional super-Hamiltonian H
(1) = 1

2

∫

u
2dθdx for (3) with a=4,

and the second structure (9), — or, equivalently, the first operator P̂ 1 = d/dx and

the Hamiltonian H
(2), or P̂ 3 and H

(0) =
∫

udθdx, see above, — generate the N=2
supersymmetric equation

uξ = D1D2ux+4uux = P̂ 3

(

δ

δu
(H(0))

)

= P̂ 2

(

δ

δu
(H(1))

)

= P̂ 1

(

δ

δu
(H(2))

)

, ξ ≡ t2.

(10)
Super-equation (10) was referred to as the N=2 ‘Burgers’ equation in [12, 13] due to
the recovery of uξ = uxx + 4uux on the diagonal θ1 = θ2. On the other hand, the
bosonic limit of (10) is the tri-Hamiltonian ‘minus’ Kaup–Boussinesq system (see [8] or
[7, 17, 24] and references therein)

u0;ξ =
(

−u12 + 2u2
0

)

x
, u12;ξ =

(

u0;xx + 4u0u12

)

x
. (11)

System (11) is equivalent to the Kaup–Broer equation via an invertible substitution. In
these terms, super-equation (10) is a super-extension of the Kaup–Boussinesq system [3,
18, 26]. In their turn, the first three Poisson structures for (3) with a=4 are reduced
under (2) to the respective local structures for (11), see Proposition 2 on p. 10.

Our interest in the recursive production of the integrals of motion for (3) grew after
the discovery, see [12], of new n-soliton solutions,

u = A(a) ·D1D2 log
(

1+

n
∑

i=1

αi exp
(

kix−k
3
i ·t± i ki ·θ1θ2

)

)

, A(a) =

{

1, a=1,
1
2
, a=4,

(12)

3We recall that the N=2 super-residue SresM of a super-pseudodifferential operator M is the

coefficient of D1D2 ◦
(

d

dx

)

−1
in M .
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for the super-equations (3) with a=1 or a=4 (but not a=−2 or any other a ∈ R\{1, 4}).
In formula (12), the wave numbers ki ∈ R are arbitrary, and the phases αi can be
rescaled to +1 for non-singular n-soliton solutions by appropriate shifts of n higher
times in the SKdV hierarchy. A spontaneous decay of fast solitons and their transition
into the virtual states, on the emerging background of previously invisible, slow solitons,
look paradoxal for such KdV-type systems (a=1 or a=4), since they possess an infinity
of the integrals of motion.

The new solutions (12) of (3) with a=1 or a=4 are subject to the condition (2) and
therefore satisfy the bosonic limits of these N=2 super-systems. In the same way, the
bosonic limit (11) of (10) admits multi-soliton solutions in Hirota’s form (12), now with
the exponents ηi = kix ± ik2

i ξ ± ikiθ1θ2, see [12]. This makes the role of such two-
component bosonic reductions particularly important. We recall that the reduction (2)
of (3) with a=1 yields the Kersten–Krasil’shchik equation, see [9] or [12] and references
therein. In this paper, we consider the bosonic limit of the N=2, a=4 SKdV equation,

u0;t = −u0;xxx + 12u2
0u0;x − 6

(

u0u12

)

x
, (13a)

u12;t = −u12;xxx − 6u12u12;x + 12u0;xu0;xx + 6u0u0;xxx + 12
(

u2
0u12

)

x
, (13b)

which succeeds the Kaup–Boussinesq equation (11) in its tri-Hamiltonian hierarchy. We
construct a new Gardner deformation for it (c.f. [7]).

In general, system (7) with a=4 admits three one-component reductions (except
u0 6≡ 0) and three two-component reductions, which are indicated by the edges that
connect the remaining components in the diagram

u0
∥

∥

∥

u1 u12 u2.

System (7) with a=4 has no three-component reductions obtained by setting to zero
only one of the four fields in (1). We conclude this paper by presenting a Gardner
deformation for the two-component boson-fermion reduction u0 ≡ 0, u2 ≡ 0 of the
N=2, a=4–SKdV system, see (26) on p. 19.

2. Deformation problem for N=2, a=4–SKdV equation

In this section, we formulate the two-step algorithm for a recursive production of the
bosonic super-Hamiltonians H

(k)[u] for the N=2 supersymmetric a=4–SKdV hierarchy.
Essentially, we convert the geometric problem to an explicit computational procedure.
Our scheme can be applied to other KdV-type super-systems (in particular, to (3) with
a= − 2 or a=1).

By definition, a classical Gardner’s deformation for an integrable evolutionary equa-
tion E is the diagram

mǫ : E(ǫ) → E ,

where the equation E(ǫ) is a parametric extension of the initial system E = E(0) and
mǫ is the Miura contraction [23, 17, 11]. Under the assumption that E(ǫ) be in the
form of a (super-)conserved current, the Taylor coefficients ũ

(k) of the formal power
series ũ =

∑+∞

k=0 ũ
(k) · ǫk are termwise conserved on E(ǫ) and hence on E . Therefore,
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the contraction mǫ yields the recurrence relations, ordered by the powers of ǫ, between
these densities ũ

(k), while the equality E(0) = E specifies its initial condition.

Example 2 ([23]). The contraction

mǫ =
{

u12 = ũ12 ± ǫũ12;x − ǫ2ũ2
12

}

(14a)

maps solutions ũ12(x, t; ǫ) of the extended equation E(ǫ),

ũ12;t +
(

ũ12;xx + 3ũ2
12 − 2ǫ2 · ũ3

12

)

x
= 0, (14b)

to solutions u12(x, t) of the Korteweg–de Vries equation (4). Plugging the series ũ12 =
∑+∞

k=0 u
(k)
12 · ǫk in mǫ for ũ12, we obtain the chain of equations ordered by the powers of ǫ,

u12 =
+∞
∑

k=0

ũ
(k)
12 · ǫk ± ũ

(k)
12;x · ǫ

k+1 −
∑

i+j=k
i,j≥0

ũ
(i)
12 ũ

(j)
12 · ǫk+2.

Let us fix the plus sign in (14a) by reversing ǫ → −ǫ if necessary. Equating the coeffi-
cients of ǫk, we obtain the relations

u = ũ
(0)
12 , 0 = ũ

(1)
12 + ũ

(0)
12;x, 0 = ũ

(k)
12 + ũ

(k−1)
12;x −

∑

i+j=k−2
i,j≥0

ũ
(i)
12 ũ

(j)
12 , k ≥ 2.

Hence, from the initial condition ũ
(0)
12 = u12, we recursively generate the densities

ũ
(1)
12 = −u12;x, ũ

(2)
12 = u12;xx − u2

12, ũ
(3)
12 = −u12;xxx + 4u12;xu12,

ũ
(4)
12 = u12;4x − 6u12;xxu12 − 5u2

12;x + 2u3
12,

ũ
(5)
12 = −u12;5x + 8u12;xxxu12 + 18u12;xxu12;x − 16u12;xu

2
12,

ũ
(6)
12 = u12;6x − 10u12;4xu12 − 28u12;xxxu12;x − 19u2

12;xx + 30u12;xxu
2
12 + 50u2

12;xu12 − 5u4
12,

ũ
(7)
12 = −u12;7x + 12u12;5xu12 + 40u12;4xu12;x + 68u12;xxxu12;xx − 48u12;xxxu

2
12

− 216u12;xxu12;xu12 − 60u3
12;x + 64u12;xu

3
12, etc.

The conservation ũ12;t = d
dx

(

·
)

implies that each coefficient u
(k)
12 is conserved on (4).

The densities u
(2k)
12 = c(k)·uk

12+. . . , c(k) = const, determine the Hamiltonians H
(k)
12 =

∫

h
(k)
12 [u12] dx of the renowned KdV hierarchy. Let us show that all of them are non-

trivial. Consider the zero-order part ŭKdV
12 such that ũ12

(

[u12], ǫ
)

= ŭKdV
12 (u12, ǫ) + . . . ,

where the dots denote summands containing derivatives of u12. Taking the zero-order
component of (14a), we conclude that the generating function ŭKdV

12 satisfies the alge-

braic recurrence relation u12 = ŭKdV
12 − ǫ2

(

ŭKdV
12

)2
. We choose the root by the initial

condition ŭKdV
12

∣

∣

ǫ=0
= u12, which yields

ŭKdV
12 =

(

1 −
√

1 − 4ǫ2u12

)/

(2ǫ2). (15)

Moreover, the Taylor coefficients ŭ
(k)
12 (u12) in ŭKdV

12 =
∑+∞

k=0 ŭ
(k)
12 · ǫ2k equal c(k) · uk+1

12 ,
where c(k) are positive and grow with k. This is readily seen by induction over k with
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the base ŭ
(0)
12 = u12. Expanding both sides of the equality u12 = ŭKdV

12 − ǫ2 ·
(

ŭKdV
12

)2

in ǫ2, we notice that

ŭ
(k)
12 =

∑

i+j=k−1,
i,j≥0

ŭ
(i)
12 · ŭ

(j)
12 =

∑

i+j=k−1

c(i)c(j) · uk+1
12 .

Therefore, the next coefficient, c(k) =
∑

i+j=k−1 c(i) · c(j), is the sum over i, j ≥ 0 of

products of positive numbers, whence c(k + 1) > c(k) > 0. This proves the claim.

Let us list the densities h
(k)
KdV ∼ u

(2k)
12 mod im d/dx of the first seven Hamiltonians

for (4). These will be correlated in section 4 with the lowest seven Hamiltonians for (3),
see [20] and (24) below. We have

h
(1)
KdV = u2

12, h
(2)
KdV = 2u3

12 − u2
12;x + 2u3

12 + u12;xx, h
(3)
KdV = 5u4

12 + 5u12;xxu
2
12 + u2

12;xx,

h
(4)
KdV = −14u5

12 + 70u2
12u

2
12;x + 14u12u12;xxxu12;x + u2

12;xxx,

h
(5)
KdV = 42u6

12 − 420u3
12u

2
12;x + 9u2

12u12;6x + 126u2
12u

2
12;xx + u2

12;4x − 7u3
12;xx − 35u4

12;x,

h
(6)
KdV = 1056u7

12 − 18480u4
12u

2
12;x + 7392u3

12u
2
12;xx + 55u2

12u12;8x − 1584u2
12u

2
12;xxx

+ 66u12u
2
12;4x + 3520u12u

3
12;xx − 6160u12u

4
12;x − 8u2

12;5x + 3696u2
12;xxu

2
12;x,

h
(7)
KdV = 15444u8

12 − 432432u5
12u

2
12;x + 4004u4

12u12;6x + 216216u4
12u

2
12;xx + 2145u3

12u12;8x

− 45760u3
12u

2
12;xxx + 3861u2

12u
2
12;4x + 133848u2

12u
3
12;xx − 360360u2

12u
4
12;x

− 936u12u
2
12;5x + 36u2

12;6x + 6552u2
12;4xu12;xx + 72072u2

12;xxxu
2
12;x − 28314u4

12;xx.

At the same time, the densities u
(2k+1)
12 = d

dx

(

·
)

∼ 0 are trivial. Indeed, for ω0 :=
∑+∞

k=0 u
(2k)
12 · ǫ2k and ω1 :=

∑+∞

k=0 u
(2k+1)
12 · ǫ2k such that ũ = ω0 + ǫ ·ω1, we equate the odd

powers of ǫ in (14a) and obtain ω1 = 1
2ǫ2

d
dx

log
(

1 − 2ǫ2ω0

)

.
In what follows, using the deformation (14) of (4), we fix the coefficients of differential

monomials in u12 within a bigger deformation problem (see section 3) for the two-
component system (13).

We split the Gardner deformation problem for the N=2 supersymmetric hierarchy
of (3) with a=4 in two main and several auxiliary steps.

First, we note that Miura’s contraction mǫ : E(ǫ) → E , which encodes the recurrence
relation between the conserved densities, is common for all equations of the hierarchy.
Indeed, the densities (and hence any differential relations between them) are shared by
all the equations. Therefore, we pass to the deformation problem for the N=2 super-
Burgers equation (10). This makes the first simplification of the Gardner deformation
problem for the N=2, a=4 super-KdV hierarchy.

Second, let h
(k) be an N=2 super-conserved density for an evolutionary super-

equation E , meaning that its velocity w.r.t. a time τ , d
dτ

h
(k) = D1(. . . ) + D2(. . . ),

is a total divergence on E . By definition of Di, see (3), the θ1θ2-component h
(k)
12 of

such h
(k) = h

(k)
0 + θ1 · h

(k)
1 + θ2 · h

(k)
2 + θ1θ2 · h

(k)
12 is conserved in the classical sense,

d
dτ
h

(k)
12 = d

dx
(. . . ) on E . Let us consider the correlation between the conservation laws

for the full N=2 super-system E and for its reductions that are obtained by setting
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certain component(s) of u to zero. In what follows, we study the bosonic reduction (2).
Other reductions of the super-equation (3) are discussed in section 4, see (25) on p. 19.

We suppose that the bosonic limit limB E of the super-equation E exists, which is the
case for (3) and (10). By the above, each conserved super-density h

(k)[u] determines

the conserved density h
(k)
12 [u0, u12], which may become trivial. As in [1], we assume that

the super-system E does not admit any conserved super-densities that vanish under

the reduction (2). Then, for such h
(k)
12 that originates from h

(k) by construction, the

equivalence class {h(k) mod imDi} is uniquely determined by
∫

h
(k)
12 [u0, u12] dx =

∫

h
(k)[u]

∣

∣

u1=u2=0
dθdx, here N=2 and dθ = dθ1dθ2.

Berezin’s definition of a super-integration,
∫

dθi = 0 and
∫

θi dθi = 1, implies that the

problem of recursive generation of the N=2 super-Hamiltonians H
(k) =

∫

h
(k) dθdx for

the SKdV hierarchy amounts to the generation of the equivalence classes
∫

h
(k)
12 dx for

the respective θ1θ2-component. We conclude that a solution of Gardner’s deformation
problem for the supersymmetric system (10) may not be subject to the supersymmetry
invariance. This is a key point to further reasonings.

We stress that the equivalence class of such functions h
(k)
12 [u0, u12] that originate

from H
(k) by (2) is, generally, much more narrow than the equivalence class {h

(k)
12

mod im d/dx} of all conserved densities for the bosonic limit limB E . Obviously, there
are differential functions of the form d

dx

(

f [u0, u12]
)

that can not be obtained4 as the θ1θ2-

component of any
[

D1(·)+D2(·)
]∣

∣

u1=u2=0
, which is trivial in the super-sense. Therefore,

let h
(k)
12 be any recursively given sequence of integrals of motion for limB E (e.g., sup-

pose that they are the densities of the Hamiltonians H(k) for the hierarchy of limB E),

and let it be known that each H(k) =
∫

h
(k)
12 dx does correspond to the super-analogue

H
(k) =

∫

h
(k) dθdx. Then the reconstruction of h

(k) requires an intermediate step,
which is the elimination of excessive, homologically trivial terms under d/dx that pre-

clude a given h
(k)
12 to be extended to the full super-density in terms of the N=2 super-

field u. This is illustrated in section 4.
Thirdly, the gap between the two types of equivalence for the integrals of motion

manifests the distinction between the deformations
(

limB E
)

(ǫ) of bosonic limits and,
on the other hand, the bosonic limits limB E(ǫ) of N=2 super-deformations. The two
operations, Gardner’s extension of E to E(ǫ) and taking the bosonic limit limB F of
an equation F , are not permutable. The resulting systems can be different. Namely,
according to the classical scheme ([23], [11]), each equation in the evolutionary sys-
tem

(

limB E
)

(ǫ) represents a conserved current, whence each Taylor coefficient of the
respective field is conserved, see Example 2. At the same time, for limB E(ǫ), the conser-
vation is required only for the field ũ12(ǫ), which is the θ1θ2-component of the extended
super-field ũ(ǫ). Other equations in limB E(ǫ) can have any form.5

4Under the assumption of weight homogeneity, the freedom in the choice of such f [u0, u12] is de-
screased, but the gap still remains.

5Still, the four components of the original N=2 supersymmetric equations within the hierarchy
of (3) are written in the form of conserved currents. A helpful counter-example, Gardner’s extension
of the N = 1 super-KdV equation, is discussed in [20, 21].
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In this notation, we strengthen the problem of recursive generation of the super-
Hamiltonians for the N=2 super-equation (10). Namely, in section 3 we construct true
Gardner’s deformations for its two-component bosonic limit (11). Moreover, the known
deformation (14) for (4) upon the component u12 of (1) allows to fix the coefficients
of the terms that contain only u12 or its derivatives. The solution to the Gardner de-
formation problem generates the recurrence relation between the nontrivial conserved

densities h
(k)
12 which, in the meantime, depend on u0 and u12. By correlating them with

the θ1θ2-components of the super-densities h
(k) that depend on u, we derive the Hamil-

tonians H
(k), k ≥ 0, for the N=2 supersymmetric a=4–KdV hierarchy, see section 4.

3. New deformation of the Kaup–Boussinesq equation

In this section, we construct a new Gardner’s deformation mǫ :
(

limB E
)

(ǫ) → limB E
for the ‘minus’ Kaup–Boussinesq equation (11), which is the bosonic limit of the N=2
supersymmetric system (10). We will use the known deformation (14) to fix several
coefficients in the Miura contraction mǫ, which ensures the difference of the new solu-
tion (16)–(17) from previously known deformations of (11), see [7]. We prove that the
new deformation is maximally nontrivial: It yields infinitely many nontrivial conserved
densities, and none of the Hamiltonians is lost.

In components, the N=2 super-equation (10) reads

u0;ξ =
(

−u12 + 2u2
0

)

x
, u1;ξ =

(

u2;x + 4u0u1

)

x
,

u2;ξ =
(

−u1,x + 4u0u2

)

x
, u12;ξ =

(

u0;xx + 4u0u12 − 4u1u2

)

x
.

Clearly, it admits the reduction (2); moreover, the Kaup–Boussinesq system (11) is the
only possible limit for (10). Let us summarize its well-known properties [8, 24]:

Proposition 2. The completely integrable Kaup–Boussinesq system (11) inherits the

local tri-Hamiltonian structure from the the two local (P̂1 and P̂2) and the nonlocal

P̂3 = P̂2 ◦ P̂1 ◦ P̂2 operators for the N=2, a=4–SKdV hierarchy under the bosonic
limit (2):
(

u0

u12

)

ξ

= Â12
1

(

δ/δu0

δ/δu12

)

(

∫

[

2u2
0u12 −

1
2
u2

12 −
1
2
u2

0;x

]

dx
)

= Â0
1

(

δ/δu0

δ/δu12

)

(

−

∫

u0u12 dx
)

= Â2

(

δ/δu0

δ/δu12

)

(

−

∫

u12 dx
)

.

The senior Hamiltonian operator Â2 is
(

u0;x + 2u0
d
dx

u12;x − 4u0u0;x − 2u2
0

d
dx

+ 2u12
d
dx

+ 1
2

(

d
dx

)3

u12;x − 2u2
0

d
dx

+ 2u12
d
dx

+ 1
2

(

d
dx

)3
−4u0u12

d
dx

− 4 d
dx

◦ u0u12 − u0

(

d
dx

)3
−
(

d
dx

)3
◦ u0

)

.

The junior Hamiltonian operators Â0
1 and Â12

1 are obtained from Â2 by the shifts of the
respective fields, c.f. [5, 28]:

Â0
1 =

( d
dx

−2u0;x − 2u0
d
dx

−2u0
d
dx

−2u12;x − 4u12
d
dx

−
(

d
dx

)3

)

=
1

2
·

d

dλ

∣

∣

∣

∣

λ=0

Â2

∣

∣

∣

u0+λ
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and

Â12
1 =

(

0 d
dx

d
dx

0

)

=
1

2
·

d

dµ

∣

∣

∣

∣

µ=0

Â2

∣

∣

∣

u12+µ
.

The three operators Â0
1, Â

12
1 , and Â2 are Poisson compatible.

The Kaup–Boussinesq equation (11) admits an infinite sequence of integrals of mo-
tion. We will derive them via the Gardner deformation. Unlike in [7], from now on we
always assume that (14a) is recovered under ũ0 ≡ 0.

We assume that both the extension E(ǫ) of (11) and the contraction mǫ : E(ǫ) → E
into (11) are homogeneous polynomials in ǫ. From now on, we denote the reduction (11)
by E .

First, let us estimate the degrees in ǫ for such polynomials E(ǫ) and mǫ, by balancing
the powers of ǫ in the left- and right-hand sides of (11) with u0 and u12 replaced by
the Miura contraction mǫ =

{

u0 = u0

(

[ũ0, ũ12], ǫ
)

, u12 = u12

(

[ũ0, ũ12], ǫ
)}

. The time
evolution in the left-hand side, which is of the form uξ = ∂ũξ

(mǫ) by the chain rule,
sums the degrees in ǫ: deg uξ = deg mǫ + deg E(ǫ). At the same time, we notice that
system (11) is only quadratic-nonlinear. Hence its right-hand side, with mǫ substituted
for u0 and u12, gives the degree 2 × deg mǫ, irrespective of deg E(ǫ). Consequently, we
obtain the balance6 1 : 1 for max deg mǫ : max deg E(ǫ). This is in contrast with the
balance 1 : 2 for polynomial deformations of the bosonic limit (13) for the initial SKdV
system (3), which is cubic-nonlinear7 (c.f. [20]).

Obviously, a lower degree polynomial extension E(ǫ) contains fewer undetermined
coefficients. This is the first profit we gain from passing to (10) instead of (3). By the
same argument, we conclude that mǫ : E(ǫ) → E , viewed as the algebraic system upon
these coefficients, is only quadratic-nonlinear w.r.t. the coefficients in mǫ (and, obviously,
linear w.r.t. the coefficients in E(ǫ); this is valid for any balance deg mǫ : deg E(ǫ)).
Hence the size of this overdetermined algebraic system is further decreased.

Second, we use the unique admissible homogeneity weights for the Kaup–Boussinesq
system (11),

|u0| = 1, |u12| = 2, |d/dξ| = 2;

here |d/dx| ≡ 1 is the normalization. The Miura contraction mǫ =
{

u0 = ũ0 + ǫ · (. . . ),

u12 = ũ12 + ǫ · (. . . )
}

, which we assume regular at the origin, implies that |ũ0| = 1 and
|ũ12| = 2 as well. We let |ǫ| = −1 be the difference of weights for every two successive
Hamiltonians for the N=2, a=4–SKdV hierarchy, see [20] and (24) below. In this
setup, all functional coefficients of the powers ǫk both in E(ǫ) and mǫ are homogeneous
differential polynomials in u0, u12, and their derivatives w.r.t. x. It is again important
that the time ξ of weight |d/dξ| = 2 in (10) precedes the time t with |d/dt| = 3 in the
hierarchy of (3), where |θi| = −1

2
and |u| = 1. As before, we have further decreased

the number of undetermined coefficients.

6This estimate is rough and can be improved by operating separately with the components of mǫ

and E(ǫ) since, in particular, the Kaup–Boussinesq system (11) is linear in u12.
7Reductions other than (2) can produce quadratic-nonlinear subsystems of the cubic-nonlinear sys-

tem (3), e.g., if one sets u0 = 0 and u2 = 0, see (25) on p. 19.
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The polynomial ansatz for Gardner’s deformation of (11) is generated by the pro-
cedure8 GenSSPoly, which is a new possibility in the the analytic software [14]. We
thus obtain the determining system mǫ : E(ǫ) → E . Using SsTools, we split it to the
overdetermined system of algebraic equations, which are linear w.r.t. E(ǫ) and qua-
dratic-nonlinear w.r.t. mǫ. Moreover, we claim that this system is triangular. Indeed,
it is ordered by the powers of ǫ, since the determining system is identically satisfied at
zeroth order and because equations at lower orders of ǫ involve only the coefficients of
its lower powers from mǫ and E(ǫ).

Thirdly, we use the deformation (14) of the Korteweg–de Vries equation [23]. We
recall that

• Miura’s contraction mǫ is common for all two-component systems in the bosonic
limit, see (2), of the N=2, a=4–SKdV hierarchy;

• for any a, the bosonic limit of (3), see (7) and (13), incorporates the Korteweg–
de Vries equation (4).

Using (14a), we fix those coefficients in mǫ which depend only on u12 and its derivatives,
but not on u0 or its derivatives. Apparently, we discard the knowledge of such coeffi-
cients in the extension of the bosonic limit (13), since for us now it is not the object to
be deformed. But the minimization of the algebraic system, which we have achieved by
passing to (10), is so significant that this temporary loss in inessential. Furthermore,
the above reasoning shows that the recovery of the coefficients in the extension E(ǫ)
amounts to solution of linear equations, while finding the coefficients in mǫ would cost
us the necessity to solve nonlinear algebraic systems. We managed to fix some of those
constants for granted.

We finally remark that the normalization of at least one coefficient in the deformation
problem cancels the reduntant dilation of the parameter ǫ, which, otherwise, would
remain until the end. This is our fourth simplification.9

We let the degrees deg mǫ = deg E(ǫ) be equal to four (c.f. [20]). Under this as-
sumption, the two-component homogeneous polynomial extension E(ǫ) of system (11)
contains 160 undetermined coefficients. At the same time, the two components of the
Miura contraction mǫ depend on 94 coefficients. However, we decrease this number by
nine, setting the coefficient of ũ12;x equal to +1 and, similarly, to −1 for ũ2

12 (see (14a),
where the ± sign is absorbed by ǫ 7→ −ǫ). Likewise, we set equal to zero the seven
coefficients of ũ12;xx, ũ12ũ12;x, ũ12;xxx, ũ

3
12, ũ

2
12;x, ũ12ũ12;xx, and ũ12;xxxx in mǫ.

8The call is GenSSPoly(N,wglist,cname,mode), where

• N is the number of Grassmann variables θ1, . . ., θN ;
• wglist is the list of lists {afwlist, abwlist, wgt}, each containing the list afwlist of

weights for the fermionic super-fields and the list abwlist of weights for the bosonic super-
fields; here wgt is the weight of the polynomial to be constructed;

• cname is the prefix for the names of arising undetermined coefficients (e.g., p pro-
duces p1, p2, . . . );

• mode is the list of flags, which can be fonly, whence only fermionic polynomials are generated,
or bonly, which yields the bosonic output.

9There is one more possibility to reduce the size of the algebraic system: this can be achieved by a
thorough balance of the differential orders of mǫ and E(ǫ).



GARDNER’S DEFORMATIONS OF N=2, a=4 SUPER-KDV 13

The resulting algebraic system with the shortened list of unknowns and with the
auxiliary list of nine substitutions is handled by SsTools and then solved by using
Crack [30].

Theorem 3. Under the above assumptions, the Gardner deformation problem for the

Kaup–Boussinesq equation (11) has a unique real solution of degree 4. The Miura

contraction mǫ is given by

u0 = ũ0 + ǫũ0;x − 2ǫ2ũ12ũ0, (16a)

u12 = ũ12 + ǫ
(

ũ12;x − 2ũ0ũ0;x

)

+ ǫ2
(

4ũ12ũ
2
0 − ũ2

12 − ũ2
0;x

)

+ 4ǫ3ũ12ũ0ũ0;x − 4ǫ4ũ2
12ũ

2
0.

(16b)

The extension E(ǫ) of (11) is

ũ0;ξ = −ũ12;x + 4u0ũ0;x + 2ǫ
(

ũ0ũ0;x

)

x
− 4ǫ2

(

ũ2
0u12

)

x
, (17a)

ũ12;ξ = ũ0;xxx + 4
(

ũ0ũ12

)

x
− 2ǫ

(

ũ0ũ12;x

)

x
− 4ǫ2

(

ũ0ũ
2
12

)

x
. (17b)

System (17) preserves the first Hamiltonian operator Âǫ
1 =

(

0 d/dx
d/dx 0

)

from Â12
1 for (11).

The Miura contraction mǫ is shared by all equations in the Kaup–Boussinesq hierar-
chy. Solving the linear algebraic system, we find the extension

(

limB Ea=4
SKdV

)

(ǫ) for the
bosonic limit (13) of (3) with a=4:

ũ0;t = −ũ0;xxx − 6
(

ũ0ũ12

)

x
+ 12ũ2

0ũ0;x + 12ǫ
(

ũ2
0ũ0;x

)

x
+ 6ǫ2

(

ũ0ũ
2
12 − 4ũ12ũ

3
0 + ũ0ũ

2
0;x)
)

x

+ ǫ3
(

(−24)ũ12ũ
2
0ũ0;x

)

x
+ ǫ4

(

24ũ2
12ũ

3
0

)

x
, (18a)

ũ12;t = −ũ12;xxx − 6ũ12ũ12;x + 12
(

ũ2
0ũ12

)

x
+ 6ũ0ũ0;xxx + 12ũ0;xxũ0;x

+ 6ǫ
(

ũ0;xxũ0;x − 2ũ2
0ũ12;x

)

x

+ 2ǫ2
(

ũ3
12 − 18ũ2

12ũ
2
0 − 6ũ12ũ0ũ0;xx − 3ũ12ũ

2
0;x − 6ũ0ũ12;xũ0;x

)

x

+ 24ǫ3
(

ũ12ũ
3
0ũ12;x

)

x
+ 24ǫ4

(

ũ3
12ũ

2
0

)

x
. (18b)

Now we expand the fields ũ0(ǫ) =
∑+∞

k=0 ũ
(k)
0 ·ǫk and ũ12(ǫ) =

∑+∞

k=0 ũ
(k)
12 ·ǫk, and plug the

formal power series for ũ0 and ũ12 in mǫ. Hence we start from ũ
(0)
0 = u0 and ũ

(0)
12 = u12,

which is standard, and proceed with the recurrence relations between the conserved

densities u
(k)
0 and u

(k)
12 ,

ũ
(1)
0 = −u0;x, ũ

(n)
0 = − d

dx
ũ

(n−1)
0 +

∑

j+k=n−2

2ũ
(k)
12 ũ

(j)
0 , ∀n ≥ 2;

ũ
(1)
12 = 2u0u0;x − u12;x, ũ

(2)
12 = u2

12 + u12;xx − 4u12u
2
0 − 3u2

0;x − 4u0u0;xx,
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ũ
(3)
12 =

∑

j+k=2

2ũ
(j)
0

d
dx
ũ

(k)
0 − d

dx
ũ

(2)
12 +

∑

j+k=1

(

ũ
(j)
12 ũ

(k)
12 + ( d

dx
ũ

(j)
0 )( d

dx
ũ

(k)
0 )
)

−
∑

j+k+l=1

4ũ
(j)
12 ũ

(k)
0 ũ

(l)
0 − 4u12u0u0;x,

ũ
(n)
12 = − d

dx
ũ

(n−1)
12 +

∑

j+k=n−1

2ũ
(j)
0

d
dx
ũ

(k)
0 +

∑

j+k=n−2

(ũ
(j)
12 ũ

(k)
12 + ( d

dx
(ũ

(j)
0 ) d

dx
(ũ

(k)
0 ))

−
∑

j+k+l=n−2

4ũ
(j)
12 ũ

(k)
0 ũ

(l)
0 −

∑

j+k+l=n−3

4ũ
(j)
12 ũ

(k)
0

d
dx
ũ

(l)
0

+
∑

j+k+l+m=n−4

4ũ
(j)
12 ũ

(k)
12 ũ

(l)
0 ũ

(m)
0 , ∀n ≥ 4.

Example 3. Following this recurrence, let us generate the eight lowest weight nontrivial
conserved densities, which start the tower of Hamiltonians for the Kaup–Boussinesq
hierarchy.

We begin with ũ
(0)
0 = u0 and ũ

(0)
12 = u12. Next, we obtain the densities

ũ
(2)
0 = u0;xx + 2u0u12, ũ

(2)
12 = −4u0;xxu0 − 3u2

0;x + u12;xx − 4u2
0u12 + u2

12,

which contribute to the tri-Hamiltonian representation of (11), see Proposition 2. Now
we proceed with

ũ
(4)
0 = u0;4x − 12u0;xxu

2
0 + 6u0;xxu12 − 18u2

0;xu0 + 10u0;xu12;x + 6u12;xxu0 − 8u3
0u12 + 6u0u

2
12,

ũ
(4)
12 = −8u0;4xu0 − 20u0;xxxu0;x − 13u2

0;xx + 32u0;xxu
3
0 − 48u0;xxu0u12 + 72u2

0;xu
2
0 − 38u2

0;xu12 −

− 80u0;xu12;xu0 + u12;4x − 24u12;xxu
2
0 + 6u12;xxu12 + 5u2

12;x + 16u4
0u12 − 24u2

0u
2
12 + 2u3

12,

ũ
(6)
0 = u0;6x − 40u0;4xu

2
0 + 10u0;4xu12 − 200u0;xxxu0;xu0 + 28u0;xxxu12;x − 130u2

0;xxu0 −

− 198u0;xxu
2
0;x + 38u0;xxu12;xx + 80u0;xxu

4
0 − 240u0;xxu

2
0u12 + 30u0;xxu

2
12 + 240u2

0;xu
3
0 −

− 380u2
0;xu0u12 + 28u0;xu12;xxx − 400u0;xu12;xu

2
0 + 100u0;xu12;xu12 + 10u12;4xu0 −

− 80u12;xxu
3
0 + 60u12;xxu0u12 + 50u2

12;xu0 + 32u5
0u12 − 80u3

0u
2
12 + 20u0u

3
12,

ũ
(6)
12 = −12u0;6xu0 − 42u0;5xu0;x − 80u0;4xu0;xx + 160u0;4xu

3
0 − 120u0;4xu0u12 − 49u2

0;xxx +

+ 1200u0;xxxu0;xu
2
0 − 312u0;xxxu0;xu12 − 336u0;xxxu12;xu0 + 780u2

0;xxu
2
0 − 206u2

0;xxu12 +

+ 2376u0;xxu
2
0;xu0 − 716u0;xxu0;xu12;x − 456u0;xxu12;xxu0 − 192u0;xxu

5
0 + 960u0;xxu

3
0u12 −

− 360u0;xxu0u
2
12 + 297u4

0;x − 366u2
0;xu12;xx − 720u2

0;xu
4
0 + 2280u2

0;xu
2
0u12 − 290u2

0;xu
2
12 −

− 336u0;xu12;xxxu0 + 1600u0;xu12;xu
3
0 − 1200u0;xu12;xu0u12 + u12;6x − 60u12;4xu

2
0 +

+ 10u12;4xu12 + 28u12;xxxu12;x + 19u2
12;xx + 240u12;xxu

4
0 − 360u12;xxu

2
0u12 + 30u12;xxu

2
12 −

− 300u2
12;xu

2
0 + 50u2

12;xu12 − 64u6
0u12 + 240u4

0u
2
12 − 120u2

0u
3
12 + 5u4

12, etc.

We will use these formulas in the next section, where, as an illustration, we re-derive
the seven super-Hamiltonians of [20].

Theorem 4. In the above notation, the following statements hold :

• The conserved densities ũ
(2k)
0 and ũ

(2k)
12 of weights 2k+1 and 2k+2, respectively,

are nontrivial for all integers k ≥ 0.
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• Consider the zero-order components ŭ0(u0, u12, ǫ) and ŭ12(u0, u12, ǫ) of the se-

ries ũ0

(

[u0, u12], ǫ
)

and ũ12

(

[u0, u12], ǫ
)

with differential-polynomial coefficients.

Then these generating functions are given by the formulas

(

ŭ0(u0, u12, ǫ
2)
)2

=
1

8ǫ2
·

[

4ǫ2(u2
0 + u12) − 1 +

√

1 + 8ǫ2(u2
0 − u12) + 16ǫ4(u2

0 + u12)2

]

,

(19a)

ŭ12(u0, u12, ǫ
2) =

1

2ǫ2
·

[

1 −

√

1
2
− 2ǫ2(u12 + u2

0) + 1
2

√

1 + 8ǫ2(u2
0 − u12) + 16ǫ4(u2

0 + u12)2

]

.

(19b)

• The generating functions for the odd-index conserved densities ũ
(2k+1)
0 and ũ

(2k+1)
12

are expressed via the even-index densities, see (21) and (22), respectively. We

claim that all the odd-index densities are trivial.

Proof. The densities ũ
(k)
0 and ũ

(k)
12 , which are conserved for the bosonic limit (13) of

the N=2, a=4–SKdV system (7), retract to the conserved densities for the Korteweg–
de Vries equation (4) under u0 ≡ 0, see Example 2. The corresponding reduction
of ŭ12(u0, u12, ǫ) is the generating function (15). This implies that ŭ12 =

∑+∞

k=0 c(k)u
k
12 ·

ǫ2k + . . . , whence the densities ũ
(2k)
12 are nontrivial.

Following the line of reasonings on p. 7, we consider the zero-order terms in Miura’s
contraction (16), which yields

u0 = ŭ0 ·
(

1 − 2ǫ2ŭ12

)

, (20a)

u12 = ŭ12 + ǫ2
(

4ŭ2
0ŭ12 − ŭ2

12

)

− 4ǫ4ŭ2
0ŭ

2
12. (20b)

Therefore,

ŭ0 =
u0

1 − 2ǫ2ŭ12
=

+∞
∑

k=0

u0 ·
(

2ǫ2ŭ12

)k
.

Since the coefficients c(k) of uk
12 ·ǫ

2k in ŭ12 are positive, so are the coefficients of u0u
k
12 ·ǫ

2k

in ŭ0 for all k ≥ 0. This proves that the conserved densities ũ
(2k)
0 are nontrivial as well.

Second, squaring (20a) and adding it to (20b), we obtain the equality u2
0 + u12 =

ŭ2
0 + ŭ12 − ǫ2ŭ2

12. In agreement with ŭ0

∣

∣

ǫ=0
= u0 and ŭ12

∣

∣

ǫ=0
= u12, we choose the root

ŭ12 =
[

1 −
√

1 − 4ǫ2 ·
(

u12 + u2
0 − ŭ2

0

)]

/(2ǫ2) of this quadratic equation. Hence (20a)

yields the bi-quadratic equation upon ŭ0,

1 − 4ǫ2
(

u12 + u2
0 − ŭ2

0

)

= u2
0

/

ŭ2
0.

As above, the proper choice of its root gives (19a), whence we return to ŭ12 and finally
obtain (19b).

Finally, let us substitute the expansions ũ0 = υ0(ǫ
2) + ǫ · υ1(ǫ

2) and ũ12 = ω0(ǫ
2) + ǫ ·

ω1(ǫ
2) in (16) for ũ0 and ũ12, see Example 2. By balancing the odd powers of ǫ in (16a),

it is then easy to deduce the equality

υ1 ≡

+∞
∑

k=0

ũ
(2k+1)
0 · ǫ2k =

1

4ǫ2
·

d

dx
log
(

1 − 4ǫ2 · υ0

)

, where υ0 ≡

+∞
∑

ℓ=0

ũ
(2ℓ)
0 · ǫ2ℓ. (21)
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The balance of odd powers of ǫ in (16b) yields the algebraic equation upon ω1, whence,

in agreement with the initial condition ω1(0) = ũ
(1)
12 , we choose its root

ω1 =
[

1 − 2ǫ2ω0 + 4ǫ2υ2
0 + 4ǫ4

(

υ2
1 − 2ω0υ

2
0 + υ0υ1;x + υ1υ0;x

)

− 8ǫ6υ2
1ω0

−
(

1 + 4ǫ2
(

2υ2
0 − ω0

)

+ 4ǫ4
(

ω2
0 + 2υ0υ1;x − 8ω0υ

2
0 + 2υ1υ0;x + 2υ2

1 + 4υ4
0

)

+16ǫ6
(

2ω2
0υ

2
0−2υ2

1ω0−ω0υ0υ1;x−ω0υ1υ0;x−2υ2
0υ1υ0;x+2υ1υ0ω0;x+2υ2

1υ
2
0−4ω0υ

4
0+2υ3

0υ1;x

)

+ 16ǫ8
(

υ4
1 + 2ω2

0υ
2
1 + 4ω2

0υ
4
0 − 2υ2

1υ0υ1;x − 4ω0υ
3
0υ1;x + 8υ2

1ω0υ
2
0 + 2υ3

1υ0;x

+ υ2
0υ

2
1;x + υ2

1υ
2
0;x + 4ω0υ

2
0υ1υ0;x − 2υ0υ1;xυ1υ0;x

)

+ 64ǫ10
(

υ0υ1;xυ
2
1ω0 − 2ω2

0υ
2
0υ

2
1 − υ3

1υ0;xω0 − υ4
1ω0

)

+ 64ǫ12υ4
1ω

2
0

)1/2]
/

(16ǫ6υ1υ0). (22)

We claim that, using the balance of the even powers of ǫ in (16), the representation
∑+∞

k=0 ũ
(2k+1)
12 · ǫ2k ∈ im d

dx
can be deduced, whence ũ

(2k+1)
12 ∼ 0. �

4. Super-Hamiltonians for N=2, a=4–SKdV hierarchy

In this section, we assign the bosonic super-Hamiltonians H
(k) =

∫

h
(k)[u] dθdx of (3)

with a=4 to the Hamiltonians H(k) =
∫

h
(k)
12 [u0, u12] dx of its bosonic limit (13). Also,

we establish the no-go result on the super-field, N=2 supersymmetry invariant de-
formations of a=4–SKdV that retract to (14) under the respective reduction in the
super-field (1). At the same time, we initiate the study of Gardner’s deformations for
reductions of (7) other than (2), and here we find the deformations of two-component
fermion-boson limit in it. However, we observe that the new solutions can not be merged
with the deformation (18) for the bosonic limit of (7).

From the previous section, we know the procedure for recursive production of the
Hamiltonians H(k) =

∫

h(k) dx for the bosonic limit (13) of the N=2, a=4–SKdV equa-

tion, here h(2k) = ũ
(2k)
0 and h(2k+1) = ũ

(2k)
12 . In section 2, we explained why the recon-

struction of the densities h
(k) for the bosonic super-Hamiltonians H

(k) from h(k)
[

u0, u12

]

requires an intermediate step. Namely, it amounts to the proper choice of the represen-

tatives h
(k)
12 within the equivalence class

{

h(k) mod im d
dx

}

such that h
(k)
12 can be realized

under (2) as the θ1θ2-component of the super-density h
(k). This allows to restore the

dependence on the components u1 and u2 of (1) and to recover the supersymmetry

invariance. The former means that each h
(k) is conserved on (7) and the latter implies

that h
(k) becomes a differential function in u.

The correlation between unknown bosonic super-differential polynomials h
(k)[u] and

the densities h(k)
[

u0, u12

]

, which are produced by the recurrence relation, is established
as follows. First, we generate the homogeneous super-differential polynomial ansatz for
the bosonic h

(k) using GenSSPoly, see note 8 on p. 12. Second, we split the super-field u

using the right-hand side of (1) and obtain the θ1θ2-component h
(k)
12

[

u0, u1, u2, u12

]

of

the differential function h
(k)[u]. This is done by the procedure10 ToCoo, which now

10The call is ToCoo(N,nf,nb,ex), where

• N is the number of Grassmann variables θ1, . . . , θN ;
• nf is the number of fermionic super-fields f(1),. . .,f(nf);
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is also available in SsTools [14]. Thirdly, we set to zero the components u1 and u2

of the super-field u. This gives the ansatz h
(k)
12

[

u0, u12

]

for the representative of the

conserved density in the vast equivalence class. By the above, the gap between h
(k)
12 and

the known h(k) amounts to d
dx

(

f (k)
)

, where f (k)
[

u0, u12

]

is a homogeneous differential
polynomial. We remark that the choice of f is not unique due to the freedom in the
choice of h

(k) mod D1(. . . ) + D2(. . . ). We thus arrive at the linear algebraic equation

h
(k)
12 − d

dx
f (k) = h(k), (23)

which exprimes the equality of the respective coefficients in the polynomials. The
homogeneous polynomial ansatz for f (k) is again generated by GenSSPoly. Then equa-
tion (23) is split to the algebraic system by SsTools and solved by Crack [30]. Hence

we obtain the coefficients in h
(k)
12 and f (k). A posteriori, the freedom in the choice of f (k)

is redundant, and it is convenient to set the surviving unassigned coefficients to zero.
Indeed, they originate from the choice of a representative from the equivalence class for
the super-density h

(k)[u]. This concludes the algorithm for the recursive production of

homogeneous bosonic N=2 supersymmetry-invariant super-Hamiltonians H
(k) for the

N=2, a=4–SKdV hierarchy.

Example 4. Let us reproduce the first seven super-Hamiltonians for (3), which were
found in [20]. In contrast with Example 3, we now list the properly chosen represen-

tatives h
(k)
12

[

u0, u12

]

for the equivalence classes of conserved densities ũ
(2k)
0 and ũ

(2k)
12 ,

here k ≤ 3. Then we expose the conserved super-densities h
(k) such that the respective

expressions h
(k)
12 are obtained from the θ1θ2-components

∫

h
(k) dθ by the reduction (2).

h
(0)
12 = u0 ∼ ũ

(0)
0 , h

(0) = −D1D2(u) ∼ 0, (24a)

h
(1)
12 = u12 ∼ ũ

(0)
12 , h

(1) = u, (24b)

h
(2)
12 = −2u12u0 ∼ ũ

(2)
0 , h

(2) = u
2, (24c)

h
(3)
12 = 3

4
u2

12 − 3u12u
2
0 + 3

4
u2

0;x ∼ ũ
(2)
12 , h

(3) = u
3 − 3

4
uD1D2(u), (24d)

h
(4)
12 = 3u2

12u0 − 4u12u
3
0 −

3
2
u2

0u0;xx − u12;xu0;x ∼ ũ
(4)
0 ,

h
(4) = u

4 − 1
2
uuxx −

3
2
u

2D1D2(u), (24e)

h
(5)
12 = −5

4
u3

12 + 15
2
u2

12u
2
0 − 5u12u

4
0 + 5u12u0u0;xx + 15

8
u12u

2
0;x + 15

2
u2

0u
2
0;x + 5

16
u2

12;x+

+ 5
16
u2

0;xx ∼ ũ
(4)
12 , h

(5) = u
5 − 15

16
u

2
uxx + 5

8
(D1D2u)2

u − 5
2
u

3D1D2u, (24f)

h
(6)
12 = −15

4
u3

12u0 + 15u2
12u

3
0 −

15
8
u2

12u0;xx − 6u12u
5
0 −

75
4
u12u0u

2
0;x −

3
8
u12u0;xxxx +

+ 5u3
0u12;xx + 15u3

0u
2
0;x + 15

8
u0u

2
12;x + 15

8
u0u

2
0;xx ∼ ũ

(6)
0 ,

• nb is the number of bosonic super-fields b(1),. . .,b(nb);
• ex is the super-field expression to be split in components.

For N=2, we have f(i)=f(i,0,0)+b(i,1,0)*th(1)+b(i,0,1)*th(2)+f(i,1,1)*th(1)*th(2),
b(i)=b(i,0,0)+f(i,1,0)*th(1)+f(i,0,1)*th(2)+b(i,1,1)*th(1)*th(2) as the splitting conven-
tion. The reduction (2) is achieved by setting b(i,0,1), b(i,1,0), f(j,0,1), and f(j,1,0) to zero
for all i ∈ [1, nb] and j ∈ [1, nf].
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h
(6) = u

6 − 15
8
u

3
uxx + 3

16
uu4x + 15

8
(D1D2u)2 − 15

4
u

4D1D2u + 15
8
uxxD1D2u −

+ 5
8
D1D2(u)D1(u)D1(ux), (24g)

h
(7)
12 = −21

8
u0;4xu0u12 + 7

64
u2

0;xxx + 105
16
u2

0;xxu
2
0 + 35

32
u2

0;xxu12 −
105
8
u0;xxu0u

2
12 −

105
64
u4

0;4x −

− 35
16
u2

0;xu12;xx + 105
4
u2

0;xu
4
0 −

525
8
u2

0;xu
2
0u12 −

175
32
u2

0;xu
2
12 + 7

64
u2

12;xx + 35
4
u12;xxu

4
0 +

+ 105
16
u2

12;xu
2
0 −

35
32
u2

12;xu12 − 7u6
0u12 + 105

4
u4

0u
2
12 −

105
8
u2

0u
3
12 + 35

64
u4

12 ∼ ũ
(6)
12 ,

h
(7) = u

7 − 105
32

u
3
uxx + 7

32
u

2
u4x −

35
64

u(D1D2u)3 + 35
8
u

3(D1D2u)2 − 35
64

(D1D2u)2
uxx −

− 21
4
u

5D1D2u + 105
16

u
2
uxxD1D2u + 315

64
uu

2
xD1D2u + 35

16
u(D1D2u)(D1u)(D1ux) −

− 7
64

u4xD1D2u − 7
8
u(D1uxx)(D1ux). (24h)

Of course, our super-densities h
(k) are equivalent to those in [20] up to trivial terms D1(. . . )+

D2(. . . ).

Remark 2. Until now, we have not yet reported any attempt of construction of Gardner’s
super-field deformation for (3), which means that the ansatz for mǫ and E(ǫ) is written

in super-functions of u (c.f. [20]). This would yield the super-Hamiltonians H
(k) at

once, and the intermediate deformation (18) of a reduction (2) for (3) would not be
necessary. At the same time, the knowledge of Gardner’s deformations for the reductions
allows to inherit a part of the coefficients in the super-field ansatz by fixing them in the
component expansions (e.g., see (14), (16), and (18)).

Unfortunately, this cut-through does not work for the N=2, a=4–SKdV equation.

Theorem 5 (N=2, a=4 ‘no go’). Under the assumptions that N=2 supersymmetry-

invariant Gardner’s deformation mǫ : E(ǫ) → E of (3) with a=4 be regular at ǫ = 0, be

scaling-homogeneous, and retract to (14) under the reduction u0 = 0, u1 = u2 = 0 in

the super-field (1), there is no such deformation.

This rigidity statement, although under a principally different set of initial hypothe-
ses, is contained in [20]. In particular, there it was supposed that deg mǫ = deg E(ǫ) = 2,
which turns to be on the obstruction threshold, see below. We reveal the general nature
of this ‘no go’ result.

Proof. Suppose there is the super-field Miura contraction mǫ,

u = ũ + ǫ
(

p3ũ
2 − p1D1D2ũ + p2ũx

)

+ ǫ2
(

p15ũ
3 + p13ũũx + p10D2(ũ)D1(ũ)

− p12D1D2(ũ)ũ − p11D1D2(ũx) + p14ũxx

)

+ · · · .

To recover the deformation (14) upon u12 in u, we split mǫ in components and fix the
coefficients of ǫũ12;x and ǫ2ũ2

12, see (14a). By this argument, the expansion of ũx yields
p2 = 1, while the equality −p12D1D2(ũ)ũ + p10D2(ũ)D1(ũ) = (p12 − p10)θ1θ2u

2
12 + . . .

implies that p12 = p10 − 1. Next, we generate the homogeneous ansatz for E(ǫ), which
contains ũt = · · · + ǫ2 · d

dx

(

q17(D2u)(D1u)u + . . .
)

+ . . . in the right-hand side (the
coefficient q17 will appear in the obstruction). We stress that now both mǫ and E(ǫ) can
be formal power series in ǫ without any finite-degree polynomial truncation.
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Now we split the determining equation mǫ : E(ǫ) → E to the sequence of super-
differential polynomial equalities ordered by the powers of ǫ. By the regularity assump-
tion, the coefficients of higher powers of ǫ never contribute to the equations that arise
at its lower degrees. Consequently, every contradiction obtained at a finite order in
the algebraic system is universal and precludes the existence of a solution. (Of course,
we assume that the contradiction is not created artificially by an excessively low order
polynomial truncation of the expansions in ǫ.)

This is the case for the N=2, a=4–SKdV. Using Crack [30], we solve all but two
algebraic equations in the quadratic approximation. The remaining system is

q17 = −p10, p10 + q17 + 1 = 0.

This contradiction concludes the proof. �

Remark 3. In Theorem 5 for (3) with a=4, we state the non-existence of the Gardner
deformation in a class of differential super-polynomials in u, that is, of N=2 supersym-
metry-invariant solutions that incorporate (14). Still, we do not claim the non-existence
of local regular Gardner’s deformations for the four-component system (7) in the class
of differential functions of u0, u1, u2, and u12.

Consequently, it is worthy to deform the reductions of (7) other than (2). Clearly, if
there is a deformation for the entire system, then such partial solutions contribute to
it by fixing the parts of the coefficients.

Example 5. Let us consider the reduction u0 = 0, u2 = 0 in (7) with a=4. This is the
two-component boson-fermion system

u1;t = −u1;xxx − 3
(

u1u12

)

x
, u12;t = −u12;xxx − 6u12u12;x + 3u1u1;xx. (25)

Notice that system (25) is quadratic-nonlinear in both fields, whence the balance deg mǫ :
deg E(ǫ) for its polynomial Gardner’s deformations remains 1 : 1.

We found a unique Gardner’s deformation of degree ≤ 4 for (25): the Miura contrac-
tion mǫ is cubic in ǫ,

u1 = ũ1, u12 = ũ12 −
1
9
ǫ3ũ1ũ1;xx, (26a)

and the extension E(ǫ) is given by the formulas

ũ1;t = −ũ1;xxx − 3
(

ũ1ũ12

)

x
,

ũ12;t = −ũ12;xxx − 6ũ12ũ12;x + 3ũ1ũ1;xx +

+ 1
3
ǫ3
(

u1u1;xxu12 − 3u1u1;xu12;x + u1;xu1;xxx

)

x
. (26b)

However, we observe, first, that the contraction (14a) is not recovered11 by (26a) un-
der u1 ≡ 0. Hence the deformation (26) and its mirror copy under u1 ↔ −u2 can not
be merged with (16) and (18) to become parts of the deformation for (7).

11Surprisingly, the quadratic approximation (14a) in the deformation problem for (7) is very restric-
tive and leads to a unique solution (16)–(18) for (13). Relaxing this constraint and thus permitting
the coefficient of ǫ2ũ2

12 in mǫ be arbitrary, we obtain two other real and two pairs of complex conjugate
solutions for the deformations problem. They constitute the real and the complex orbit, respectively,
under the action of the discrete symmetry u0 7→ −u0, ξ 7→ −ξ of (11).
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Second, we recall that the fields u1 and u2 are, seemingly, the only local fermionic
conserved densities for (7) with a=4. Consequently, either the velocities ũ1;t and ũ2;t

in Gardner’s extensions E(ǫ) of (7) are not expressed in the form of conserved currents
(although this is indeed so at ǫ = 0) or the components ui = ui

([

ũ0, ũ1, ũ2, ũ12

]

, ǫ
)

of the
Miura contractions mǫ are the identity mappings ui = ũi, here i = 1, 2, whence either

the Taylor coefficients ũ
(k)
i of ũi are not termwise conserved on (7) or there appear no

recurrence relations at all. This will be the object of another paper.

Conclusion

We obtained the no-go statement for regular, scaling-homogeneous polynomial Gard-
ner’s deformations of the N=2, a=4–SKdV equation under the assumption that the
solutions retract to the original formulas (14) by Gardner [23]. At the same time, we
found a new deformation (16–17) of the Kaup–Boussinesq equation (11) that specifies
the second flow in the bosonic limit of the super-hierarchy. We emphasize that other
known nontrivial deformations for the Kaup–Boussinesq equation [7] can be used for
this purpose with equal success.

We exposed the two-step procedure for recursive production of the bosonic super-
Hamiltonians H

(k). We formulated the entire algorithm in full detail such that, with
elementary modifications, it is applicable to other supersymmetric KdV-type systems.
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Current address : Department of Mathematical Sciences, Durham University, Science Laboratories,
South Rd., Durham DH1 3LE, United Kingdom.

E-mail address : hussin@dms.umontreal.ca

Mathematical Institute, University of Utrecht, P.O.Box 80.010, 3508 TA Utrecht,

The Netherlands.

E-mail address : A.V.Kiselev@uu.nl

Department of Higher Mathematics, Ivanovo State Power University, 34Rabfa-

kovskaya str., Ivanovo, 153003 Russia.

E-mail address : krutov@math.ispu.ru

Department of Mathematics, Brock University, 500 Glenridge av., St. Catharines,

Ontario L2S 3A1, Canada.

E-mail address : twolf@brocku.ca


	Introduction
	1. N=2 a=4–SKdV as bi-Hamiltonian super-extension of Kaup–Boussinesq system
	2. Deformation problem for N=2, a=4–SKdV equation
	3. New deformation of the Kaup–Boussinesq equation
	4. Super-Hamiltonians for N=2, a=4–SKdV hierarchy
	Conclusion
	Acknowledgements

	References

