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Abstract

For the theoretical prediction of cross–section fluctuations in chaotic scattering, the cross-section autocorrelation
function is needed. That function is not known analytically. Using experimental data and numerical simulations, we
show that an analytical approximation to the cross-section autocorrelation function can be obtained with the help of
expressions first derived by Davis and Boosé. Given the values of the average S–matrix elements and the mean level
density of the scattering system, one can then reliably predict cross-section fluctuations.

1. Purpose

Quantum chaotic scattering is an ubiquitous phenomenon.
It occurs, for instance, in nuclear physics [1], in electron
transport through disordered mesoscopic samples [2], and
in microwave billiards [3]. In all cases, the cross section
displays random fluctuations versus energy or frequency.
These are due to the random features of the underlying
resonances. With d the average resonance spacing and Γ
the average width, data on cross-section fluctuations exist
for the entire range of the parameter Γ/d, from the regime
of isolated resonances (Γ ≪ d) to that of strongly overlap-
ping resonances (Γ ≫ d). The analysis of the data focuses
on the value of the average cross section and on quantities
that characterize the cross-section fluctuations. These are
the variance of the cross section and certain correlation
functions. For the analysis, one needs theoretical expres-
sions for these quantities. These should be generic and
only use a minimum of adjustable parameters.

The generic theoretical treatment of chaotic scattering
employs a combination of scattering theory and random-
matrix theory [1] and uses as input the values of d and of
the energy-averaged elements S of the scattering matrix S.
Analytical results exist for the S-matrix autocorrelation
and cross-correlation functions [1] (including the value of
the average cross section) and for the third and fourth
moments of the S-matrix [4, 5]. Because of the complexity
of the problem, analytical results for higher moments of
the cross section or for cross-section correlation functions
cannot be expected in the foreseeable future.

The present paper aims at filling that gap. We com-
bine the available analytical information [1, 4, 5], results
of computer simulations, and of experimental work on mi-
crowave billiards [3, 6] to study the cross-section autocor-
relation function for all values of Γ/d. In particular, we
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address the following questions. (i) For which values of
Γ/d and with which accuracy can the cross-section auto-
correlation function be predicted in terms of the S-matrix
autocorrelation function? (ii) Which analytical alterna-
tives exist should that approach fail?

2. Framework

We consider chaotic scattering in a time-reversal invari-
ant system described by a unitary and symmetric scat-
tering matrix Sab(E). Here a, b = 1, . . . , Λ denote the
channels and E the energy (or, in the case of microwave
billiards, the frequency). The number Λ of channels may
range from unity to a large number, Λ ≫ 1. Chaotic scat-
tering is modeled by writing the S-matrix in the form [7]

Sab(E) = δab − i
∑

µ

WaµD−1
µν (E)Wbν (1)

where

Dµν(E) = E δµν − Hµν + iπ
∑

c

WcµWcν . (2)

The real and symmetric Hamiltonian matrix H has di-
mension N ≫ 1 and describes the dynamics of N res-
onances labeled by Greek letters. These are coupled to
the channels by the real matrix elements Waµ. Chaos is
taken into account by choosing H as a member of the
Gaussian orthogonal ensemble (GOE) of random matri-
ces [1]. Thus, the elements of H are Gaussian random
variables with zero mean values and second moments given
by HµνHρσ = (λ2/N)[δµρδνσ + δµσδνρ]. Here and in the
sequel, the overbar denotes the average over the ensemble.
The parameter λ determines (or is determined by) the av-
erage level spacing d of the N resonances. It is convenient
to decompose S(E) into an average and a fluctuating part,

Sab(E) = Saa δab + Sfl
ab(E) , (3)

Preprint submitted to Elsevier December 22, 2009

http://arxiv.org/abs/0912.4407v1


where the average S-matrix S is assumed to be diagonal.
The values of the diagonal elements Saa serve as input pa-
rameters for the statistical model and are assumed to be
known. That is the typical case: In nuclei, Saa is given
in terms of the optical model of elastic scattering, in mi-
crowave billiards Saa is determined by the running average
over a measured spectrum [3, 6]. In rare cases, the average
S-matrix may not be diagonal. By an orthogonal trans-
formation in channel space, S can be reduced to diagonal
form, see Refs. [5, 8]. For simplicity we do not address
that case. By the same transformation, the phases of the
S-matrix usually appearing as factors on the right–hand
side of Eq. (3), can be removed. Both for the S-matrix
model Eq. (1) considered in the present work and the ex-
perimental data the average S-matrix is real and diagonal.
Starting from Eq. (1), the S-matrix autocorrelation func-
tion (or “two-point function”)

C
(2)
ab (ε) = Sfl

ab(E − ε/2)Sfl∗
ab (E + ε/2) (4)

has been calculated analytically [1] for N ≫ 1 and fixed Λ.
The resulting expression depends only on the difference ε
of the two energy arguments, on the average level spacing
d of the system, and on the transmission coefficients Ta of
all channels a defined by

Ta = 1 − |Saa|2 . (5)

The transmission coefficients obey 0 ≤ Ta ≤ 1. These
coefficients measure the unitarity deficit of the average S-
matrix and give the probability with which the resonances
take part in the reaction. This is seen by using the de-
composition Eq. (3) and the definition Eq. (5) to write the
unitarity condition for S in the form

Ta =
∑

b

|Sfl
ab(E)|2 . (6)

For Ta = 0 or |Saa| = 1, we have Sfl
ab(E) = 0 for all b, and

the resonances are not reached from channel a. Conversely,
∑

b |Sfl
ab(E)|2 is maximal for Ta = 1 or Saa = 0 (complete

absorption of the incident flux in channel a by resonance
formation). The transmission coefficients Ta determine the
average width Γ of the resonances. An approximation for
Γ is the “Weisskopf estimate”

Γ =
d

2π

∑

a

Ta . (7)

The case of strongly overlapping resonances Γ ≫ d (“Er-
icson regime” [9, 10, 11]) occurs for

∑

a Ta ≫ 1: The
number Λ of channels must be large and most of the in-
dividual transmission coefficients Ta must not be small.
Conversely, the case of nearly isolated resonances Γ ≪ d is
realized when Λ is of order unity or when Λ is large but all
Ta are small. The theory developed in Ref. [1] and used
in Refs. [4, 5] applies to all values of Γ/d. Equation (7) is
exact in the Ericson regime and fairly reliable elsewhere.

Under omission of kinematical factors the cross section
in nuclear physics, the conductance in electron transport
and the transmitted power in microwave billiards are all
given by |Sab(E)|2 or by a sum of such terms. For brevity
we refer to |Sab(E)|2 as to the cross section. The average

cross section |Sab(E)|2 = |Saa(E)|2δab + |Sfl
ab(E)|2 is given

in terms of Saa and of C
(2)
ab (0) and is, thus, known. Fluc-

tuations of the cross section are measured in terms of the
cross-section autocorrelation function

Cab(ε) = |Sab(E + ε/2)|2|Sab(E − ε/2)|2 − |Sab|2
2

. (8)

That function is the object of central interest in the present
paper. With the help of the decomposition Eq. (3) we
write

Cab(ε) = 2δabRe

{

Saa
2
C(2)

aa (ε)

+ Saa Sfl∗
aa(E + ε/2)|Sfl

aa(E − ε/2)|2

+ Saa Sfl∗
aa(E − ε/2)|Sfl

aa(E + ε/2)|2
}

+ |Sfl
ab(E + ε/2)|2|Sfl

ab(E − ε/2)|2 − |Sfl
ab|2

2
. (9)

We have used that in the experiments and in the consid-
ered S-matrix model (Eq. (1)) Saa is real, that by defini-

tion Sfl
ab(E) = 0 and that Sfl

ab(E1)Sfl
ab(E2) = 0 for all a, b

and all E1, E2. The last relation holds because all poles
of S lie in the lower half of the complex energy plane. To
determine Cab(ε) we need to know the four-point function

C
(4)
ab (ε) = |Sfl

ab(E + ε/2)|2|Sfl
ab(E − ε/2)|2 − |Sfl

ab|2
2

(10)

and, in the elastic case a = b, also the three-point function

C
(3)
ab (ε) = Sfl∗

ab (E + ε/2)|Sfl
ab(E − ε/2)|2 . (11)

These functions are known analytically only for ε = 0 and
in the Ericson regime (Γ ≫ d), see below.

To determine magnitude and ε-dependence of Cab(ε),
we combine analytical results with numerical and exper-
imental evidence as follows. (i) Analytical results: In
Refs. [4, 5] analytic expressions are given for two func-

tions F
(4)
ab (ε) and F

(3)
ab (ε) that look similar to but actually

differ from C
(4)
ab (ε) and C

(3)
ab (ε), respectively. These are

defined by

F
(4)
ab (ε) =

[

Sfl∗
ab (E + ε/2)

]2 [
Sfl

ab(E − ε/2)
]2

,

F
(3)
ab (ε) = Sfl∗

ab (E + ε/2)
[

Sfl
ab(E − ε/2)

]2
. (12)

We note that in C
(4)
ab (ε) and in C

(3)
ab (ε) the elements Sfl

ab

and Sfl∗
ab carry pairwise the same energy arguments. This

is not the case for F
(4)
ab (ε) and F

(3)
ab (ε). However, F

(3)
ab (0)

coincides with C
(3)
ab (0), and F

(4)
ab (0) differs from C

(4)
ab (0)

only by the known term |Sfl
ab|2

2
. We are going to show

2



that for ε 6= 0 it is possible to approximate C
(4)
ab (ε) in

terms of F
(4)
ab (ε), and under certain conditions C

(3)
ab (ε) in

terms of F
(3)
ab (ε). For the convenience of the reader we,

therefore, give in the Appendix analytic expressions for

F
(n)
ab (ε) for n = 2, 3, 4, where F

(2)
ab (ε) ≡ C

(2)
ab (ε). We

briefly show how the threefold integrals can be evaluated
numerically to avoid the apparent singularities of the in-
tegrand. (ii) Numerical results: For the numerical simu-
lations we use Eqs. (1) and (2) and fixed values for λ, for
the transmission coefficients Ta, and for N as initial val-
ues. Calculations were typically done for several 100 re-
alizations to minimize statistical errors. The results agree
very well with the available analytical results but go be-
yond them. (iii) Data: The data stem from measurements
of transmission and reflection amplitudes of microwaves
in a flat cylindrical resonator made of copper and cou-
pled to two antennas, see Refs. [3, 6]. Microwave power
was coupled into the resonator with the help of a vector
network analyzer. The range of the excitation frequency
was chosen such that only one vertical electric field mode
is excited. Then the microwave cavity simulates a two-
dimensional quantum billiard [12, 13]. The resonator had
the shape of a tilted stadium billiard whose classical dy-
namics is chaotic. Transmission and reflection amplitudes
correspond to complex S-matrix elements that are theo-
retically modeled by Eqs. (1) and (2) [3, 6].

3. Inelastic case (a 6= b)

The inelastic case is simpler than the elastic one be-

cause it involves only the function C
(4)
ab (ε), see Eq. (9). We

begin with the Ericson regime Γ ≫ d, see Refs. [9, 10, 11].
In Ref. [11] it was suggested and in Ref. [15] it was shown
that for Γ ≫ d the fluctuating S-matrix elements Sfl

ab

possess a bivariate Gaussian distribution centered at zero.
That fact implies that all higher moments and correlation

functions can be computed from C
(2)
ab (ε) by way of Wick

contraction. Hence C
(3)
ab (ε) = 0 and

C
(4)
ab (ε) = |C(2)

ab (ε)|2 . (13)

In the Ericson regime, the two-point function has the value [9,
15]

C
(2)
ab (ε) = (1 + δab)

TaTb
∑

c Tc + 2iπε/d
. (14)

Thus, for a 6= b and Γ ≫ d, the cross-section autocorrela-
tion function is known analytically. It has the shape of a
Lorentzian with width Γ as given by Eq. (7).

How far can we use Eq. (13) outside the Ericson regime,
i.e., for smaller values of Γ/d? Figure 1 shows the ratio

C
(4)
12 (0)/|C(2)

12 (0)|2 versus Γ/d as a function of Γ/d on a
semi–logarithmic plot for three cases as indicated in the
figure caption. Case (i) with unequal transmission coef-
ficients is obtained from experimental data and suggests
that Eq. (13) holds approximately for Γ & d. The two

other cases result from numerical simulations with, respec-
tively, Λ = 32 and Λ = 52 equal transmission coefficients
and imply, that Eq. (13) holds for Γ & 3d. The ratio

C
(4)
12 (0)/|C(2)

12 (0)|2 increases dramatically with decreasing
Γ/d so that Eq. (13) cannot be used much below Γ ≈ d.
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Figure 1: Ratios of four-point- and squared two-point-functions of
Sfl

12 on a semi-logarithmic plot for three cases. Upper panel: Ex-
perimental data [3, 6] (filled circles). Lower panel: Data generated
numerically from Eq. (1) for Λ = 32 channels (open circles) and
for Λ = 52 channels (full squares) with identical transmission coeffi-
cients.

The origin of the failure of Eq. (13) for small values
of Γ/d is easily understood. Qualitatively speaking, it is
intuitively clear that cross-section fluctuations (measured
in units of the average cross section) are much larger for
isolated than for overlapping resonances. Quantitatively,
the assumption that underlies Eq. (13) is that the dis-
tribution of the fluctuating S-matrix elements Sfl

ab(E) is
Gaussian. That assumption holds only if the width γ of
the distribution is sufficiently small. Indeed, the unitarity
condition Eq. (6) implies that for all a and b we must have
|Sfl

ab|2 ≤ Ta ≤ 1, and γ must be so small that the contri-
bution of the tails of the distribution that extend beyond

the values ±T
1/2
a , is negligible. Otherwise, significant de-

viations from a Gaussian distribution are to be expected.
To estimate γ in the Ericson regime we use Eq. (14) which

for a 6= b gives γ = |C(2)
ab (0)|1/2 = [TaTb/

∑

c Tc]
1/2. Thus,

since
∑

c Tc ≫ 1 this estimate yields γ ≪ 1 as expected.
For smaller values of Γ/d, constraints on the distribution
of Sfl

ab due to the unitarity condition (6) are expected to
become increasingly important as the number Λ of terms
in the sum in Eq. (6) decreases.

We have checked this explanation by investigating the
distribution of Sfl

12. A bivariate Gaussian distribution for

Sfl
12 implies that the distribution of z = |Sfl

12|/|Sfl
12| has the

3



form P (z) = (π/2)z exp[−(π/4)z2], and that the phase
of Sfl

12 is distributed uniformly in the interval {0, 2π}. In
Fig. 2 and Fig. 3 and for values of Γ/d indicated above
each panel, we compare in the upper row the function P (z)
with experimental and numerical data, respectively. In the
panels in the lower row, we show the corresponding distri-
butions of the phase. The numerical data in the three
panels of Fig. 2 are obtained by simulating absorption in
the resonator in terms of a large number of fictitious chan-
nels with small transmission coefficients in each channel.
Then their sum τ is the only parameter. It was deter-
mined as described in [3] from a fit of the experimental
autocorrelation function to the analytic result given in [1].
The data show that agreement with the bivariate Gaus-
sian distribution is attained for Γ/d & 1. The data in
Fig. 3 (generated numerically for 32 equal channels) show
agreement with the bivariate Gaussian distribution only
for Γ/d & 3. This suggests that the limit of a bivariate
Gaussian distribution for Sfl

ab with a 6= b is attained for
larger values of Γ/d when all transmission coefficients are
equal than when the transmission coefficients differ. These
results account for the deviations from Eq. (13) displayed
in Fig. 1.
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Figure 2: Distribution of the modulus (upper row) and phase (lower
row) of Sfl

12 obtained from the experimental data (histograms) and
from numerical simulations (solid lines) for three values of Γ/d. In
the upper row, the bivariate Gaussian distribution expected in the
Ericson limit is shown as a dashed line. The transmission coefficients
have the following values [3, 6]. For Γ/d = 0.17: T1 = 0.097, T2 =
0.130, τabs = 0.810, for Γ/d = 0.54: T1 = 0.417, T2 = 0.475, τabs =
2.274, for Γ/d = 1.01: T1 = 0.784, T2 = 0.665, τabs = 4.903.

Concerning the ε-dependence of C
(4)
12 (ε) and of |C(2)

12 (ε)|2,
our data show that for those values of Γ/d where the ra-

tio C
(4)
12 (0)/|C(2)

12 (0)|2 ≈ 1, that dependence is sufficiently

similar so that C
(4)
12 (ε) can be reliably approximated by

|C(2)
12 (ε)|2. (By that we mean that the full two–point func-

tion defined in Eq. (4) and not the approximate form
Eq. (14) has to be used). That leaves us with the ques-

tion how to approximate C
(4)
12 (ε) analytically for Γ . d.
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Figure 3: Distribution of the modulus (upper row) and phase (lower
row) of Sfl

12 obtained from numerical simulations (histograms) for
Λ = 32 channels with identical transmission coefficients for three
values of Γ/d. In the upper row, the bivariate Gaussian distribution
expected in the Ericson limit is shown as a dashed line.

An obvious possibility is offered by the function F
(4)
12 (ε)

defined in the first of Eqs. (12). Figure 4 shows experi-
mental (upper two panels) and numerically (lowest panel)

generated values of |F (4)
12 (ε)| and of C

(4)
12 (ε) versus ε for

two different values of Γ/d, and for Λ = 32 channels with
identical transmission coefficients Ta = 0.2 and a value of
Γ/d close to the largest achieved in the experiment, re-

spectively. The function |F (4)
12 (ε)| was rescaled so that at

ε = 0 it agrees with C
(4)
12 (0). In the upper two panels

the experimental curves for C
(4)
12 (ε) (filled circles) and the

rescaled function |F (4)
12 (ε)| are shown together with the an-

alytic result for |F (4)
12 (ε)| multiplied with the same scaling

factor as the experimental one. In the lowest panel we

compare the numerical result for C
(4)
12 (ε) with the analytic

rescaled result for |F (4)
12 (ε)|. We note that the agreement is

excellent for all three cases. Similarly good agreement was
found also for Λ = 52 channels and several values of Γ/d.
We conclude that we have reached a simple and reliable

prescription for approximating C
(4)
12 (ε) analytically for all

values of Γ/d: Calculate C
(4)
12 (0) and |F (4)

12 (ε)| analytically.
(The formulas needed [4, 5] are given in the Appendix).

Rescale |F (4)
12 (ε)| so that its value at ε = 0 agrees with

C
(4)
12 (0). The resulting rescaled function |F (4)

12 (ε)| is an ex-

cellent approximation to C
(4)
12 (ε) for all values of Γ/d.

4. Elastic Case (a = b)

The elastic case is analogous to the inelastic one only
if Saa = 0. Then all conclusions drawn in Section 3 apply.
In general, that is not the case. In particular, for Γ ≪
d (isolated resonances) the last term in Eq. (1) tends to
zero and Saa approaches unity. The unitarity constraint

4
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Figure 4: The dependence on ε of C
(4)
12 (ε) and of the renormalized

function |F
(4)
12 (ε)| for three cases with Γ/d as indicated in the panels.

In the upper two panels we show experimental curves for C
(4)
12 (ε)

(filled circles) and for |F
(4)
12 (ε)| (open squares), in the lowest panel a

numerically generated curve for C
(4)
12 (ε) (solid line) for 32 identical

channels. In all three panels, the analytic function |F
(4)
12 (ε)| is shown

as dashed line. Both the experimental and the analytic values for

|F
(4)
12 (ε)| are renormalized with a factor determined from the analytic

value for C
(4)
12 (0).

on S implies |Saa + Sfl
aa| ≤ 1 and the distribution of Sfl

aa

must then become skewed. Therefore, we have to expect
that Eq. (13) applies less generally in the elastic than in

the inelastic case, and that C
(3)
aa (ε) in Eq. (9) plays an

important role. Actually, it was pointed out in Refs. [4,
5] that even in the Ericson limit, a profound difference
between the elastic and the inelastic cases exists: For Γ ≫
d, |Sfl

aa|3 and |Sfl
aa|4 have similar values unless Ta ≈ 1 or

Saa ≈ 0. That shows that in order to predict Caa(ε) we

need to know both C
(3)
aa (ε) and C

(4)
aa (ε) for all values of

Γ/d.

Concerning C
(4)
11 (0), we proceed as in Section 3 and

display in Fig. 5 the ratio C
(4)
11 (0)/|C(2)

11 (0)|2 in the upper
panel for experimental data, in the lower one for a numeri-
cal simulation with Λ = 32 equal transmission coefficients,
as indicated in the figure caption. We reach the same con-
clusions as for a 6= b: When the transmission coefficients
differ, the ratio is close to unity for Γ & d, when they are

equal for Γ & 3d. As in the inelastic case, the reason for

 1

 10

 100

0.0 0.4 0.8 1.2

C
1
1

(4
) (

0
)/

|C
1
1

(2
) (

0
)|

2

Γ/d

Experimental data

 1

 10

0 2 4
C

1
1

(4
) (

0
)/

|C
1
1

(2
) (

0
)|

2

Γ/d

RMT simulation

Figure 5: Same as Fig. 1 but for Sfl
11.

the failure of Eq. (13) is the non–Gaussian distribution of
Sfl. This is shown in Figs. 6, 7. The deviations from a
bivariate Gaussian distribution now occur for larger val-
ues of Γ/d than in the inelastic case, in keeping with the
expectations formulated at the beginning of this Section.
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Figure 6: Same as Fig. 2 but for Sfl
11.

In Fig. 8 we show that, as in the elastic case, the rescaled

function |F (4)
11 (ε)| agrees well with C

(4)
11 (ε) for all values of

Γ/d. Such agreement was likewise found for the case of
Λ = 52 channels with identical transmission coefficients.
Figure 9 shows that the three-point function Re

(

C
(3)
11 (ε)

)

is approximated quite well by the (unrenormalized) func-

tion Re

(

F
(3)
11 (ε)

)

defined in the second of Eqs. (12) for the
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Figure 7: Same as Fig. 3 but for Sfl
11.

experimental data with Γ/d = 0.17 (upper panel), where
the resonances are nearly isolated, and for the numerical
simulations with Λ = 32 identical transmission coefficients
Ta = 0.2 (lower panel). However, considerable deviations
are observed for the experimental data with Γ/d = 1.01
(middle panel). Thus, the conclusions drawn for the inelas-
tic case apply similarly to the elastic one only in the regime
of isolated resonances and the Ericson regime, where Saa

is vanishingly small. To obtain an analytic expression for
the cross-section autocorrelation function we now need to
replace C

(4)
11 (ε) with the rescaled function |F (4)

11 (ε)| and the

function Re

(

C
(3)
11 (ε)

)

with Re

(

F
(3)
11 (ε)

)

. While the for-

mer replacement yields an excellent approximation for all
values of Γ/d, this is not generally true for the latter in
the intermediate regime of weakly overlapping resonances.
Still, for the numerical simulations with Λ = 32 equal
transmission coefficients Ta = 0.2, which corresponds to
Γ/d = 1.02, the resulting analytic expression for the cross-
section autocorrelation function yields a good approxima-

tion, because there both, the values of Re

(

F
(3)
11 (ε)

)

and of

Re

(

C
(3)
11 (ε)

)

, are negligibly small as compared to Cab(ε),

whereas this is not true for the experimental data with
Γ/d = 1.01.

5. Summary

We return to the questions raised in the Introduction.
We have shown that Eq. (13) holds essentially only in the
Ericson regime and, for the elastic case, even there only
approximately. This is because of the constraint imposed
on the distribution of Sfl by unitarity. Hence, in the inelas-
tic case the cross–section autocorrelation function can be
reliably predicted from Eq. (13) for Γ/d & 1 for inequiva-
lent channels and for Γ/d & 3 for identical channels. Even
more stringent constraints exist in the elastic case. We
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Figure 8: Same as Fig. 4 but for the elastic case.

have demonstrated, however, that for the inelastic case
for all values of Γ/d and for the elastic case under certain
conditions an excellent approximation to the cross-section
autocorrelation function may be obtained by replacing in

Eq. (9) the three-point function C
(3)
ab (ε) by F

(3)
ab (ε) and

the four-point function C
(4)
ab (ε) by the rescaled function

F
(4)
ab (ε). With these replacements, Eq. (9) takes the form

Cab(ε) ≃ 2δabRe

{

Saa
2

C(2)
aa (ε)

+ Saa F (3)
aa (ε) + Saa F (3)

aa (−ε)

}

+
C

(4)
ab (0)

|F (4)
ab (0)|

|F (4)
ab (ε)| . (15)

The input parameters for the evaluation of Eq. (15) are the
average S–matrix elements and the associated transmis-
sion coefficients for all channels and, for the dependence on
ε, the average level spacing d of the scattering system. In

terms of these parameters, the two–point function C
(2)
ab (ε)

is given in Ref. [1], and C
(4)
ab (0) and the functions F

(4)
ab (ε)

and F
(3)
ab (ε) in Refs. [4, 5]. For the convenience of the

reader, all relevant formulas are collected in the Appendix
in a form suitable for numerical implementation. For the
elastic case, Eq. (15) provides an excellent approximation
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Figure 9: The dependence on ε of Re

“

F
(3)
11 (ε)

”

and of Re

“

C
(3)
11 (ε)

”

for three cases with Γ/d as indicated in the panels. In the upper two

panels we show experimental curves for Re

“

C
(3)
11 (ε)

”

(filled circles)

and for Re

“

F
(3)
11 (ε)

”

(open squares), in the lowest panel a numer-

ically generated curve Re

“

C
(3)
11 (ε)

”

for 32 identical channels (solid

line). The analytic function Re

“

F
(3)
11 (ε)

”

is shown as dashed line in

all three panels. The limited accuracy of our comparison is indicated
by the difference between the dashed line and the open squares in
the upper two panels.

for the cross-section autocorrelation function for all values
of Γ/d only for ε = 0. For ε > 0 Eq. (15) yields a good
approximation in the regime of isolated and strongly over-
lapping resonances, whereas in the intermediate regime of
weakly overlapping resonances this is true, if the contri-

bution of C
(3)
ab (ε) or equivalently of |F (3)

ab (ε)| to Cab(ε) is
negligible.
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Appendix

For the evaluation of Cab(ε = 0) in terms of Sfl and S as

given in Eq. (9) we need to compute C
(2)
ab (ε = 0), C

(3)
aa (ε =

0) = Sfl∗
ab (0)|Sfl

ab(0)|2 and C
(4)
ab (ε = 0) = |Sfl

ab(0)|4−|Sfl
ab(0)|2

2
.

The autocorrelation coefficient C
(2)
ab (ε = 0), Sfl∗

ab (0)|Sfl
ab(0)|2

and |Sfl
ab(0)|4 are given in terms of a threefold integral, c.f.

Refs. [1, 4],

F
(n)
ab (0) = (16)

1

8

∫ ∞

0

dλ1

∫ ∞

0

dλ2

∫ 1

0

dλJ (λ, λ1, λ2)

×
∏

c

1 − Tc λ
√

(1 + Tcλ1)(1 + Tc λ2)
F (n)

ab (λ, λ1, λ2)

where the integration measure is given as

J (λ, λ1, λ2) = (17)

λ(1 − λ)|λ1 − λ2|
(λ + λ1)2(λ + λ2)2

√

λ1(1 + λ1)λ2(1 + λ2)
.

For n = 2, i.e. for |Sfl
ab(0)|2 the factor F(λ, λ1, λ2) equals

F (2)
ab (λ, λ1, λ2) = (18)

δab |Saa|2 T 2
a

(

λ1

1 + Taλ1
+

λ2

1 + Taλ2
+

2λ

1 − Taλ

)2

+ (1 + δab) TaTb

(

λ1(1 + λ1)

(1 + Taλ1)(1 + Tbλ1)

+
λ2(1 + λ2)

(1 + Taλ2)(1 + Tbλ2)
+

2λ(1 − λ)

(1 − Taλ)(1 − Tbλ)

)

,

for n = 3, i.e. for Sfl∗
ab (0)|Sfl

ab(0)|2 it equals

F (3)
ab (λ, λ1, λ2) = (19)

− Saa

(

4trg(µaνa) + 2trg(µa)trg(νa)

+ ra

{

trg
(

µ2
a

)

+
1

2
[trg(µa)]

2}
})

δab

and for n = 4, i.e. for |Sfl
ab(0)|4 we have

F (4)
ab (λ, λ1, λ2) = (20)
{

trg(νa) +
1

2
ra [trg(µa)]

2

}

×
{

trg(νb) +
1

2
rb [trg(µb)]

2

}

+ δab

(

[trg(νa)]2 + 4trg
(

ν2
a

)

+ r2
atrg

(

µ2
a

)

{

trg
(

µ2
a

)

+ [trg(µa)]
2
}

+ ra

{

[trg(µa)]2 trg(νa)

+ 8 trg(µa)trg(µaνa) + 8 trg
(

µ2
aνa

)

}

)

.
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Here, ra = 1 − Ta and µa, νa are the matrices

µa = Taλ0 (1 + Taλ0)
−1

,

νa = T 2
a λ0(1 + λ0) (1 + Taλ0)

−2
, (21)

where λ0 is the 4 × 4 diagonal matrix with entries λ1, λ2,
−λ and −λ. For a 4 × 4 matrix M with diagonal ele-
ments mii the graded trace trg is defined as trg(M) =
(m11 + m22) − (m33 + m44). Analytic expressions for

the functions F
(3)
ab (ε) and F

(4)
ab (ε) defined in Eqs. (12) are

obtained by multiplying F (2)
ab (λ, λ1, λ2) in Eq. (18) and

F (3)
ab (λ, λ1, λ2) in Eq. (19) and F (4)

ab (λ, λ1, λ2) in Eq. (20)
with the exponential

exp [−i (λ1 + λ2 + 2λ)πε/d] . (22)

The integral Eq. (16) contains several singularities. These
can be handled by proceeding as in Section 5 of Ref. [14].
We define the variable

p = λ1 + λ2 + 2λ . (23)

Then the exponential in Eq. (22) turns into

exp(−ipπε/d) . (24)

We distinguish the two cases p ≤ 2 and p > 2. For p ≤ 2
we define two further integration variables

s =

√
λ1 + λ√

λ1 + λ2 + 2λ
, (25)

t =

√
λ1√

λ1 + λ
. (26)

For the inverse transformation that yields

λ = ps2
(

1 − t2
)

, (27)

λ1 = ps2t2 , (28)

λ2 = p
(

1 + s2t2 − 2s2
)

. (29)

The Jacobian for this transformation is equal to 4p2s3t.
The threefold integral in Eq. (16) becomes

F
(n)
ab (ε)(p≤2) = (30)
∫ 2

0

dp

∫ 1/
√

2

0

ds

∫ 1

0

dt
e−ipπε/d

p (1 − s2)
2√

(1 + ps2t2)

×
[

1 − ps2
(

1 − t2
)] (

1 − 2s2
) (

1 − t2
)

√

(1 + s2t2 − 2s2) [1 + p (1 + s2t2 − 2s2)]

×
∏

c

1 − Tc λ
√

(1 + Tcλ1)(1 + Tc λ2)
F (n)

ab (λ, λ1, λ2) .

For p > 2 we define additional integration variables

s =
√

λ1 + λ , (31)

t =

√
λ1√

λ1 + λ
. (32)

For the inverse transformation that yields

λ = s2
(

1 − t2
)

, (33)

λ1 = s2t2 , (34)

λ2 = p + s2t2 − 2s2 . (35)

The Jacobian equals 4s3t and the threefold integral in
Eq. (16) becomes

F
(n)
ab (ε)(p>2) = (36)

∫ ∞

2

dp

∫

√
p/2

0

ds

∫ 1

√
1−s−2θ(s−1)

dt
e−ipπε/d

(p − s2)2

×
[

1 − s2
(

1 − t2
)] (

p − 2s2
) (

1 − t2
)

√

(p + s2t2 − 2s2) (1 + s2t2) (1 + p + s2t2 − 2s2)

×
∏

c

1 − Tc λ
√

(1 + Tcλ1)(1 + Tc λ2)
F (n)

ab (λ, λ1, λ2)

where the θ-function is defined by

θ(x) = 0 for x ≤ 0 , (37)

θ(x) = 1 for x > 0 . (38)
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