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1 Université catholique de Louvain, Crypto Group, Belgium.
2 University of Bristol, Department of Computer Science, UK.

3 K.U. Leuven, ESAT/SCD-COSIC and IBBT, Belgium.
4 Graz University of Technology, IAIK, Austria.
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Abstract. In a recent work, Mangard et al. showed that under certain
assumptions, the (so-called) standard univariate side-channel attacks us-
ing a distance-of-means test, correlation analysis and Gaussian templates
are essentially equivalent. In this paper, we show that in the context
of multivariate attacks against masked implementations, this conclusion
does not hold anymore. In other words, while a single distinguisher can
be used to compare the susceptibility of different unprotected devices to
first-order DPA, understanding second-order attacks requires to carefully
investigate the information leakages and the adversaries exploiting these
leakages, separately. Using a framework put forward by Standaert et al.
at Eurocrypt 2009, we provide the first analysis that considers these two
questions in the case of a masked device exhibiting a Hamming weight
leakage model. Our results lead to new intuitions regarding the efficiency
of various practically-relevant distinguishers. Further, we also investigate
the case of second- and third-order masking (i.e. using three and four
shares to represent one value). It turns out that moving to higher-order
masking only leads to significant security improvements if the secret shar-
ing is combined with a sufficient amount of noise. Eventually, we show
that an information theoretic analysis allows determining this necessary
noise level, for different masking schemes and target security levels, with
high accuracy and smaller data complexity than previous methods.

1 Introduction

Masking (as described, e.g. in [2, 6, 17]) is a very frequently considered solution
to thwart side-channel attacks. The basic idea is to randomize all the sensitive
variables during a cryptographic computation by splitting them into d shares.
The value d− 1 is usually denoted as the order of the masking scheme. As most
countermeasures against side-channel attacks, masking does not totally prevent
the leakages but it is expected to increase the difficulty of performing a success-
ful key-recovery. For example, masking can be defeated because of technological
issues such as glitches [7]. Alternatively, an adversary can always perform a
higher-order DPA (e.g. [8, 11, 22]) in which he “combines” the leakages corre-
sponding to the d shares in order to extract key-dependent information. From



a performance point of view, masking a block cipher implies significant perfor-
mance overheads, because it requires to compute the encryption of the different
shares separately. As a result, an important problem is to determine the exact
security level that it provides in function of the order of the scheme d − 1.

In order to solve this problem, Prouff et al. proposed a comprehensive study of
first-order masking (i.e. second-order power analysis) in [15]. In their paper, the
two leakage samples corresponding to the different shares are first mingled with
a combination function. Next, a (key-dependent) leakage model is used to pre-
dict the output of this function. Eventually, the physical leakages are compared
with the key-dependent predictions, thanks to Pearson’s correlation coefficient.
Different combination functions are analyzed in function of the efficiency of the
resulting attacks, leading to the following conclusions:

1. For every device and combination function, there exists an optimal prediction
function (or model) that leads to the best attack efficiency.

2. Following an analysis based on Pearson’s coefficient and assuming a “Ham-
ming weight leakage model”, the “normalized product combining function”
(both to be detailed in this paper) is the best available in the literature.

The first observation is in fact quite natural. Since every device is character-
ized by its leakage function, there is one optimal model to predict these leakages
that perfectly captures their probability density function (pdf for short). And
for every optimal model, there is one way to combine the leakage samples that
leads to the best possible correlation. But the idea of optimal combination func-

tion also leads to a number of issues. On the one hand, as acknowledged by
the authors of [15], their analysis is carried out for a fixed (Hamming weight)
leakage function. Therefore, how the observations made in this context would
be affected by a different leakage function is an open question. On the other
hand, their analysis is also performed for a given statistical tool, i.e. Pearson’s
correlation coefficient. Hence, one can wonder about the extent to which this
statistical tool is generic enough for evaluating second-order DPA.

This second question is particularly interesting in view of the recent results
of [10]. This reference shows that in the context of (so-called standard) first-
order DPA and when provided with the same leakage model, the most popular
distinguishers such as using distance-of-means tests, correlation analysis and
Gaussian templates require approximately the same number of traces to extract
keys. Differences observed in practice are only due to statistical artifacts. In
addition, it is shown that the correlation coefficient can be related to the concept
of conditional entropy which has been established as a measure for side-channel
leakage in [18]. Therefore, a natural question is to know if these observations
still hold in the second-order case. For example, can the correlation coefficient
be used to evaluate the information leakage of a masked implementation?

In this paper, we answer this question negatively. We show that second-order
DPA attacks are a typical context in which the two parts of the framework for
the analysis of side-channel key-recovery of Eurocrypt 2009 lead to different in-
tuitions. First, an information theoretic analysis measures the amount of leakage
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provided by the masked device. It quantifies the security limits of the implemen-
tation and relates to the success rates of an adversary who can perfectly profile
the leakage pdf. Second, a security analysis measures the effectiveness of one
particular distinguisher. By applying this framework, we exhibit new intuitions
regarding the behavior of different second-order DPA attacks and combination
functions. We then discuss the impact of these observations in profiled and non-
profiled attack scenarios and confirm our theoretical investigations with prac-
tical experiments. We note that our results do not contradict [15] but rather
emphasize that a single distinguisher cannot capture all the specificities of a
leakage function. Eventually, we extend our analysis towards higher-order mask-
ing. This allows us to confirm that, from an information theoretic point of view,
increasing the number of shares in a masking scheme only improves the security
of a chip if a sufficient amount of noise is limiting the quality of the adversary’s
measurements [2]. Higher-order masking also provides a case for the information
theoretic metric introduced in [18]. We show that this metric can be used to
determine the exact amount of shares and noise required to reach a certain se-
curity level (against worst-case template attacks, exploiting intensively profiled
leakage models), with smaller data complexity than previous methods. Hence,
it constitutes a useful tool for evaluation laboratories in which the amount of
measurements to evaluate the security of a protected chip is usually limited.

Summarizing, first-order side-channel attacks are a quite simple context in
which (under certain conditions) most popular distinguishers behave similarly, if
they are feeded with the same leakage models. As a consequence, it can be sound
to use “one distinguisher for all” in this context. By contrast, second-order (or
higher-order) DPA can benefit from probability distributions of physical leakages
that take very different forms (e.g. mixtures, typically). Hence, given a certain
amount of information leaked by a masked device, and even if feeded with the
same leakage models, different statistical tools will take advantage of the key-
dependencies in very different manners. In other words, depending on the de-
vices, one or another attack may perform better, hence suggesting our title “the
world is not enough”. Interestingly, this conclusion goes nicely together with the
known intuition that the construction (or profiling) of a leakage model is highly
dependent on the target device. Also in this context, an information theoretic
analysis provides efficient ways to compare the quality of the profiling [20].

2 Boolean masking and second-order attacks

Many different masking schemes have been proposed in the literature. Although
they can result in significantly different performances, the application of second-
order attacks generally relies on the same principles, independent of the type of
masking. In the following, we decided to focus on the Generalized Look Up Table
(GLUT for short) that has been proposed in [14]. Such a scheme is represented
in the lower left part of Figure 1, using the key addition and S-box layer of
a block cipher as a concrete example. It can be explained as follows. For an
input plaintext xi, a random mask ai is first generated within the device. The
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value xi ⊕ ai is generally denoted as the masked variable. Then, the encryption
algorithm (here, the key addition and S-box) are applied to the masked variables,
where s denotes a secret key byte (we will use the term subkey in the following).
Concurrently, some correction terms are also computed such that anytime during
the cryptographic computation, the XOR between a masked variable and its
corresponding mask produces the original variable. In the case of the GLUT
proposal, a precomputed function Sbox’ is used for this purpose. For example in
Figure 1, the masked S-box output Sbox(xi ⊕ai⊕s) can be written as Sbox(xi ⊕
s) ⊕ bi, where bi denotes an output mask produced by Sbox’.
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Fig. 1: Illustrative second-order DPA.

In practice, the GLUT countermeasure can be implemented in different man-
ners. Mainly, the two S-box computations can be performed sequentially (as in
a software device, typically) or in parallel (as in a hardware device, typically).
In order to describe the second-order DPA that we investigate in this paper, we
first use the sequential approach (the parallel approach will be discussed in the
next section). Also, we rely on the terminology introduced in [18]. Essentially,
the idea of a second-order DPA is to take advantage of the joint leakage of two
intermediate computations during the encryption process (i.e. the masked value
and its mask). In the software approach, the computation of these intermediate
variables will typically be performed in two different clock cycles. Hence, two
leakage samples l1i and l2i corresponding to these computations can be found
in the leakage traces, as in the top of Figure 1. Following the standard DPA
described in [10], the adversary will then work in three (plus one optional) steps:

1. For different plaintexts xi and subkey candidates s∗, the adversary predicts
some intermediate values in the target implementation. For example, one
could predict the S-box outputs Sbox(xi ⊕ s) in Figure 1.
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2. For each of these predicted values, the adversary models the leakages. Be-
cause of the presence of a mask in the implementation, this prediction can
use a pdf (where the probability is taken over the masks) or some simpler
function e.g. capturing only certain moments of this pdf.

3. Optionally, the adversary combines the leakage samples into a single variable.
4. For each subkey candidate s∗, the adversary finally compares the modeled

leakages with actual measurements, produced with the same plaintexts xi

and a secret subkey s. In a second-order DPA, each model is compared
with two samples in the traces. This comparison is independent of all other
points. Consequently, these attacks are referred to as bivariate. In practice,
this comparison is applied to many pairs of points in the leakage traces and
the subkey candidate that performs best is selected by the adversary.

As for the analysis of first-order attacks, comparing different distinguishers re-
quires to provide them with the same leakage samples. However, contrary to the
first-order case and as will be discussed in the following sections, the best pair of
leakage samples is not necessarily the same for all distinguishers. This is because
different distinguishers can take advantage of different leakage pdf with different
efficiencies in this case. In practice, the best solution is to test all pairs of sam-
ples in the traces (but this means N2 statistical tests to perform if the traces
have N samples). In this paper, we will generally assume that this best pair of
samples is provided to the attacks we perform (which can be done easily when
simulating experiments and requires significant - but tractable - computational
power when performing attacks based on real measurements).

Finally, we will use the following notations:

– xq = [x1, x2, . . . , xq]: a vector of plaintext bytes.
– aq = [a1, a2, . . . , aq]: a vector of random input mask bytes.
– bq = [b1, b2, . . . , bq]: a vector of random output mask bytes.
– v1

i = Sbox(xi ⊕ s) ⊕ bi: an intermediate value in the encryption of xi.
– v2

i = bi: another intermediate value in the encryption of xi.
– l1q = [l1

1
, l1

2
, . . . , l1q ]: a vector of leakage samples (hypothetically) correspond-

ing to the first intermediate values v1

i during the encryption process.
– l2q = [l2

1
, l2

2
, . . . , l2q ]: a vector of leakage samples (hypothetically) correspond-

ing to the second intermediate values v2

i during the encryption process.
– ms∗

q = [ms∗

1 , ms∗

1 , . . . , ms∗

q ]: a vector containing leakage models (i.e. predic-
tions) corresponding to a subkey candidate s∗ and the plaintexts xq.

3 Second-order attacks with Pearson’s correlation

In theory, second-order DPA is possible if the joint probability distributions
Pr[L1

q,L
2

q|s] are different for different subkeys s. This can be illustrated, e.g. for
a Hamming weight leakage function that is frequently considered in the practice
of side-channel attacks [9] and has been the running example in [15]. It means
assuming that the leakage samples l1

1
and l2

1
can be written as:
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l1
1

= WH(v1

i ) + n1

i ,

l2
1

= WH(v2

i ) + n2

i ,

where WH is the Hamming weight function and n1

i , n2

i are normally distributed
noise values with mean 0 and standard deviation σn. In this particular setting,
we can observe 9 possible distributions, corresponding to the 9 Hamming weight
values of a secret state Σi = Sbox(xi ⊕ s), as observed in [19] (we also used the
AES S-box in our experiments, with the first byte of the master key as a target
s). The left parts of Figures 10, 11 and 12 in Appendix A show the joint leakage
distributions in this setting and clearly illustrate that they are key-dependent. As
detailed in the previous section, taking advantage of these dependencies requires
a comparison tool. In their statistical evaluation of second-order DPA, Prouff et

al. use Pearson’s correlation coefficient [1]. In the context of first-order attacks
exploiting a single leakage sample li, it implies computing:

ρ̂(Ms∗

q ,Lq) =
Ê

(

(

li − Ê(Lq)
)

·
(

ms∗

i − Ê(Ms∗

q )
)

)

σ̂(Lq) · σ̂(Ms∗

q )
,

where Ê and σ̂ denote the sample means and standard deviations of a random
variable, respectively. In order to extend this tool towards the second-order case,
the usual approach is to first combine the two leakage samples l1i and l2i with a
combination function C. For example, Chari et al. proposed to take the (normal-

ized) product of the two samples [2]: C(l1i , l
2
i ) = (l1i − Ê(L1

q)) · (l
2
i − Ê(L2

q)) and
Messerges used the absolute difference between them [11]: C(l1i , l

2

i ) = |l1i − l2i |. As
illustrated in the right parts of Figures 10, 11 and 12, those combining functions
also lead to key-dependencies. In addition to these standard examples, we finally
plotted the distribution of the sum combining function C(l1i , l

2

i ) = l1i + l2i because
it can be used to analyze the behavior of the GLUT masking in a hardware set-
ting, where the two S-boxes of Figure 1 are computed in parallel.

3.1 Choice of a model and leakage-dependency of C

Given the above descriptions and assuming that the adversary knows a good
leakage model for the samples l1i and l2i (here, we use Hamming weights), it

remains to determine which model to use when computing ρ̂(MΣ∗

q , C(L1

q ,L
2

q)).
That is, we do not need to predict the leakage samples separately, but their com-
bination. In addition and contrary to the first-order case, there is an additional
variable (i.e. the mask) that is unknown to the adversary. But assuming a model
for the separate samples directly allows deriving one for their combination by
simply computing the following mean values:

mΣ∗

i
= Ê

bi

(

C
(

WH(Σ∗

i ⊕ bi), WH(bi)
)

)

,
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taken over the masks bi. For example, Figure 2 illustrates the leakage models
corresponding to the absolute difference and normalized product combination
functions. They are again clearly key-dependent, as opposed to the ones of a
sum combining function for which the mean value (taken over the masks) is con-
stant for all secret states. Hence, as already observed in [9], this sum combining
function will not lead to successful second-order correlation attacks.
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Fig. 2: Leakage models for second-order DPA using the correlation coefficient.

The figure also confirms the previous theoretical analysis of Prouff et al. where
it is demonstrated that the normalized product combining function leads to the
most efficient second-order side-channel attacks when using Pearson’s coefficient
and assuming a Hamming weight leakage model for the separate samples. Indeed,
this particular setting gives rise to nicely linear dependencies of the models mΣ∗

i

in the Hamming weight of the secret states WH(Σi). Also, and contrary to
the absolute difference combining function, all the 9 possible Hamming weights
correspond to a different model mΣ∗

i
in this particular case.

Interestingly, the effectiveness of the normalized product combining function
can be simply explained when looking at the equations since it computes:

ρ̂(MΣ∗

q , C(L1

q,L
2

q)) =
Ê

(

(

C(l1i , l
2

i ) − Ê(C(L1

q ,L
2

q))
)

·
(

mΣ∗

i − Ê(MΣ∗

q )
)

)

σ̂(C(L1

q ,L
2

q)) · σ̂(MΣ∗

q )
.

As the product is normalized, we have that Ê(C(L1

q,L
2

q)) = 0, which leads to:

ρ̂(MΣ∗

q , C(L1

q,L
2

q)) =
Ê

(

(

l1i − Ê(L1

q)
)

·
(

l2i − Ê(L2

q)
)

·
(

mΣ∗

i − Ê(MΣ∗

q )
)

)

σ̂(C(L1

q ,L
2

q)) · σ̂(MΣ∗

q )
. (1)

7



And this formula is in fact very close to the straightforward generalization of
Pearson’s correlation coefficient to the case of three random variables:

ρ̂(MΣ∗

q ,L1

q,L
2

q) =
Ê

(

(

l1i − Ê(L1

q)
)

·
(

l2i − Ê(L2

q)
)

·
(

mΣ∗

i − Ê(MΣ∗

q )
)

)

σ̂(L1

q) · σ̂(L2

q) · σ̂(MΣ∗

q )
. (2)

The only difference between Equations (1) and (2) is in the denominator, i.e. in
the standard deviation terms. But as detailed in [10] for first-order DPA, once
properly estimated, these terms are all key-independent. Therefore, any differ-
ence of effectiveness between an attack using Equations (1) or (2) is only caused
by statistical artifacts. Intuitively, these equations provide a very simple expla-
nation of the normalized product combining function. That is, such a combining
function will lead to key-dependent models (i.e. successful attacks) if the two
leakage samples that they mingle are linearly correlated. As illustrated in Fig-
ures 10, 11 and 12, this condition is nicely achieved in the case of a Hamming
weight leakage function for the two samples l1i and l2i .

4 Evaluating second-order leakage: IT analysis

The previous section highlights that the evaluation of higher-order side-channel
attacks is not straightforward to capture. For example:

– Given Pearson’s correlation coefficient as a distinguisher and a Hamming
weight leakage function, there exist combination functions for the samples
(e.g. the sum) that do not lead to successful key recoveries.

– Given Pearson’s coefficient as a distinguisher and the normalized product
combination function, there exist leakage functions (e.g. with no linear de-
pendencies between the samples) that don’t lead to successful key recoveries.

These observations suggest that the simple situation in the first-order context
where the correlation coefficient could (under certain physical assumptions de-
tailed in [10]) be used both as a distinguisher and as a measure of side-channel
leakage does not hold here. In the second-order case, this correlation is only a
distinguisher (that can only exploit linear dependencies). Hence, it is a typical
context in which the evaluation framework of Eurocrypt 2009 [18] is interesting
to put into practice. This framework works in two steps:

1. First, an information theoretic analysis is performed, in order to evaluate the
physical leakages independently of the adversary who exploits them. When
applied to a countermeasure (e.g. masking), this step allows to quantify how
much the asymptotic security of the device has been improved. In other
words, it is an objective measure of the quality of the countermeasure.

2. Second, a security analysis is performed, in order to evaluate how efficiently
a particular distinguisher (e.g. Pearson’s correlation coefficient with a given
combining function) can exploit the available leakage. This step is useful to
translate the information theoretic analysis into a “number of measurements
required to extract the key” in a given scenario.
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In this section, we tackle the first part of the analysis. For this purpose, and in
order to compare our conclusions with previous works, we use exactly the same
assumptions as [15], i.e. a Hamming weight leakage function for the two samples,
just as described in Section 3. Following the definitions in [18], we compute:

H[S|L1

1,L
2

1] = −
∑

s

Pr[s]
∑

x1

Pr[x1]

∫

l1
1

∫

l2
1

Pr[l11, l
2

1|s, x1] log2 Pr[s|l11, l
2

1, x1] dl11dl21

Since the leakage samples are assumed to be normally distributed, this can be
quite easily computed in function of the noise standard deviation σn. Some
simplifications allow to speed up the computations, e.g. by observing that only
nine distributions are possible, corresponding to the nine Hamming weights of
the secret states Σi. Also, in order to evaluate the information loss caused by
the different combination functions, we similarly evaluated H[S|C(L1

1
,L2

1
)]. This

implies slightly more complex integrals since, e.g. the product combining gives
rise to mixtures of normal product distributions. Figure 9 in Appendix A il-
lustrates these distributions for two secret states and two σn’s. The mutual
information values corresponding to these different information leakages (i.e.
I(S; (L1

1
,L2

1
)) = H[S] − H[S|L1

1
,L2

1
]) are then plotted in Figure 3, in function of

the noise variance σ2
n (in log scale). From this figure, we can observe:
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Fig. 3: Information leakage for different combination functions.

1. The best combination function is no combination: dealing directly with the
2-dimensional leakages allows avoiding any additional information loss.

2. The sum and absolute difference combining functions give rise to exactly the
same information leakage. This can be understood from the shape of their
distributions: the distribution of the absolute difference combining can be
seen as the one of the sum combining that has been folded up.
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3. For small σ2
n, the normalized product is the least informative combining.

4. The respective efficiency of different combining functions varies with the
amount of noise. In particular, after a certain noise threshold, the product
combining carries more information on S than the sum/absolute difference.

Note that the leakage of the sum combining exactly corresponds to the previous
evaluation of [19] in which masking is analyzed in the hardware setting only.

5 Implications for profiled attacks: security analysis (I)

The previous information theoretic analysis is quite intriguing, since it contra-
dicts parts of the prevailing intuitions regarding second-order DPA. For exam-
ple, it shows that the sum combining function leads to information leakages (as
can also be seen from the different pdf in appendix) although they cannot be
directly exploited with Pearson’s correlation coefficient. Of course, there is no
strong contradiction: Waddle and Wagner showed in [22] how to overcome this
limitation by squaring the sum combining. But it raises the question whether
these information leakages can be directly exploited (i.e. without squaring) by
other distinguishers. In order to tackle this question, we apply the second part
of the framework in [18], i.e. security analysis. In this section, we start with the
evaluation of profiled side-channel attacks using templates, for which a strong
relation with the previous information theoretic analysis should hold.

The results of various template attacks performed against the same masked
AES S-box as in the previous sections are in Figure 4, given for two different
noise standard deviations. We mention that these attacks do not use Gaussian
templates as in [3] but the exact leakage distributions as in the previous in-
formation theoretic analysis (e.g. attacks using the joint distributions exploit
Gaussian mixtures; attacks using the normalized product combining function
exploit normal product distributions mixtures, . . . as plotted in appendix). The
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Fig. 4: Success rate of (simulated) profiled attacks against a masked AES S-box.
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success rates are computed over 500 independent experiments and nicely confirm
the theoretical predictions of Theorem 2 in [18]. First, we see that the sum and
absolute difference combining functions lead to the same attack effectiveness in
this profiled case (since they give rise to the same information leakages). Sec-
ond, we see that for σn = 0.2 (i.e. left of the intersection in Figure 3, where
log

10
(0.22) ≈ −1.39), these two combining functions allow more efficient attacks

than the normalized product one. By contrast, for σn = 0.5 (i.e. right of the in-
tersection in Figure 3 where log10(0.52) ≈ −0.6), the opposite conclusion holds.

Of course, these experiments are partially artificial since in practice, an ad-
versary who can profile the leakages will generally use the templates based on
the joint distribution only1. However, together with [19], they show that an in-
formation theoretic analysis provides an objective evaluation of the quality of
a countermeasure against the “best-available” template adversaries in the DPA
setting. Consequently, these results emphasize that such an analysis is an im-
portant part in the evaluation of side-channel countermeasures. Eventually, our
analysis also confirms the conclusions of [12], showing that resistance against
sufficiently profiled template attacks cannot be achieved by masking only.

6 Implications for non-profiled attacks: security analysis (II)

The previous section showed that for carefully profiled template attacks, there is
a strong connection between the information leakage of a device and the success
rate of the adversary. By contrast, we know that in the non-profiled context of
correlation attacks, this observation does not hold. Again, a natural question is
to check whether this is a general fact, or if there exist non-profiled distinguishers
that can be successful in this case. We answer this question positively, using the
Mutual Information Analysis (MIA for short) first introduced in [4]. It can be
seen as the counterpart of template attacks, in which the leakage distributions
are estimated “on-the-fly” rather than prior to the attacks.

The results of correlation and MIA attacks using different combining func-
tions are given in Figure 5, again using the (simulated) setting described in the
previous section. In our experiments, MIA estimates the pdf using histograms
and the number of bins is selected as proposed in [4]. That is, e.g. for MIA ex-
ploiting the joint distribution, we use 9 bins corresponding to the 9 Hamming
weights of every leakage sample. This means a total of 81 bins for the bivariate
distribution. The following observations can be emphasized:

1. In the low noise scenario, MIA with the sum and absolute difference com-
bining functions works best, as similarly observed for template attacks.

2. By contrast, and contrary to template attacks, MIA without combining func-
tion (i.e. using the joint distribution directly, as in [5, 16]), is not the most

1 At least, this is the best strategy if the adversary has enough data and time to profile
the multivariate leakage pdf. But the complexity of profiling also increases with the
number of dimensions which may become an issue in higher-order masking.
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Fig. 5: Success rate of (simulated) non-profiled attacks - masked AES S-box.

efficient solution in our simulations. This is caused by the need to estimate
two-dimensional distributions, which turns out to require more data.

3. For similar reasons (i.e. also related to the different effectiveness of the “on-
the-fly” pdf estimation), when increasing the noise, MIA with the sum and
absolute difference combining functions are not equivalent anymore.

4. Finally, attacks using Pearson’s correlation coefficient perform well, specially
when combined with the normalized product (which is natural since our
simulated leakages perfectly fulfill the requirements of Section 3.1).

Note that all these non-profiled distinguishers show significantly lower efficiencies
than the profiled ones in the previous section. This suggests that the problem of
estimating the leakage pdf is in fact more difficult than the one of extracting the
keys once a good model is available. In other words, the complexity of profiling
is higher than the one of online attacks in our example.

7 Experimental results

The previous sections evaluated the impact of masking a substitution box with
respect to various side-channel distinguishers, based on simulations. But as for
most investigations in the area of physically observable cryptography, it is im-
portant to verify that our conclusions reasonably match practical measurements
performed against a real chip. For this purpose, we also carried out a set of
attacks against a masked implementation of the DES in an 8-bit RISC micro-
controller from the Atmel AVR family. Considering the DES (rather than the
AES) was motivated by practical facilities. Since the output of the DES S-box is
4-bit wide, it allows easily considering two types of contexts: in a first scenario,
the 4 remaining bits on the bus are kept constant; in a second scenario, these 4
bits can be chosen at random, in order to produce some additional algorithmic
noise. This is an interesting opportunity since the noise level that was used as a
parameter, e.g. in Figure 5, is typically fixed in a real experimental setting.
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Fig. 6: Success rate of various experimental attacks against a masked DES.

The results in Figure 6 are nicely consistent with our previous simulations.
For example, the excellent effectiveness of template attacks is again observed.
Also, the good performance of correlation attacks using the normalized product
is underlined. And in the high noise scenario, the success rate of MIA using the
sum combining is very low. By contrast, we note two interesting differences:

1. MIA using the joint distribution is much more efficient than in the AES
case. This is in fact related to the reduced number of bins that the 4-bit
DES S-box allows in the pdf estimations (i.e. 25 rather than 81).

2. The absolute difference combining function provides very poor results in
practice. In our setting, this observation can be explained by the weak resis-
tance of this combination function against incorrect modeling (i.e. the fact
that the device leakages do not perfectly correspond to Hamming weights).

Summarizing, these experiments confirm the “world is not enough” nature of
second-order DPA. The only strong statement that can be made in this context is
that an information theoretic metric estimated with perfect templates captures
the security against the best possible profiled adversary. As for all the other
distinguishers, they highly depend on the actual shape of the leakage pdf and
the engineering knowledge that can be exploited when mounting an attack. And
contrary to the first-order case discussed in [10], the Gaussian assumption that
holds for the leakage samples does hold anymore from the adversary’s point of
view (e.g. masks typically imply mixtures of Gaussians - or other - distributions).

8 Generalization to higher-orders

In order to improve the security of masking schemes further, the traditional
approach is to increase their order. For this purpose, this final section analyzes
the cost vs. security tradeoff that can be obtained by generalizing the GLUT
countermeasure in such a way, and details the second- and third-order cases for
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illustration. That is, rather than using one input mask per S-box, we now use
two or three masks per S-box. In terms of cost, this implies using one or two
additional tables Sbox

′′ and Sbox
′′′, as described, e.g. in [13]. Conveniently, all

the tools used in second-order DPA can be easily generalized to this third- and
fourth-order cases. In particular, the information theoretic analysis of Section 4
just requires to integrate over three or four leakage samples li

1
, li

2
, li

3
and possibly

li
4
. Since it captures the worst-case scenario, it is the most revealing technique

to evaluate the impact and interest of higher-order masking schemes.

The information leakage of these different masking schemes is represented in
Figure 7, in function of the noise variance. On the same plot, we represented
the average number of queries to the target device required for a perfectly pro-
filed attack (similar to the ones in Section 5) to reach a success rate of 90%.
These figures provide a quantitative insight to the observations in [2], where it is
demonstrated that, given a large enough noise variance, the data complexity of
a side-channel attack increases exponentially with the amount of shares in the
masking scheme. That is, given a noise variance σ2

n in the leakage samples and
k shares, the data complexity required to attack a masking scheme successfully
is proportional to (σ2

n)k/2. The linear regions of the (log scale) curves that are
observed in the right part of the figure suggest that this expectation is fulfilled
in our experiments. Importantly, it also shows that the impact of (higher-order)
masking can be extremely small in terms of security increases, for small σ2

n’s.
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Fig. 7: Information leakage for 0th, 1st and 2nd-order masking.

8.1 A case for the information theoretic metric

Looking at Figure 7, the main question for a designer (or evaluation laboratory)
is to best trade the amount of shares and the amount of noise that he has to add
to his implementation, in order to reach a certain security level. This is essential
since increasing these parameters has a strong impact on the performances of the
implementation. Unfortunately, for large security levels, the proper estimation of
the number of traces required to reach a certain success rate becomes intensive
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(because of statistical sampling issues). Already in simulations, running 1000
attacks, each of them using 105 queries is expensive. And when moving to the
analysis of real traces (taking much more time to be generated and space to be
stored), this limitation becomes even more critical. Interestingly, this is exactly
the context where an information theoretic analysis becomes useful. That is,
since the mutual information can be estimated from single query leakage vectors
Li

1
, it requires much less data to estimate properly. And following [18], Theorem

2, it should hold that the mutual information I(S;L1

1,L
2

1, . . .) is directly corre-
lated with the number of traces required to reach a certain success rate. As a
consequence, we also plotted an estimation of this number, based on the inverse
of the mutual information multiplied with a constant factor c. As illustrated in
Figure 8, this approximation holds nearly perfectly, with the same constant c for
all attacks, essentially depending on the success rate to reach (here 90%). Sum-
marizing, these simulated experiments confirm the relevance of an information
theoretic analysis in the context of physical security evaluations.
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Fig. 8: Information leakage for different combination functions.

Before to conclude, we note again that such an information theoretic analysis
only captures the most powerful adversaries for which the profiling of the leakage
distributions is perfect. But in practice, the reduction of the information leakages
is not the only effect that increases the security in masked implementations.
Namely, the pdf estimation of multidimensional distributions may become too
complex for allowing the exploitation of all the information in the traces. And
the number of (pairs, triples, . . . of) samples to test in the attacks also increases
their time complexity considerably (up to N2, N3, . . . ). However, we believe
that the formal analysis of a worst-case scenario as in this paper is an important
step towards a better understanding of masked implementations.
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9 Conclusions

The results in this paper provide a first complete and unifying treatment of
higher-order power analysis. They allow putting forward the strengths and weak-
nesses of various approaches to second-order DPA and provide a sound expla-
nation for them. Our analysis illustrates that in the context of cryptographic
devices protected with masking, it is not sufficient to run a single arbitrary dis-
tinguisher to quantify the security of an implementation. Evaluations should
hold in two steps. First, an information theoretic analysis determines the actual
information leakage (i.e. the impact of the countermeasure, independently of
the adversary). Second, a security analysis determines the efficiency of various
distinguishers in exploiting this leakage. By applying such a methodology to
simulated and practical experiments, we consequently obtain a fair and compre-
hensive evaluation of the security increases that a masking scheme can ensure.

While not in contradiction with previous results in the field, these investiga-
tions reshape the understanding of certain assumptions and bring new intuitions.
First, both theoretical analysis and empirical attacks show a large gap between
the efficiency of profiled attacks that best exploit the information from two or
more leakage samples and the one of non-profiled attacks that are most fre-
quently used in practice. This relates to the observation that the statistics in
side-channel attacks are only used to discriminate secret data (while their nat-
ural objective is to allow a good estimation). Hence, the study of advanced pdf
estimation techniques in the context of side-channel attacks is an interesting
direction for further research, as initiated with the MIA distinguisher in [4].

Second, the security improvement obtained when increasing the order of a
masking scheme beyond one is negligible if it is not combined with a sufficient
amount of noise in the leakages. This observation relates to the general guideline
that side-channel resistance requires the combination of several countermeasures
in order to be effective. And the best combination of masking with other avail-
able countermeasures is another interesting scope for further research.
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Fig. 9: Leakage probability distributions for the product combining function.
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