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Abstract. We describe here a new concept of one group chasing another, called

“group chase and escape”, by presenting a simple model. We will show that even

a simple model can demonstrate rather rich and complex behavior. In particular,

there are cases in which an optimal number of chasers exists for a given number of

escapees (or targets) to minimize the cost of catching all targets. We have also found

an indication of self-organized spatial structures formed by both groups.
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1. Introduction

Issues relating to chase and escape have a long history and have often led to interesting

mathematical results [1, 2, 3]. On this theme, one chaser pursues a single target,

such as a war-ship chasing a pirate vessel. Various cases have been studied with

different boundaries and conditions, speed ratios, and so on. Often they have led to

rather complex trajectories and posed challenging mathematical problems for obtaining

analytical expressions. This topic has developed by being driven by mathematical

interests together with its various applications, such as military ones. Developing

computational systems and techniques enables one to deal with quite complex situations

for the one-to-one case. The cases in which there are multiple chasers and/or escapees

are much less studied. There are predator-prey models that consider multiple entities

chasing a single target or prey [4, 5]. Also, there are some recent studies on to several

evaders, which have been done in the context of game theory, robotics, and multi-agent

systems [6, 7]. From a point of view of physical systems, there is a study of collective

motion of Brownian particles with pursuit-and-escape interactions [8]. However, in this

study particles are not grouped separately as chasers and escapees, and to the authors’

knowledge, such models have not been investigated.

Against this background, the main theme of this letter is to propose a paradigm

of research problems associated with one group chasing another, which we term “group

chase and escape”.

From the viewpoint of physical systems, the problem of group chase and escape is

an extension of studies of granular materials [9, 10, 11] to traffic problems [12, 13], which

have been actively investigated in recent decades. In the traffic problems, so-called “self-

driven particles” are the basic constituents rather than physical particles like in granular

materials. In the field of statistical physics, a focus of interest is investigating how the

microscopic dynamics produces macroscopic behavior such as phase transitions, scaling,

and pattern formations. We are extending each unit further by giving them the aim of

chasing or escaping.

2. Model

Let us describe our model. We consider a two-dimensional square lattice Lx × Ly with

periodic boundary conditions. Each site is empty or occupied by one particle: a chaser

or escapee (target).

The chasers and targets play tag by hopping between sites in accordance with

the following rules. Every target wants to evade its nearest chaser. Let us denote the

positions of target and chaser as (xT , yT ) and (xC , yC), respectively. For each target, the

distance to each chaser is calculated as d =
√

(xT − xC)2 + (yT − yC)2. Then a chaser

in a minimum d is the nearest to the target. Here, if there are more than two chasers

equally near (-equal d-), we choose one of them randomly. Then the target hops to its

nearest site in the direction that increases the distance from the chaser. The hopping
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rule is shown in Fig. 1. Generally, the target has two possible sites to which to hop, as

shown in Fig. 1(a). In this case, one of the two sites is chosen with an equal probability

1/2. If the |xT −xC |(|yT −yC |) is zero, then the target has three possible sites to increase

the distance, one of which is chosen with an equal probability 1/3 (-see Fig. 1(b)-).

The rule for chasers is that they hop to close in on their nearest targets. In the

same manner as the targets, we determine the nearest target for every chaser. The

chaser hops to its nearest site that decreases the distance. Generally, the chasers choose

one of two possible sites to which to hop with an equal probability 1/2. Here, if the

|xT − xC |(|yT − yC |) is zero, then the chaser hops only in the y−(x−) direction because

hopping in the x−(y−) direction increases the distance.

Except in catch events explained below, chasers and targets cannot hop to the

nearest sites if the sites are occupied, so they remain in their original sites. Here, we

first choose one of the nearest sites by the probabilities above, so that the particles do

not move even if the other nearest sites are empty.

When a target is in a site nearest to a chaser, the chaser catches the target by

hopping to the site, and then the target is removed from the system. After the catch,

the chaser pursues the remaining targets in the same manner.

In accordance with the above hopping step, every chaser and target hops by one

site. In the simulations, we first determine the next hopping site for chasers and targets.

Then we move chasers. Here, if a chaser hops to a site a target occupies, the chaser

catches the target. After this, we move targets. Here, the update is done in a random

sequential order. Initially, N0
C chasers and N0

T targets are randomly distributed in the

lattice. While the number of chasers, NC , remains a constant N0
C , the number of targets,

NT , monotonically decreases along with the catches. Simulations are carried out until

all targets have been caught by chasers, i.e., NT = 0. The results are averaged over 104

runs.

In addition to the chase-and-escape hopping model, we consider random walk

processes in which a particle hops to one of the four nearest sites with an equal

probability 1/4, irrespective of the positions of chasers and targets. In this model,

targets are caught when a chaser in the nearest site tries to hop to the site of the target.

As we will explain below, we examine different cases: both chasers and targets or either

of them follows the random walk.

Before examining the chase-and-escape processes, let us note the diffusion model

in which both chasers and targets follow the random walk processes. In this model,

dynamics of the number of targets NT can be interpreted as a reaction-diffusion system

in which targets are annihilated when they meet chasers, leading to a rate equation,

dNT

dt
= −kNTNC , (1)

where k denotes a rate constant. As the number of chasers remains a constant, the

solution gives NT (t) = NT (0) exp(−kNCt). By rewriting the equation as d log(NT )/dt =

−kNC , we can also note the effect of fluctuations. If we assume that the rate constant k

fluctuates with a normal distribution, the fluctuation of NT will be given by a log-normal
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Figure 1. Hopping rules for chasers and targets. While chasers hop to close in on

their nearest targets, targets hop to evade their nearest chasers. Dotted arrows from

chaser to target indicate that chaser hops to close in on target. Solid arrows show

possible hopping directions with indicated probabilities. (a) Generally, they have two

choices. (b) When chasers or targets are in same x or y-axis, chasers have one choice,

while targets have three choices.

distribution.

3. Simulation Results

3.1. Cost of group chase

To characterize the nature of our model, first let us look at the time length for the

entire catch T . In other words, T is the time it takes the chasers to catch all the targets.

Their distribution is shown in Fig 2. Since T can also be interpreted as a “lifetime” of

the final target, Fig. 2 gives the probability distribution of its lifetime. When NC is

larger than NT , we note this distribution basically shows a parabolic shape in the log-

log scales, suggesting a log-normal distribution. This distribution is deduced even in a

pure diffusion case noted above. However, as NC ≈ NT , it deviates from the log-normal

distribution, reflecting the effect of chase and escape.

The average length of time decreases as the number of chasers increases. Here, the

speeds of chasers and targets are equal, VC = VT . In this case, an individual chaser

cannot catch up with targets, so it cannot finish the job by itself. Instead, a group of

chasers catches a target by surrounding it so that the target cannot escape from them.

This typical catch event is shown in Fig. 3. Although an individual chaser independently

tries to catch a target, it appears as if the group of chasers cooperates to catch a target.

If we look at the lifetime distribution of all targets, then we obtain the results in

Fig. 4. The distribution first shows large drops at the left, then increases, and peaks

at a typical time. After the peak, it decreases again. The first drop suggests a large

number of targets, the lifetime of which is one. This is because in the initial condition,

targets can be positioned in the sites nearest to chasers, i.e., d = 1. Thus the targets

are caught by the chasers in the next step, and such an unlucky target’s lifetime equals



Group Chase and Escape 5

10-4

10-3

10-2

10-1

100

100 101 102 103 104

F
re

qu
en

cy

Time for entire catch

NC = 10
100
500

Figure 2. Distribution of time for entire catch T for different NC . Parameters are

Lx = Ly = 100, N0
T = 10.

Figure 3. Snapshots of catch event with time evolution from left to right. Red and

green circles denote chasers and target, respectively.

one. If the initial distances between targets and chasers are larger than two, the targets

can momentarily evade the chaser, causing the drop. After the drop, the distribution

increases, and we can see this distribution peak. The value of these peak positions

can be inferred as a typical lifetime. This lifetime represents a timescale in which the

group of chasers gathers around targets from the initial conditions and catches them.

As the number of chasers increases, the timescale decreases. For comparison, we note

the lifetime distribution in other cases. If we look at the distribution in the random walk

model, it decreases exponentially, so it does not drop or peak. If we examine a model

in which chasers close in on targets but targets follow the random walk processes, the

peak appears to represent the timescale. However, the drop does not appear because

the targets do not evade chasers, so there is no drastic drop from the lifetime of one to

two.

We investigate how the lifetimes of the final and typical targets change with NC

and NT . The lifetime of the final targets is T . The typical lifetime is defined as

τt = Σt(N t
T−N t−1

T )/N0
T , where N

t
T denotes the number of targets at t so that (N t

T−N t−1

T )

represents the number of targets of lifetime t. In Fig. 5, we show how T and τ change

with NC for a fixed N0
T = 10. Both T and τ behave similarly. For moderately small

NC , the lifetimes decrease as N−3

C . This regime is where NC is of the order of ten times
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Figure 4. Lifetime distribution of targets. Parameters are identical with Fig. 2

larger than N0
T . We note here that in the previous study [5] of one target escaping

from a group of chasers, survival probability scales with cube of the number of chasers.

However, as NC increases further, the lifetimes show crossover to slower decreases, which

are approximately fitted by N−0.75
C . In the right end, both of them approach one where

the sites are filled with chasers so that both typical and final targets can survive only

by one time step.

In Fig. 6, we show how the lifetimes change with N0
T for a fixed NC = 100. As

NT increases, the lifetime of final targets monotonically increases. However, the lifetime

of typical targets peaks around NT = 103 and slightly decreases again. Around this

peak, we show typical snapshots in Fig. 7. From the initial condition in the left top,

targets evade chasers at first by producing clusters of groups of targets. From the second

snapshot, we can see the clusters of targets appear where targets aggregate. Then a

group of chasers gets closer to the clusters, catching targets. It is intuitively efficient

for the group of chasers to catch targets by surrounding the cluster of targets because a

number of targets can be caught by once. The peak of the lifetime may represent such

effect.

Also, it is of interest to know the “right” number of chasers NC for a given number

N0
T of targets. We have evaluated this by focusing on the quantity c = NCT/N

0
T . This

quantity represents the unit cost for the group of chasers to finish the job per target.

(The amount of work-hours NC for which chasers are deployed (total cost) divided by

the number of targets NT .)

We have plotted this unit cost function for different cases. In Fig. 8, we examine

the cost by changing NC for a fixed N0
T . When we see the original chase and target case

(C&T), there is a minimum in this unit cost. This means there is an optimal number of

chasers N∗

C to finish the given group chase task most efficiently. When the targets are as

fast as the chasers, an individual chaser cannot catch up with targets, so it cannot finish

the job by itself. Instead, a group of chasers catch a target by surrounding it so that

the target can not escape from them. In this case, having sufficiently more chasers than
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Figure 5. Lifetime of final (T )

and typical (τ) targets for fixed

NT = 10.

101

102

103

100 101 102 103 104

T
, τ

NT
0

NC = 100NC = 100

T
τ

Figure 6. Lifetime of final (T )

and typical (τ) targets for fixed

NC = 100.

Figure 7. Time evolution of system for NC = 100 and N0
T = 1000. Red and green

points represent chasers and targets, respectively. Time evolves from initial condition

in left top to right, left bottom to right bottom.

targets is necessary to finish the job efficiently. On the other hand, as the number of

chasers exceeds the optimal number necessary to surround the targets, excessive chasers

result in the cost increasing. The right side of the figure NC = 9990 confirms that the

system is fully occupied, so the targets are caught in one simulation step, leading to the

cost c = 1 ∗ 9990/10 = 999 ∼ 103.

Such a minimal cost is realized as a result of both chase-and-escape processes. In

Fig. 8, we also show the costs in different cases: both or either chaser and target follow

a random walk process. We see that when the targets are random walkers (TRW), the

cost monotonically rises along with number of chasers. On the other hand, when the

chasers (CRW) or both (RW) are random walkers, they monotonically decrease.
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Figure 8. Cost c vs. number of chasers for N0
T = 10 in following four cases: original

chasers and targets (C&T), both are random walkers (RW), targets are random walkers

(TRW), and chasers are random walkers (CRW).

3.2. Issues of range of each chaser

We can extend our model to include the search range of each chaser. In the current

model, chasers can find targets over an unlimited distance. However, in reality, chasers

search for targets in their vicinities. This is also the same for targets. Targets can

recognize the existence of nearby chasers. We introduce the search range l as follows.

When a chaser searches for the nearest target, the search area is limited to the range
√

(xT − xC)2 + (yT − yC)2 < l, where xi, yi denote the positions of targets (i = T ) and

chasers (i = C) in x and y-directions, respectively. If the chaser finds a target in the

search range, it moves with the chase-and-escape hopping. If not, it follows the random-

walk hopping. For the movement of targets, the search range can be introduced in the

same manner. If the value of l equals zero, the movement is equivalent to the random

walkers. On the other hand, the movement approaches to the previous model as the

range increases to the system size. In Fig. 9, we show T −TC&T as a function of l, where

TC&T is the time for entire catch without search range limits. When l = 0, the time is

equal to that of random walkers. As l increases, the difference decreases exponentially

approaching zero.

When the search range is different between chasers and targets, the systems can

exhibit interesting behavior. Figure 10 shows one such example. Here, we assume an

unlimited search range for targets, while the range for chasers is sufficiently short. For

an appropriately low number of chasers, targets gather in relatively low-density areas

of chasers and momentarily hide from chasers because the short-range chasers cannot

recognize their existence. After a long time, chasers can find the group of targets and

finally catch them. Examining the catching processes in relation to such formations of

spatial patterns can be an interesting topic.
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Figure 9. T − TC&T as function of search range l. Parameters are NC = 100 and

N0
T = 10.

Figure 10. Snapshots of system with time evolution from left to right. While targets

have unlimited search range, chasers have the search range l = 5. The numbers of

chasers and targets are fixed to NC = N0
T = 100.

3.3. Issues of long-range chaser doping

We also consider another extension of our model. This extension is to distribute the

search ability among chasers. For example, in the group of chasers, some have a long

search range, while the others follow the random-walk hopping or have a short search

range. We look at the cost in such an example. The group of chasers consists of two

types: smart chasers and random walkers. The smart chasers have an unlimited search

range. On the other hand, the random walkers have search ranges of zero. In Fig. 11,

we show the cost by changing the number of smart chasers N s
C with a fixed NC so that

NC −N s
C random-walking chasers also join the catch in the system. For comparison, we

also show the case in which only N s
C smart chasers are in the system and play tag. Here

we assume that targets have unlimited range. The left end 0 corresponds to the case in

which all of the chasers are random walkers. The right end 100 = NC corresponds to the

case in which all chasers have limitless ranges. As the ratio of smart chasers increases,
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Figure 11. Cost c = TNC/N
0
T by changing number of smart chasers NC for fixed

N0
T = 10.

the cost monotonically decreases. Interestingly, even a small number of smart chasers,

say five to ten, drastically drop the cost. Comparing the two cases is also interesting.

If only a small number of smart chasers are available, which strategy will be better: let

only the smart ones chase targets, or have random walkers join them? The group of

random walkers also contributes to the catch events so we initially expect that the latter

case is better. However, if we have to pay the salary per working hour to the chasers,

the more chasers join, the more we have to pay. From the viewpoint of cost, we can say

the latter case is more efficient. However, as the number of smart chasers increases to

30 or 40, the former strategy is better.

3.4. Issues of hopping fluctuations

In the previous subsections, we introduced the search range of chasers and targets. The

search range can control the model departing from the random walk to the chase-and-

escape models. We propose here another extension to introduce such a parameter.

In the original hopping rule, chasers/targets must choose the next site to

decrease/increase distances to the nearest targets/chasers. We introduce fluctuations to

these decisions. When a chaser chooses the next hopping site, the hopping probabilities

are defined as follows. For each of the four nearest-neighbor sites, we define ∆li = ±1

where i denotes the indexes of the four sites(i = 1, 2, 3, 4). If hopping to a site i

decreases the distance to the nearest target, we assume ∆li = −1. If it increases,

we assume ∆li = 1. Then we define the hopping probability of the chasers as

pCi = exp(−∆li/Tf )/Σi exp(−∆li/Tf), where we introduce Tf as a “temperature”. In the

same manner, we define ∆li for targets. When hopping to a site i increases the distance

from the nearest chaser, we assume ∆li = 1. If it decreases, we assume ∆li = −1. We

define the hopping probability for targets as pTi = exp(∆li/Tf)/Σi exp(∆li/Tf ).

When the temperature Tf is sufficiently high, the value of ∆li is not relevant

and the hopping probability is approximately equal to the random-walk model 1/4.



Group Chase and Escape 11

100

101

102

103

104

105

10-2 10-1 100 101 102 103 104

T
im

e 
fo

r 
en

tir
e 

ca
tc

h

Tf

Figure 12. Time for entire catch as function of temperature Tf . Lines from the

above to bottom are for NC = 5, 10, 25, 50, 100, 500, 1000, 5000, 9990. For all lines, we

fix N0
T = 10.

As the temperature decreases, the hopping probability increases for chasers/targets to

decrease/increase the distance, approaching the chase-and-escape model.

Figure 12 shows the time for entire catch as a function of the temperature for

different values of NC . The value of N0
T is fixed to 10. For all lines, in the left and

right ends (Tf = 10−2 and 104), the values of time for an entire catch are equal to those

of the original chase-and-escape and random-walk models, respectively. In between, we

found interesting behavior. When NC is large(-for lower lines-), the time monotonically

increases from left to right. However, when NC becomes small to the order of N0
T (-for

upper lines-), they show minimum around Tf = 1. Here, we note that shapes of the

distributions also change with Tf . But we confirmed that the distribution with Tf ∼ 1

is clearly located at smaller value of time compared to those of the chase-and-escape

and random-walk models.

Interestingly, a certain amount of fluctuations reduces the time, making it easier

for chasers to catch targets. We may relate this observation to a phenomenon called

”Stochastic Resonance” [14, 15, 16]. Stochastic resonance has been studied in various

fields from the stance that an appropriate level of noise or fluctuations can provide

constructive or beneficial effects. In particular, we note the similarity of collective

effects of stochastic resonance with a simple model of computer network traffic, where

the appropriate level of fluctuations in the direction of passing packets by routers led to

reducing the overall congestion of the network[17]

4. Discussion

In this paper, we introduced a new concept termed “group chase and escape” by

presenting a simple model. By developing the cost function, we found characteristic

behavior of group chase processes and evaluated efficiencies that have an optimum

number of chasers. The values of the function were also compared among several cases,
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including the random walk. Our results confirm that the microscopic chase-and-escape

rule has a scheme completely different from that of a reaction-diffusion system and also

is a promising new example of a “self-driven particle” system.

We could consider various extensions of our model.

One interesting extension would be to include the effects of swarms [18, 21].

By comparing cases in which the targets/chasers are together or solitary, efficient

survival/catch-up strategies could be developed. The advantages and disadvantages of

forming swarms are commonly studied in the fields of sociobiology, such as risk dilution.

We could also examine the role differentiations and cooperative behavior in such groups.

Interesting applications can be considered to the behavior of army ants, which cooperate

to hunt, form bridges, and so on.

Another extension we can make would be to incorporate more complex strategies

for the chases and escapes. Instead of sensing the nearest target/chaser, each side could

use “center of mass” of the locations, or more information about distributions of the

opponent. Changing strategies on the basis of situations, such as the number of non-

captured, could be also considered.

We could also include the effects of information transmission delay for chasers and

targets to grasp the other particles’ positions. Delays often introduce unexpectedly

complex effects into otherwise simple dynamical systems[19, 22, 20]. Some examples

of applications are the modeling of blood cell reproduction [26], human posture and

balance controls [23, 24, 25], traffic jams [27, 28], and so on. Delays could produce

interesting behavior in the context of chases and escapes.
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