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Far-off resonance conditional phase-shifter using the ac-Stark shift
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We propose a simple technique that achieves a conditional phase shift of π radians between two weak lasers

with energies at the 1000-photon level. The key idea is to set up a V-system with two far-off resonant lasers by

coupling the ground state to two excited electronic states. The lasers interact through the ac Stark shift of the

ground state and thereby acquire a large conditional phase shift.

Interacting low-power laser beams is a subject of con-
siderable attention in nonlinear and quantum optics [1].
Nonlinear interactions between weak beams can form
optical switches with possible applications in all-optical
information processing. Furthermore, if achieved at the
single photon level, these interactions can also be used
to entangle single photons, which may form the ba-
sis of a future photonic quantum computing device. In
traditional nonlinear materials, the weakness of optical
nonlinearities prohibit observing significant nonlinear ef-
fects between weak beams. Over the last decade, sug-
gestions involving Electromagnetically Induced Trans-
parency (EIT) have generated much enthusiasm in this
field [2–8]. Recent experiments have demonstrated op-
tical switching at ∼10 photons per atomic cross-section
using EIT-based approaches [8, 9]. Additionally, switch-
ing with optical instabilities has been demonstrated in an
atomic vapor at less than one photon per atomic cross-
section [10].

In this Letter, we suggest a far-off resonant technique
that achieves a nonlinear phase-shift of π radians with
low absorption in a free-space geometry (without the
use of a cavity). Our phase-shifter requires laser ener-
gies at the 1000-photon level and can be configured to
have a large bandwidth. Although our technique does not
achieve large nonlinear phase shift at the single-photon
level in a free space geometry, there are key advantages
of our scheme when compared with earlier approaches:
1) Our scheme does not require a strong coupling laser
as is required by EIT. As a result, the total energy re-
quirement of our switch is at the 1000-photon level. 2)
The bandwidth of our switch can be large and one can
work with nanosecond time scale optical pulses. The
bandwidth can be increased until the rotating-wave ap-
proximation breaks down at the expense of an increased
density-length product. 3) For sufficiently large detuned
beams, Doppler broadening becomes unimportant and
as a result, our scheme is well suited for vapor cells. Due
to these advantages, our approach may be particularly
useful for constructing ultra-low power, high-bandwidth
all-optical switches with possible applications in current
fiber-optic networks.

As shown in Fig. 1, we begin with a neutral alkali
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Fig. 1. A switch beam, Es, causes a nonlinear phase shift
on a probe beam, Ep. The two beams travel collinearly
through a V-type atomic medium. By itself, the probe
accumulates phase based on the linear susceptibility of
the atoms. When the switch beam is turned on, the
common ground state |1〉 experiences an ac Stark shift,
changing the effective detuning. The plot indicates that
∼ 5000 switch photons are required for a phase shift of
π radians on the probe.

atomic medium containing a ground state |1〉 and two
excited states, |2〉 and |3〉. A probe beam, Ep, and a
switch beam, Es, are tuned far-off resonant from the |1〉–
|2〉 and |1〉–|3〉 transitions, respectively1. Without the
switch beam, the weak probe laser will experience phase
accumulation and absorption as determined by the lin-
ear susceptibility of the atomic medium. These quanti-
ties depend on the probe’s frequency detuning from the
atomic resonance, ∆p. When both the probe and switch
propagate together through the medium, the detuning of
the probe effectively changes. This is because the switch
beam will ac Stark shift the common ground state |1〉.
In the presence of the switch beam, the susceptibility of
the medium is modified to give:

1In general, this phase-shifter scheme is not exclusive to V-

systems. For example, one may tune both beams to the same lower

and upper states in a two-level scheme. Then, the switch beam will

ac Stark shift both the lower and upper states.

1

http://arXiv.org/abs/0901.0742v1


χp =
Nµ2

12

h̄ǫ0

1

2 (∆p + δs) + iΓ
, (1)

where δs =
Ω2

s

4∆s

is the ac Stark shift of the ground
state, Ωs is the Rabi frequency of the switch beam,
N is the atomic density, µ12 is the dipole matrix ele-
ment between states |1〉 and |2〉, and Γ is the transi-
tion linewidth. In the perturbative limit where δs ≪ ∆p,
the nonlinear interaction between the switch and the
probe can be described with a third order χ(3) suscep-
tibility by expanding Eq. (1). The polarization of the
atomic medium at the probe laser frequency is then
Pp = ǫ0χ

(1)Ep + ǫ0χ
(3)E∗

sEsEp. In the ideal case of
pure radiative broadening of the excited states, and in
the limit where the detunings are much larger than the
linewidth (∆p, ∆s ≫ Γ), the conditional phase shift
(CPS) and absorption of the probe beam is:

CPS ≃ ns

(

3

8π
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)

φ(1)

absorption ≃

(

Γ

∆p

)

φ(1). (2)

Here, ns is the number of photons in the switch pulse
and φ(1) =

(ωp

2c

)

Nℜ(χ(1))L is the usual probe phase
accumulation in the absence of the switch beam (L is the
length of the medium). In Eqs. 2, λs is the wavelength
of the switch field, A is the spatial cross-sectional area
of the two beams, and τ is the pulse duration of the two
beams (for simplicity we take the two beams to have the
same temporal profile and assume them to be focused
to the same size). To avoid significant reshaping of the
beams, we must choose the bandwidth of the beams to be
much smaller when compared with the detunings, 1/τ ≪
∆p, ∆s. From Eqs. 2, for a high transmission of > 50%
and for the ideal case of A ∼ λ2, a CPS of π radians
requires a few thousand photons.

The plot in Fig. 1 shows a numerical example based
on Eq. (1). Here we use parameters that are typical for
alkali atoms: wavelength λ = 780 nm and decay rate
Γ = 2π × 6 MHz. We take ∆p = ∆s = 160Γ, NL =
1.5 × 1013 cm−2, τ = 20 ns, and assume the ideal case
of A = λ2. With such tight focusing, propagation over
long distances can, for example, be accomplished inside a
hollow photonic crystal fiber [11]. For these parameters,
the transmission of the probe beam at the end of the
medium is 60 %. We find a CPS of π radians on the probe
beam for a switch pulse containing 5000 photons. As we
will discuss below, exact numerical calculations verify
these results and demonstrate insignificant reshaping of
the beams while propagating through the medium.

We proceed with a numerical study of the system. We
neglect Doppler broadening and collisional effects and
begin with a Hamiltonian describing a closed, three-level
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Fig. 2. (Color online) Numerical simulation of probe
beam interacting with switch beam in an atomic
medium. (a) shows the input probe pulse. (b) shows the
resultant probe pulse in the case that the switch is off
(blue, solid line) and on (red, dashed line). (c) shows the
probe pulse phase accumulation as a function of distance
both with the switch off (blue, solid line) and with the
switch on (red, dashed line). The switch pulse (not shown
here) has a matching pulse-shape and frequency detun-
ing. This means the pulses stay matched throughout the
interaction.

V-system in local time t′ = t − z/c

H = h̄
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. (3)

We then use the commutator and anticommutator re-
lations to find the equation of motion for the three-by-
three density matrix ρ [1]:

ρ̇ = −
i

h̄
[H, ρ] −

1

2
{Γ, ρ}. (4)

The values of ρij calculated in Eq. (4) are used to numer-
ically integrate the slowly varying envelope Maxwell’s
equations governing the propagation of the probe and
switch fields,

∂Ωp(z, t′)

∂z
= −

i

h̄
ηωpNµ2

12ρ12(z, t′)

∂Ωs(z, t′)

∂z
= −

i

h̄
ηωsNµ2

13ρ13(z, t′), (5)
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Fig. 3. The probe and switch pulses can be made shorter,
broadening the bandwidth, at the expense of density-
length product. As the bandwidth is broadened, the de-
tuning must increase to avoid near-resonant effects. If
the density-length product is appropriately increased,
identical results in transmission and phase-shift are ob-
tained. Since faster pulses result in higher intensity for
the same energy, the required number of switch beam
photons does not change.

where η =
√

µ0/ǫ0 is the impedance of free space. We
solve Eqs. (4) and (5) with the initial condition that all
atoms are in ground state |1〉. At the start of the atomic
medium (z = 0) we apply a boundary condition that the
fields, and therefore the Rabi frequencies Ωp(z = 0, t′)
and Ωs(z = 0, t′), are long Gaussian envelopes with a
Gaussian width of τ . Eqs. (4) and (5) are then solved on
the space-time grid using the method of lines.

The results are presented in Fig. 2 and demonstrate
a phase-shift of 3.2 radians with 60% transmission. In
this simulation, we use the same parameters as the plot
in Fig. 1 and use ns = 5000 photons in the switch
beam. We observe smooth time-profiles at the end of
the medium demonstrating negligible reshaping. Since
the probe and the switch beam have identical detunings
from the excited state, the switch pulse (not plotted)
experiences similar absorption and reshaping. Further-
more, the two beams propagate with the same group
velocity and therefore stay spatially and temporally well-
matched while propagating through the medium.

Finally, we note that the energy, or number of switch
photons, required for this phase shifter is independent
of bandwidth. Fig. 3 shows the required detuning and
the density-length product for a given bandwidth that
achieves the same performance as the numerical simu-
lation of Fig. 2 (a CPS of ∼ π radians for ns = 5000
switch photons). As the bandwidth broadens, both the
probe and the switch must be appropriately detuned to

avoid near-resonance effects. As noted in Eq. (2), the in-
creased switch detuning is compensated by the shortened
pulse duration (increased bandwidth), which means the
switch pulse is more intense for the same energy. The
increased probe detuning trades off with an increased
density-length product to keep the probe transmission
constant. The density-lengths required for a fast (>100
MHz) phase shifter in a typical alkali atom have been
achieved in cold atom traps and optical fibers contain-
ing rubidium vapor [11, 12].

In summary, we suggested a far-off resonant scheme
that supplies a conditional phase shift of π radians with
energies at the 1000 photon level. To the best of our
knowledge, the phase shifter presented here is among
the simplest of those suggested in the literature. As men-
tioned before, a possible application of our suggestion is
to all-optical information processing. With our approach,
it should be possible to construct an all-optical switch
with a switching time approaching 1 nanosecond at a
total energy cost of less than 1 femtojoule per switch-
ing event. Furthermore, by using a cavity of a finesse of
about 1000, our approach may achieve switching at the
single photon level. If the switch beam can be supplied by
a single photon, then the suggestion described here may
be applicable as a single-photon controlled-NOT gate be-
tween the probe and the switch. This will be among our
future investigations.
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search (AFOSR) and University of Wisconsin Alumni
Research Foundation (WARF).
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